3 Boxdimension. 3.1 Wozu denn noch ein Dimensionsbegriff?

Größe: px
Ab Seite anzeigen:

Download "3 Boxdimension. 3.1 Wozu denn noch ein Dimensionsbegriff?"

Transkript

1 26 3 imension 3.1 Wozu enn noch ein Dimensionsbegriff? Im letzten Kapitel haben wir Fraktale betrachtet, ie exakt selbstähnlich sin. Die Selbstähnlichkeitsimension eignete sich in hervorragener Weise, iese Fraktale auszumessen. Wenn ein Fraktal aber nicht exakt selbstähnlich ist, stoßen wir an ie Grenzen er Selbstähnlichkeitsimension. Das liegt aran, ass iese Fraktale nicht mehr sinnvoll mit vererten Kopien ihrer selbst ausgemessen weren können. Abb. 3.1: Der Pythagorasbaum Der Pythagorasbaum ist nicht exakt selbstähnlich. Zum einen kann man as erst, größte Quarat un Dreieck nicht mit vererten Kopien er Gesamtfigur überecken. Zum aneren ist er Vererungsfaktor über er einen Kathete aners als über er aneren Kathete. Es gibt also keinen einheitlichen Skalierungsfaktor s. Solche Figuren kommen nicht nur in er Mathematik sonern auch in er Natur vor. Hier wir zusätzlich er Begriff ähnlich nicht in seiner geometrisch exakten Beeutung verwenet. Die Berechnung er Dimension für solche gebile in er Natur ist heute in en Naturwissenschaften, z.b. in er Meizin oer Biologie ein wichtiger Bestanteil.

2 27 Abb. 3.2: Bil einer Leber als Ergebnis einer Gefäßmoellierung auf Basis globaler konstruktiver Optimierung. 8 Wir benötigen also eine Messmethoe, welche nicht auf exakt selbstähnliche Fraktale beschränkt ist. Hier eignet sich ie imension. 3.2 Was ist ie imension? Wenn as Objekt selbst nicht zum Ausmessen herangezogen weren kann, liegt es nahe, ein stanarisiertes Element zum Messen zu verwenen. Bei er imension für Objekte in einer Ebene weren azu Quarate er Kantenlänge a genutzt. Diese sin zu einem regelmäßigen Gitter, wie auf einem Karoblatt, angeornet. Dieses Gitter wir auf ie auszumessene Figur gelegt. Dann wir ausgezählt, wie viele Kästchen n einen Teil er Figur enthalten. Man verert nun ie Kästchengröße a mit em Skalierungsfaktor s zu einer neuen Größe a un zählt erneut ie entsprechenen Kästchen, welche Anteile er Figur enthalten. Die Anzahl er en Kästchen n steht abei zur Anzahl er en Kästchen n in einem gewissen Verhältnis, welches sich urch folgene Gleichung ausrücken lässt: 8 Diese Abbilung wure von Horst Hahn, Fraunhofer MEVIS, Bremen zur Verfügung gestellt.

3 28 n = n s Der Exponent wir ie imension es untersuchten Objektes genannt. Der Skalierungsfaktor s kann urch ie verschieenen Rasterkantenlängen a un a ausgerückt weren: s a = a Wir ersetzen nun s: n a = n a Diese Gleichung können wir verwenen, um ie imensin zu bestimmen. Dazu lösen wir ie Gleichung nach box auf. n log n log n log n = = a log a log a log a Wir können ie Hanhabbarkeit er Formel für unsere Zwecke noch etwas verbessern, inem wir ie Rasterkantenlängen a un a als Bruchteil er Ausehnung es zu untersuchenen Objektes angeben. Wenn wir ie Ausehnung ann noch Normieren,.h. ihr ie Länge 1 zuornen un als Rasterlängen nur ganzzahlige Teilungsverhältnisse zulassen, erhalten wir für a un a jeweils einen Stammbruch, z.b. a = 1! 8 un! a = 1 16 oer allgemein! a = 1. Wir sin aurch b unabhängig von er tatsächlichen Kantenlänge bzw. er Größe er Abbilung es zu untersuchenen Objekts. Für en Nenner unserer Dimensionsgleichung ergibt sich ann: 1 1 log a log a = log log b b = log1 logb log1 log Un für ie imension : = 0 logb 0 log = log b logb ( b ) ( b )

4 29 log n = log b log n logb Die so gewonnene Gleichung kann man als einen Differenzenquotienten betrachten. Die Dimension kann also auch als Steigung in einem Diagramm interpretiert weren, in em log n gegen log b aufgetragen ist. Dieses weren wir weiter unten nutzen. In er Praxis müssen wir bei er Interpretation es so gewonnenen Wertes berücksichtigen, ass wir in vielen Fällen nur einen Näherungswert für ie imension erhalten können, a ie Genauigkeit von er Feinheit un er Ausrichtung es Gitters abhängt un ieses realistisch gesehen nicht unenlich verfeinert weren kann. Außerem ürfen wir nicht vergessen, ass wir auf iese Weise keine Grenzbiler von Fraktalen untersuchen können, a wir immer nur eine bestimmte Stufe eines Fraktals abbilen können. Das Verfahren macht also nur Sinn, wenn as Gitter noch größer als ie sten Elemente er abgebileten Stufe es Fraktals ist. Wir weren im nächsten Kapitel urch Verwenung von mehr als zwei Zählungen einen Weg finen, ie imension etwas genauer zu approximieren. 3.3 Bestimmung er imension in er Praxis Um ein Gefühl für en Umgang mit er gerae entwickelten Gleichung un em beschriebenen Verfahren zu bekommen, wollen wir ie imension eines Objektes bestimmen. Nehmen wir eine einfache Strecke. In Abbilung 3.3 wuren 6 verschieenmaschige Gitter auf ie Strecke gelegt. Abb. 3.3: Verschieen grobe Gitter weren auf ie Strecke gelegt.

5 30 Zählt man jeweils ie getroffenen Maschen aus, erhält man ie in er folgenen Tabelle angegebenen Daten. Stufe b = 1/Gitterweite n = Anzahl Berechnen wir nun ie imension unter Verwenung er Daten er ersten un zweiten Stufe. log 5 log 2 0,699 0,301 = 1,32 log 4 log 2 0, 602 0,301 Das scheint merkwürig zu sein, wissen wir och, ass eine Strecke einimensional ist. Führen wir probeweise ie Berechnungen mit en Werten er 5. un 6. Stufe urch, erhalten wir Folgenes: log 24 log 20 1,38 1,301 = 0,45 log 24 log16 1,38 1, 204 Wie kommt es zu iesen enormen, sich wiersprechenen Abweichungen? Schauen wir uns noch einmal ie Gitternetze in Abbilung 3.3 an. Die Strecke verläuft nicht parallel zu en Gitternetzlinien. Daurch weren an manchen Stellen zwei untereinaner liegene Maschen getroffen. Wenn man jeoch ie Strecke an ie Gitterausrichtung angliche, ist leicht einzusehen, ass ie Anzahl er getroffenen Gittermaschen jeweils mit em Wert b übereinstimmte. Dann kämen wir mit Werten er ersten beien Stufen - un jeer aneren Stufe auch - zu folgenem Ergebnis: log 4 log 2 = = 1 log 4 log 2 Die Lage es Objektes im Gitter bzw. ie Ausrichtung es Gitters auf em Objekt ist also von nicht zu unterschätzener Beeutung. Bei einem so wenig komplexen Objekt wie einer Strecke können wir arauf leicht Rücksicht nehmen. Was ist aber mit einem komplexen Fraktal? Hier weren wir sicherlich nicht immer eine geschickte Lösung finen. Um trotzem ein genaueres Ergebnis zu erhalten, nutzen wir en Effekt, ass sich iese Fehler bei Heranziehung mehrerer Messungen etwas relativieren lassen. Bei er praktischen Anwenung er imension trägt man ie gemessenen Werte in ein oppelt logarithmisches Koorinatensystem ein. Im Iealfall liegen ie Messpunkte auf einer Geraen, im Normalfall ist as nur näherungsweise er Fall. Daher ermittelt man zu en Messpunkten eine Ausgleichsgerae, eren Steigung ann ie imension ist. Die nachfolgene Tabelle greift noch einmal as Beispiel zur Strecke auf.

6 31 Stufe log(b) 0,301 0,602 0,903 1,079 1,204 1,380 log(n) 0,301 0,699 1,000 1,079 1,301 1,380 In Abbilung 3.4 sin ie entsprechenen Wertepaare als Punkte in einem Koorinatensystem argestellt. 2,5 log(n) 2 y = 1,0x + 0,1 1,5 1 0,5 0-0,5 0 0,5 1 1,5 2-0,5 log(b) Abb. 3.4: Doppelt logarithmische Diagramm für eine Strecke. Wir zeichnen nun per Augenmaß eine Ausgleichsgerae ein. Alternativ können wir auch etwas eleganter un genauer nach er Methoe er sten Quarate ie Ausgleichsgerae bestimmen. Dieses erleigen aber auch Computerprogramme für uns. 9 Die Steigung ieser Ausgleichsgeraen liefert nun einen etwas genaueren Wert für ie imension. In unserem Fall kann man sich avon urch ie in Abbilung 3.4 angegebene Geraengleichung überzeugen. Wir erkennen an iesem Beispiel eutlich ie Grenzen er imension: Praktische Messungen haben stets nur eine gewisse Genauigkeit, ie allerings urch ie Anzahl er Messpunkte gesteigert weren kann. 3.4 Die imension einer Küstenlinie Vorüberlegungen Ist es sinnvoll, ie imension einer Küstenlinie zu bestimmen? Steckt in em Wort Küstenlinie nicht schon ie Antwort? Nämlich ass ie Dimension 1 ist? Wir haben aber auch gesehen, ass ie Dimension von Liniengebilen, wie z.b. er Kochkurve zwischen 1 un 2 liegen kann. Bei em Entstehungsprozess für ie Kochkurve haben wir mit einer Strecke begonnen (eren Länge wir zu 1 normiert 9 Dieses kann zum Beispiel in Excel mit er Option Trenlinie urchgeführt weren.

7 32 hatten). Im weiteren Konstruktionsprozess wuchs aber ie Länge von 4 Stufe zu Stufe um en Faktor, so ass im Grenzwert galt:! 3 n 4 lim = n 3 Die (einimensionale) Länge er Grenzfigur ist nicht bestimmbar. Die Selbstähnlichkeitsimension war größer als 1. Was hat as nun mit einer Küstenlinie zu tun? Den Zusammenhang erkennen wir, wenn wir einmal kritisch hinterfragen, was eigentlich genau ie Küstenlinie ist. 10 Beschränkt man sich abstrakt auf Karten, so ist ie Küstenlinie um so genauer argestellt, je feiner er Maßstab ist. Auf solchen Karten kommen Buchten vor, ie bei einem gröberen Maßstab weggelassen weren (müssen). Geht man also zu feineren Karten, so wächst ie Linie er Küste nicht nur urch en aneren Maßstab, sonern ie Länge wächst überproportional, a nun ie Feinheiten zusätzlich eine Verlängerung verursachen. Nimmt man nun keine Karten, sonern misst an er realen Küste, so wir as Problem noch komplizierter. Wie soll man sich an er Küste bewegen? Fliegt man mit einem Flugzeug an er Küste entlang? Fährt man mit einem Fahrzeug oer geht man zu Fuß un zählt ie Schritte? Bei en beien letzteren Verfahren kommt bei einer Küste mit Ebbe un Flut ie Frage auf, wo enn eigentlich ie Küstenlinie verläuft. Auch hier müssen wir feststellen, ass ie Küstenlinie um so länger wir, je genauer wir hinschauen. Genau as ist bei er Konstruktion er Kochkurve auch passiert: von Stufe zu Stufe sin weitere Feinheiten azugekommen, ie ie Linie verlängert haben. In so fern ist es also berechtigt, einen Küstenlinie wie ein Fraktal auszumessen. Warum sollte man ie ()Dimension einer Küste ermitteln? Welche Information kann man aurch gewinnen? Vergleichen wir zwei verschieene Küstenlinien, so weren beie beim genaueren Ausmessen überproportional länger. Allerings kann er Verlängerungsfaktor, er bei gleicher Vorgehensweise von Stufe zu Stufe bzw. von Maßstab zu Maßstab auftritt, unterschielich sein. Dieser Verlängerungsfaktor ist abhängig von er Komplexität er Küste. Je zerklüfteter ie Küste, esto mehr Details weren in einer jeweils höheren Stufe Berücksichtigung finen. Wie wir schon in en vorangegangenen Kapiteln gesehen haben, ist ie fraktale Dimension ein geeignetes Maß, en Gra er Komplexität anzugeben. Die Komplexität steht im Zusammenhang mit er Geschwinigkeit, mit welcher ie Linienlänge von Stufe zu Stufe wächst. Beispiele von imensionen von Küsten auf Grun von Satellitenbilern: Australien: 1,13 Großbritannien: 1,25 Norwegen: 1,52 10 How long ist he coast of Britain? Mit ieser 1967 veröffentlichten Abhanlung hat er Mathematiker Benoit Manelbrot ie Untersuchung von Fraktalen angestoßen.

8 Bestimmung er imension von Rügens Küstenlinie Wir arbeiten hier mit einem Kartenbil un erzeugen as genauer Hinschauen wie schon beschrieben urch immer feinere Quaratgitter. Die Breite es verweneten Kartenausschnitts wure auf 1 normiert. Gitterweite 1/4 Gitterweite 1/8 Gitterweite 1/12 Gitterweite 1/16 Gitterweite 1/24 Gitterweite 1/32 Abb. 3.5: Rügen unter verschieen groben Gittern. 3,5 log(n) 3 y = 1,41x + 0,41 2,5 2 1,5 1 0, ,5 1 1,5 2 2,5 log(b) Abb. 3.6: Bestimmung er imension von Rügens Küstenlinie

9 34 Mit etwas Zeit un Geul kann man ie in Abbilung 3.5 argestellten Rasterungen auszählen un auf schon bekannte Art un Weise in ein oppelt logarithmisches Koorinatensystem eintragen. Dann erzeugt man wieer eine Ausgleichsgerae un ermittelt eren Steigung. Rügens Küstenlinie hat emnach ie imension 1,41. Sie ist so betrachtet sogar komplexer als ie Kochkurve, ie mit log 4 s = 1, 26 log3 eine nierigere Selbstähnlichkeitsimension besitzt. 3.5 Sin imension un Selbstähnlichkeitsimension gleich? Für viele Fraktale gelangt man mit er imension - zuminest näherungsweise zum gleichen Wert wie mit er Selbstähnlichkeitsimension. Es gibt aber Ausnahmen. Wenn ein Fraktal konstruktionsbeingt Überlappungen in sich birgt, weren iese von er imension nur einfach berücksichtigt, a sie ja nicht nebeneinaner, sonern übereinaner liegen. Die Selbstähnlichkeitsimension berücksichtigt hingegen iese Überlappungen, enn ie Selbstähnlichkeit berechnet sich wie wir gesehen haben aus em Skalierungsfaktor s un er Anzahl er um s vererten Kopien, mit enen ie Figur ausgelegt weren kann. 11 Beie Dimensionsbegriffe können aher nur mit Vorsicht zueinaner in Beziehung gesetzt weren. 11 Vgl. Peitgen / Jürgens / Saupe 1992, S. 258 f.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Logik / Kombinatorik - Hinweise zur Lösungsfindung

Logik / Kombinatorik - Hinweise zur Lösungsfindung Logik / Kombinatorik Hinweise zur Lösungsfinung Aufgabe 1) Günstige Bezeichnungen einführen; Tabelle anfertigen un ie unmittelbaren Folgerungen aus bis eintragen (siehe linke Tabelle). Da ies noch nicht

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis.

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis. 8 2. Golener Schnitt Die Geometrie birgt zwei grosse Schätze: er eine ist er Satz von Pythagoras, er anere ist er Golene Schnitt. Den ersten können wir mit einem Scheffel Gol vergleichen, en zweiten ürfen

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

Musterlösung Serie 6

Musterlösung Serie 6 D-ITET Analysis III WS 3/4 Prof. Dr. H. Knörrer Musterlösung Serie 6. a) Mithilfe er Kettenregel berechnen wir u x = w ξ ξ x + w η η x u y = w ξ ξ y + w η η y u xx = w ξξ ξx 2 + 2w ξη ξ x η x + w ηη ηx

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Gruppentheorie und ihre Anwendungen in der Physik Ü5

Gruppentheorie und ihre Anwendungen in der Physik Ü5 Frank Essenberger, Max Hoffmann 8. Juni 2007 Gruppentheorie un ihre Anwenungen in er Physik Ü5 Aufgabe 8 a) Als erstes müssen ie Gruppen bestimmt weren. Das Element E einer Gruppe G bilet immer einen Klasse

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 7

Erste schriftliche Wettbewerbsrunde. Klasse 7 Erste schriftliche Wettbewerbsrune Die hinter en Lösungen stehenen Prozentzahlen zeigen, wie viel Prozent er Wettbewerbsteilnehmer ie gegebene Lösung angekreuzt haben. Die richtigen Lösungen weren fettgeuckt

Mehr

Grundpraktikum I Fernrohr

Grundpraktikum I Fernrohr Grunpraktikum I Fernrohr 6.Versuch Datum: 08.05.2006 Thomas Hemmelmayr (#0455761 un Michael Drack (#0457224 1. Keplersches (astronomisches Fernrohr 1.1. Versuchsaufbau us zwei Sammellinsen soll ein Fernrohr,

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

IMA II - Lösungen (Version 1.04) 1

IMA II - Lösungen (Version 1.04) 1 IMA II - Lösungen Version.04 Übungsserie Aufgabe Ableitung über Differenzenquotient Der Differenzenquotient, auch bekannt als mittlere Änerungsrate, wir gebilet urch Betrachtung von Sekantensteigungen

Mehr

2 Selbstähnlichkeit, Selbstähnlichkeitsdimension

2 Selbstähnlichkeit, Selbstähnlichkeitsdimension 9 2 Selbstähnlichkeit, Selbstähnlichkeitsdimension und Fraktale 2.1 Selbstähnlichkeit Bei den Betrachtungen zur Dimension in Kapitel 1 haben wir ähnliche (im geometrischen Sinn) Figuren miteinander verglichen.

Mehr

DIE ABLEITUNG FRANZ LEMMERMEYER

DIE ABLEITUNG FRANZ LEMMERMEYER DIE ABLEITUNG FRANZ LEMMERMEYER Eine Gerae y mx+b hat in jeem Punkt ieselbe Steigung m. Bei einer Parabel y x 2 agegen änert sich ie Steigung von Punkt zu Punkt. Sin zwei Punkte P (x f(x)) un Q(u f(u))

Mehr

MA 440 GEOMETRIE 2 HS 07

MA 440 GEOMETRIE 2 HS 07 MA 440 GEOMETRIE 2 HS 07 Zielsetzung Die Stuierenen lernen, ass geometrische Ieen vielfach verwenet weren. Sie erweitern Ihr Wissen er Eukliischen Geometrie. Sie lernen, ass geometrisches Denken weitere

Mehr

Einführung in die Chaostheorie (Teil 1) Ac 2018

Einführung in die Chaostheorie (Teil 1) Ac 2018 Einführung in ie Chaostheorie (Teil 1) Ac 2018 Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Halbleiter. Differenzieller Widerstand

Halbleiter. Differenzieller Widerstand Scnces Cologne Dipl.-ng. (FH) Dipl.-Wirt. ng. (FH) G. Danlak Differenzller Wierstan DW- Stan: 9.3.6; m Steigung einer Funktion in einem Punkt x zu ermitteln, bestimmt man ihren Differenzialuotnten. Das

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizschule Hannover - Seminararbeit - Schleppkurven J D Schuljahr: 2011 Fach: Mathematik Inhaltsverzeichnis 1 Einleitung: Die Schleppkurve un ihre Anwenung 2 2 Erarbeitung eines Verfahrens zur Berechnung

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007 Dr. Michael Gieing ph-heielberg.e/wp/gieing Einführung in ie Geometrie Skript zur gleichnamigen Vorlesung im Wintersemester 006/007 Kapitel 1: Axiomatik Vo r l e s u n g 8 : S t r e c k e n m e s s u n

Mehr

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [. Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3 H. van Hees Sommersemester 218 Übungen zur Theoretischen Physik 2 für as Lehramt L3 Blatt 3 Aufgabe 1: Vektorproukt Im Manuskript haben wir as Vektorproukt zweier Vektoren a un b geometrisch efiniert.

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn Zahlentheorie Kaitel 14 Quaratische Zahlkörer Markus Klenke un Fabian Mogge Universität Paerborn 9. Mai 008 Inhaltsverzeichnis 14 Quaratische Zahlkörer 0 Vorwort............................... A Wieerholung...........................

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.

Mehr

Lösungen Aufgabenblatt 7 zur Spieltheorie SS 2017

Lösungen Aufgabenblatt 7 zur Spieltheorie SS 2017 Lösungen Aufgabenblatt 7 zur Spieltheorie SS 07 Aufgabe 7. Wir betrachten as folgene Spiel zwischen hungrigen Löwen i =,, : Es gibt ein Schaf, as von genau einem Löwen gefressen weren kann. Wenn ein Löwe

Mehr

Lochbleche. Lochbleche werden aus feuerverzinkten Stahlblechen

Lochbleche. Lochbleche werden aus feuerverzinkten Stahlblechen 80 240 1,5 100 300 1,5 Allg. bauaufsichtliche Zulassung Z-9.1-629 für 1,5mm Bleche. Die 2,0 bis 3,0mm Bleche sin in er DIN geregelt. Lochbleche weren aus feuerverzinkten Stahlblechen un mit einem Lochmuster,

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

Schaltwerksanalyse-Übungen

Schaltwerksanalyse-Übungen Schaltwerksanalyse-Übungen Übung : Gegeben ist folgene Schaltung, eren Funktion zu bestimmen ist. c Ergänzen Sie as folgene Signal-Zeit-iagramm. c ie Lösung kann sehr zeitaufwenig sein, wenn man keine

Mehr

Übungsblatt

Übungsblatt Übungsblatt 13.11.018 1) Zerlegen Sie folgene gebrochen rationale Funktionen in rein reelle Partialbrüche: a) f() = + 13 + 5 6 c) h() = + 3 + 1 3 + b) g() = 3 + + 5 + 5 + 3 3 + 5 + 5 + ) Untersuchen Sie

Mehr

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen Prof. Dr. Frank Heinemann Technische Universität Berlin Wintersemester 2010/11 Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wieerholung mathematischer Grunlagen Dieses Übungsblatt enthält keine abzugebenen

Mehr

Beispiellösungen zu Blatt 6

Beispiellösungen zu Blatt 6 µathematischer κorresponenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 6 Gibt es eine Quaratzahl, eren Quersumme 6 ist? Hinweis: Die Quersumme

Mehr

Druckverluste in thermostatischen Heizkörperventilen

Druckverluste in thermostatischen Heizkörperventilen Drucverluste in thermostatischen Heizörerventilen Allgemeines: in Thermostatventil muss zwei eventuell bis zu vier Aufgaben erfüllen: 1. Abserrung es Heizörers,. Regelung er Raumtemeratur urch Drosselung

Mehr

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

Einführung in die Mechanik Teil 4: Kinematik (4)

Einführung in die Mechanik Teil 4: Kinematik (4) SERVICE NEWSLEER Ausgabe: / 5 Im letzten eil er Serie wure bereits ie Bereitstellung von Verzerrungstensoren angekünigt. Wie as Wort bereits impliziert muss ein Maß gefunen weren, as ie Deformation es

Mehr

f x durch die Funktionsgleichung

f x durch die Funktionsgleichung 1. Aufgabe In einem ebenen Geläne soll für eine neue Bahntrasse auf einer Strecke von km er zugehörige Bahnamm neu errichtet weren. Dabei sollen ie folgenen, in er Abbilung angeeuteten Beingungen eingehalten

Mehr

Kostenfunktion - Der Cournotsche Punkt

Kostenfunktion - Der Cournotsche Punkt Kostenfunktion Seite 1 von 8 Wilfrie Rohm Kostenfunktion - Der Cournotsche Punkt Der Cournotsche Punkt C beschreibt ie gewinnmaximale Preis-Mengen-Kombination mit en Koorinaten C(p c ; x c ). Er sagt aus,

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

Eigene Farbskala erstellen

Eigene Farbskala erstellen Farben er Präsentation bestimmen 210 Eigene Farbskala erstellen Im vorigen Kapitel haben Sie gesehen, wie Sie einer gesamten Präsentation oer einzelnen Folien einer Präsentation eine anere Farbskala zuweisen.

Mehr

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet,

Mehr

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster Dr. Neihart 14.11.03 Thema: Parabeln [ein Bineglie zwischen Geometrie un Algebra ] Referent: Christian Schuster Glieerung: Anwenungsgebiete un Vorkommen von Parabel Erscheinungen in er Natur Parabeln:

Mehr

Infos: Buffons Nadel 05/2013

Infos:  Buffons Nadel 05/2013 Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 7; LK 05/013 Buffons Nael Infos: www.mue.e Im 18. Jahrhunert beteiligten sich eine Reihe von Aeligen an er Weiterentwicklung er Naturwissenschaften

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

mathphys-online Bestimmung der Gravitationskonstanten

mathphys-online Bestimmung der Gravitationskonstanten Bestimmung er n Historisches Zu Lebzeiten Newtons (1643-1727) konnte ie G aus em Gravitationsgesetz F Grav G Mm r 2 nicht experimentell bestimmt weren. Erst Cavenish gelang es 1798, also hunert Jahre später,

Mehr

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3.

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3. Übung (9). Drücken Sie 3 ³ b (4 a ( 5) c) aus urch a b c. Geben Sie auch eine geometrische Deutung es Resultats an.. Vereinfachen Sie: ( x 4 y) (3 y 5 x). ³ ³³ ³ 3. Vereinfachen Sie en Ausruck a 3 b 3

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

HOCHWASSERANALYSE. Hausübung 4. α = s x. σ = +

HOCHWASSERANALYSE. Hausübung 4. α = s x. σ = + Hrologie un Wasserwirtschaft Hausübung 4 HOCHWASSERANALYSE Abgabe: 20.12.2017 Hinweis: Bei em vorliegenen Dokument hanelt es sich leiglich um einen Lösungsvorschlag un nicht um eine Musterlösung. Es besteht

Mehr

Messung des Strömungswiderstandes in Rohrbögen

Messung des Strömungswiderstandes in Rohrbögen Messung 6 Messung es Strömungswierstanes in Rohrbögen 1. EINLEITUNG In er Ingenieurpraxis ist er Großteil er vorkommenen Strömungen Rohrströmung - man enke z.b. an Wasserleitungen, Abwasserkanäle, Eröl-

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Dem Wettstreit zwischen beiden Bestrebungen trägt die Freie Energie Rechnung (bei konstanter Temperatur und konstantem Volumen).

Dem Wettstreit zwischen beiden Bestrebungen trägt die Freie Energie Rechnung (bei konstanter Temperatur und konstantem Volumen). Jees ystem strebt zwei Zielen entgegen:.) Minimum er Energie.) Maximum er Entropie Minimum er pot. Energie Maximum er Entropie atsächliche erteilung: Minimum er reien Energie Dem Wettstreit zwischen beien

Mehr

Lösungen zu Kapitel 6

Lösungen zu Kapitel 6 Lösungen zu Kapitel 6 Lösung zu Aufgabe : Es ist T (a) = {b b 0, b a}. Wir erhalten Es folgt un amit T (54) = {, 2, 3, 6, 9, 8, 27, 54}, T (72) = {, 2, 3, 4, 6, 8, 9, 2, 8,.24, 36, 72}. T (54) T (72) =

Mehr

Praktikum Radioaktivität und Dosimetrie" Absorption von β-strahlung

Praktikum Radioaktivität und Dosimetrie Absorption von β-strahlung Praktikum Raioaktivität un Dosimetrie" Absorption von β-strahlung 1. Aufgabenstellung 1.1 Bestimmen Sie ie Schichticke von Glimmerplättchen aus er Absorptionskurve. 1. Ermitteln Sie en Massenabsorptionskoeffizienten

Mehr

Lehrfach: Messtechnik - Grundlagen. Versuch: Kapazitive Füllstandsmessung

Lehrfach: Messtechnik - Grundlagen. Versuch: Kapazitive Füllstandsmessung FM 2 Lehrfach: Messtechnik - Grunlagen Versuch: Kapazitive Füllstansmessung Oc Hochschule Zittau/Görlitz; Fakultät Elektrotechnik un Informatik Prof. Dr.-Ing. Kratzsch, Prof. Dr.-Ing. habil. Hampel i.r.

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Prof. Dr. Schön un Dr. Eschrig Wintersemester 004/005 Aufgabe 38 6 Punkte Für ϕ = 0 gilt: e ϑ = e x cos ϑ e z sin ϑ un e r = e x sin ϑ + e z cos

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Physik-Praktikum 13.1 Daniel Bilic W4 Optisches Gitter / Linienspektren

Physik-Praktikum 13.1 Daniel Bilic W4 Optisches Gitter / Linienspektren Physik-Praktikum 3. Daniel Bilic 5.2.06 W4 Optisches Gitter / Linienspektren. Versuchsaufbau: Der Versuch war wie gefolgt aufgebaut. Wir stellten eine Spektrallampe auf eine Schien, ie er Schiene entlang

Mehr

PC & Mac Education Ltd W01GL1DM

PC & Mac Education Ltd  W01GL1DM 388 sin nützliche Helfer, um Text oer Zahlen millimetergenau untereinaner auszurichten un so kleine Aufstellungen zu gestalten: mit em Tabstopp efinieren Sie eine Position in er Horizontalen, an welcher

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

a) b) Abb. 1: Buchstaben

a) b) Abb. 1: Buchstaben Hans Walser, [20171019] Magische Quarate ungeraer Seitenlänge nregung: uler (1782) 1 Worum geht es? Zu einer gegebenen ungeraen Zahl u wir ein magisches Quarat mit er Seitenlänge u konstruiert. 2 as Vorgehen

Mehr

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze U BREHM: Konvegeoetrie 3-1 3 Trennungs- un Stützeigenschaften, sowie eleentare Hilfssätze Zunächst einige Hilfssätze, in enen Begriffe aus er Konveität it topologischen Eigenschaften zusaengebracht weren

Mehr

Einbaufreiläufe ZZ. mit Kugellagereigenschaften. Anwendung als. Eigenschaften. Anwendungsbeispiel. Rücklaufsperre Überholfreilauf Vorschubfreilauf

Einbaufreiläufe ZZ. mit Kugellagereigenschaften. Anwendung als. Eigenschaften. Anwendungsbeispiel. Rücklaufsperre Überholfreilauf Vorschubfreilauf Einbaufreiläufe ZZ mit ugellagereigenschaften 84-1 Anwenung als Eigenschaften Einbaufreiläufe ZZ... sin gelagerte lestück- Freiläufe mit ugellagereigenschaften. ie Freiläufe weren für normale etriebsbeingungen

Mehr

Mathe an Stationen. Mathe an Stationen 10 Inklusion. Ähnlichkeit, Strahlensätze und Co. Bernard Ksiazek. Klasse. Downloadauszug aus dem Originaltitel:

Mathe an Stationen. Mathe an Stationen 10 Inklusion. Ähnlichkeit, Strahlensätze und Co. Bernard Ksiazek. Klasse. Downloadauszug aus dem Originaltitel: Bernar Ksiazek Mathe an Stationen 10 Inklusion Ähnlichkeit, Strahlensätze un Co. Sekunarstufe ufe I Bernar Ksiazek Downloaauszug aus em Originaltitel: Mathe an Stationen Klasse Materialien zur Einbinung

Mehr

Berechnung von Start- und Landestrecke

Berechnung von Start- und Landestrecke Beispiel 2 Gegeben: : 1190 kg Flugplatzhöhe: Außentemperatur: +29 C Gegenwin: -12 kt Oberfläche: schlechte Grasecke nach Regen Startbahngefälle: 1,2 % Gesucht: Startstrecke mit Unterteilung in Startrollstrecke

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

Physik-eA-2010 Klausur des 4.Semesters 15. Februar Untersuchungen eines Americiumpräparats - Am241

Physik-eA-2010 Klausur des 4.Semesters 15. Februar Untersuchungen eines Americiumpräparats - Am241 Physik-eA-200 lausur es 4Semesters 5 Februar 200 Untersuchungen eines Americiumpräparats - Am24 I I Spektrum eines Americiumpräparates treten ua ie Energien E, =5,387 MeV, E, 2 =5,442 MeV un E, 3 =5,484

Mehr

D U A L - S Y S T E M. DOS für Einsteiger

D U A L - S Y S T E M. DOS für Einsteiger D U A L - S Y S T E M VHS-Kurs von Uwe Koch Das DUAL-System Uwe Koch Seite 1 Zur Darstellung von Zahlen gibt es verschieene Zahlensysteme. So unterscheiet man zunächst zwischen Aitionssystemen un Stellenwertsystemen.

Mehr

Kristallographisches Praktikum I

Kristallographisches Praktikum I Kristallographisches Praktikum I 3 Kristallographisches Praktikum I Versuch G1: Optisches Zweikreisgoniometer 1. Erläuterungen zum Zweikreis-Reflexionsgoniometer Nach em Gesetz er Winkelkonstanz (Nicolaus

Mehr

Zum Begriff der Paare: ab ordinalem Messniveau

Zum Begriff der Paare: ab ordinalem Messniveau Zum Begriff er Paare: ab orinalem Messniveau Begriffsefinition von Paaren: gleihe bzw. untershielihe Rangornung zwishen Untersuhungsobjekten (z. B. Personen) Paare können konkorant oer iskorant sein 1)

Mehr

Gekoppelte Pendel und Kopplungsgrad

Gekoppelte Pendel und Kopplungsgrad Fakultät für Physik un Geowissenschaften Physikalisches Grunpraktikum M Gekoppelte Penel un Kopplungsgra Aufgaben. Messen Sie für rei Stellungen er Kopplungsfeer jeweils ie Schwingungsauer T er gleichsinnigen

Mehr

8. Projektionsarten und Perspektive

8. Projektionsarten und Perspektive 8. Projektionsarten un Perspektive Projektionen: transformieren 3D-Objekte in 2D-Biler (mathematisch: lineare Abb., aber nicht bijektiv ugehörige Matri singulär,.h. Determinante ) Projektion ist Grunaufgabe

Mehr

2. Schulaufgabe aus der Mathematik 12WC

2. Schulaufgabe aus der Mathematik 12WC M. Knobel. Schulaufgabe aus er Mathematik WC 3..07 S_A7_WC_A703.mc.0 Gegeben ist ie Funktionenschar f : x--> f k k ( x) mit f k ( x) = x 4 k + k mit k R. Berechnen Sie f k ( x) f k ( x) un folgern Sie

Mehr

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17 Themenkatalog Mengenlehre Aussagenlogik Relationen Funktionen Vollstänige Inuktion Folgen Reihen Grenzwerte Funktionseigenschaften Differentialrechnung Integralrechnung Mathe-Party Fula Wintersemester

Mehr

Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen

Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen Denys Sutter, 25. September 217 Allgemeine Fragen 1. Dimensionsanalyse ist eine nützliche Methoe sich avon zu überzeugen, ass eine physikalische

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 03 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Der Graph G f einer ganzrationalen Funktion f mit er Definionsmenge D f = IR berührt ie bei x = un schneiet

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

2. Musterlösung. Problem 1: Das Postamtplatzierungsproblem ** = min w i ( x p x i ) + w i ( y p y i ) i=1. w i + w m w i. 0 wegen (3) w m+1 m,m+1

2. Musterlösung. Problem 1: Das Postamtplatzierungsproblem ** = min w i ( x p x i ) + w i ( y p y i ) i=1. w i + w m w i. 0 wegen (3) w m+1 m,m+1 Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 2. Musterlösung Problem 1: Das Postamtplatzierungsproblem ** Sei OE x 1 x 2 x n. Gesucht ist ein Punkt p = (x, y) mit

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr