Aufgaben zu Brechung - Lösungen:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aufgaben zu Brechung - Lösungen:"

Transkript

1 Aufgen zu Brechung - Lösungen: Aufg. 2 (mit Berechnung von n) ) 1 = 1,8 cm; = / n' mit n' = 1/1,5 ==> 1 = 1,8 cm. 1,5 = 2,7 cm r = 2,1cm; d 1 > r ==> Totlreflexion 2 = 0,9 cm; 2 = 0,9 cm. 1,5 = 1,35 cm c) Vgl. ) 1 = 1,3 cm; r = 1,9 cm; 1 = 1,3 cm. 1,5 = 1,95 cm > r ==> Tot.reflexion 2 = 0,9 cm ==> 2 = 1,35 cm 1 Aufg. 2 (ohne Rechnung, Winkel us Digrmm) Zeichne den genuen Strhlenverluf durch ds Prism. n -Gls = 1,5 (1,6 mit Digrmm) ) - Lichtstrhl (Listr) trifft senkrecht uf die Oerfläche Listr geht ungerochen durch. - Für = 57 (von opt. dicht nch opt. dünn) git es keinen Winkel mehr im Digrmm ==> Totlreflexion - 2 = 17 ==> 2 = 28 (us Digrmm) 1 ) - 1 = 50 ==> 1 = 28 - Totlreflexion wie ei ) - 2 = 5 ==> 2 = Tipps: - Bechte, dss und ß jeweils die Winkel zwischen Lichtstrhl und sind. - Zeichne zuerst ds zur Glsoerfläche, n der Stelle n der der Lichtstrhl uf die Glsoerfläche trifft. - Vervollständige: Beim Üergng vom optisch dünnen in optisch dichteres Mteril, wird ein Lichtstrhl gerochen. Beim Üergng von optisch dichtem in optisch dünneres Mteril wird ein Lichtstrhl gerochen. 1

2 c) - Lstr senkrecht uf die Oerfläche wird nicht gerochen - = 37 ==> = 74 Aufg. 2: (mit Berechnung von n) Lösungsweg: Hilfskreis Amessen von und ==> n = / = 1,6 Verlängern des Lichtstrhl im Prism is zur Hilfskreis Amessen von 2 ; mit n = / zw. = / n knn errechnet und eingezeichnet werden (Achtung: D Lichtstrhl von optisch dicht nch dünn, ist n = 1/1,6 2 Aufg. 2: n /Gls = 1,6 ==> n Gls/ = 1 / 1,6 r = 5,7 cm ; r = 6,7 cm n = / n Gls/ = 1 / 1,6 = / ==> =. 1,6 = 9,1 cm > r ==> Totlreflexion Aufg. 3: Gls 15 23

3 Aufg. 3: Wsser Aufg. 12: ) Berechne die Brechungszhl n: = 1,9 cm ; = 1,5 cm ; n = / = 1,9cm / 1,5cm = 1,3 Gls ) Zeichne einen 2. einfllenden Lichtstrhl unter einem Winkel von 45 = 1,5 cm ; n ist gegeen. Für eine / Flintgls eträgt n = 1,6 Berechne us und n: =. n zw. = / n = 1,5 cm / 1,6 = 0,94 cm Trge in den Kreis ein (zwischen Kreis und, senkrecht zum ) Zeichne den usfllenden Lichtstrhl ein (vom Mittelpunkt durch den Berührungspunkt von mit dem Kreis) Miss den Ausfllswinkel : = 25 Aufg. 12: ) Bestimme n für die gezeichnete : Gls n = / n = 1,7cm 1,05cm = 1,7 cm ; = 1,05 cm ; n = / = 1,6 1,7cm 1,05cm n = 1,6 Gls

4 ) Der einfllende Lichtstrhl he nun einen Winkel = 50 zum. Konstruiere mit dem von ) eknnten n den usfllenden Lichtstrhl: n = 1,6 ; = 1,6 cm ; = / n = 1 cm 1 cm ==> Ausfllswinkel = 24 1,6 cm Gls Aufg. 13: ) Bestimme n für die gezeichnete : = 1,55 cm ; = 1,1 cm ; n = / = 1,4 Plexigls ) Der usfllende Lichtstrhl he nun einen Winkel = 25 zum. Konstruiere mit dem von ) eknnten n den einfllenden Lichtstrhl: n = / ==> =. n Gemessen: = 0,9 cm ; Rechnung: = 0,9 cm. 1,4 = 1,26 cm ==> Einfllswinkel = 36 Plexigls Aufg. 14: Wie muss der Lichtstrhl uf ds Prism fllen, dmit er n der 2. ohne Brechung durchgeht? n = 1,5 (/Gls) ) Fällt ein Lichtstrhl senkrecht uf eine zwischen 2 optisch unterschiedlichen Medien, geht er ungerochen hindurch. ==> der Verluf des Lichtstrhls im Prism. ) Finde (mit Zirkel und Geodreieck) den einfllenden Lichtstrhl. (Folgende Konstruktionsschritte sind notwendig: - An welchem Punkt geht der Lichtstrhl durch 1? - uf die n diesem Punkt

5 - Hilfskreis - - Berechnung von mit n - Einzeichnen von - Lichtstrhl Aufg. 16: Merkregeln: Fällt ein Lichtstrhl vom optisch dünnen in optisch dichtes Medium, wird er zum hin gerochen. Fällt ein Lichtstrhl vom optisch dichten in optisch dünnes Medium, wird er vom weg gerochen. Beispiele: Ein Lichtstrhl fällt von in Wsser. Er wird zum hin gerochen Ein Lichtstrhl fällt von Gls in Wsser. Er wird vom weg gerochen Ein Lichtstrhl fällt von klter in wrme. Er wird vom weg gerochen Aufg. 17: n = 1,5 Der usfllende Lichtstrhl verläuft prllel zum einfllenden Strhl hinter dem Gls weiter. Die Konstruktion der Brechung n der 2. ist nicht nötig, weil der Lichtweg umkehrr ist, n ist n eiden n gleich, somit leit ei der Konstruktion der Brechung ds Verhältnis der Ein- und Aus- fllswinkel gleich. (gemessen) = 1,8 cm = / n = 1,2 cm Gls (errechnet) Aufg. 18: Konstruiere die Brechung n einer Gls/ d.h. der Lichtstrhl fällt us dem Gls in. Der Winkel im Gls (zum ) sei nun der Einfllswinkel und die zugehörige Hilfslinie wäre dnn. Dmit wird > und n < 1. Es gilt: 1 n dgls = n Glsd Berechnung: = 1,2 cm n = 1 1,5 n = Gls ==> = / n = 1,8 cm 1,2cm = 1 1,5 = 2 cm

6 Aufg. 18: = 54 us dem Digrmm für n = 1,6 ==> Wsser ß = 30,5 Aufg. 19: ) Konstruiere den gesmten Verluf des eingezeichneten Lichtstrhls durch ds Prism. n Gls = 1,4 Zeichne, Hilfskreis und Hilfslinien für eide n ein = 22,7 cm cm = / n / n = 2 cm / 1,4 = 1,4 2,7 cm cm / 1,4 = 1,9 cm 2. 2 = 0,8 cm = 0,5. cm n = / 1/n = 0,8 cm. n = 0,5 cm 1,4 1,4 = 1,2 cm = 0,7 cm

7 Aufg. 20: ) ß in 40 n = 1,6 [ ] ß [ ] 10 6, , , , , , , in ) Einfllswinkel 60 ==> us dem Digrmm (od. us der Telle): Ausfllswinkel ß = 32,8 Achtung: Immer der Winkel zwischen 60 32,8 und c) = 2 cm ; = 1,25 cm ; / = 1,6 / = n (s. Telle) n = Brechzhl, gilt immer für ein spezielles Mterilpr, hier: - Gls Gls d) Einfllswinkel 45 ==> us dem Digrmm: Ausfllswinkel ß = 26, ,5 = 1,5 cm ; = 0,9 cm ; / = 1,66 (uch hier sollte ei ideler Messung / = 1,6 sein) Gls

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik Prktikum Klssische Physik I Versuchsvorereitung: P-3, 40, 4: Geometrische Optik Christin Buntin Gruppe Mo- Krlsruhe, 09. Novemer 2009 Inhltsverzeichnis Brennweiten-Bestimmungen 2. Einfche Bestimmung der

Mehr

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt 1 4 Hperel 4.1 Die Hperel ls Kegelschnitt Wird ein Kreiskegel mit dem hlen Öffnungswinkel α von einer Eene σ geschnitten, die mit der Kegelchse einen Wink β < α einschliesst, so entsteht ls Schnittkurve

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Felder und Wellen. Musterlösung zur 13. Übung. 30. Aufgabe WS 2016/2017. Hinlaufende Welle: E d = E d e j(ωt k d r) e y

Felder und Wellen. Musterlösung zur 13. Übung. 30. Aufgabe WS 2016/2017. Hinlaufende Welle: E d = E d e j(ωt k d r) e y Felder und Wellen WS 6/7 Musterlösung zur 3. Übung 3. Aufgbe Hinlufende Welle: E e = E e e jωt k e r) e y ke = k cosφ e e z +sinφ e e x ) Reflektierte Welle: E r = E r e jωt k r r) e y kr = k cosφ r e

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

1.Wellenoptik. 1.1 Lichttheorien. 1.2 Lichteigenschaften. 1. Strahlentheorie (Empedokles, Alhazen, Snellius) 2. Korpuskeltheorie (Newton)

1.Wellenoptik. 1.1 Lichttheorien. 1.2 Lichteigenschaften. 1. Strahlentheorie (Empedokles, Alhazen, Snellius) 2. Korpuskeltheorie (Newton) 1.Wellenoptik 1.1 Lichttheorien 1. Strhlentheorie (Empedokles, Alhzen, Snellius) 2. Korpuskeltheorie (Newton) 3. Wellentheorie (Huygens, Young, Fresnel) 4. Quntentheorie (Plnck, Einstein) 1.2 Lichteigenschften

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Hans Walser, [ a] Fibonacci trifft Pythagoras Anregung: I. Y.

Hans Walser, [ a] Fibonacci trifft Pythagoras Anregung: I. Y. Hns Wlser, [0100514] Fiboncci trifft Pythgors Anregung: I. Y. 1 Worum geht es? Mit den Fiboncci-Zhlen werden pythgoreische Dreiecke konstruiert, die im Limes zu den Fiboncci-Zhlen zurückführen. Als Nebenresultt

Mehr

Lösungen der Aufgaben des Lehrbuchs

Lösungen der Aufgaben des Lehrbuchs 66 Lösungen er Aufgen es Lehruchs 5 Lösungen er Aufgen es Lehruchs Welleneigenschften es Lichts (LB S30 3) ) Je größer er Einfllswinkel ist, esto größer ist er Brechungswinkel β Der Zusmmenhng ist nicht

Mehr

Potenzen, Wurzeln, Logarithmen Definitionen

Potenzen, Wurzeln, Logarithmen Definitionen Definitionen Wir gehen von der Gleichung c und dem Beispiel 8 2 us: nennt mn Potenz nennt mn Bsis nennt mn Eponent Allgemein: "Unter versteht mn die -te Potenz zur Bsis " " ist hoch " Beispiel: 2 8 Vorgng:

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studienkolleg ei den Universitäten des Freisttes Bern Üungsufgen zur Vorereitung uf den Mthemtiktest . Polnomdivision:. Dividieren Sie! ) ( 6 + 8 ):( + ) = Lös.: = ) ( 9 7 0 + 8 + 9):(6 + +) = Lös.: =

Mehr

3 Brechung und Totalreflexion

3 Brechung und Totalreflexion 3 Brechung und Totalreflexion 3.1 Lichtbrechung Lichtstrahlen am Übergang von Luft zu Wasser In der Luft breitet sich ein Lichtstrahl geradlinig aus. Trifft der Lichtstrahl nun auf eine Wasseroberfläche,

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Name: Bearbeitungszeitraum:

Name: Bearbeitungszeitraum: Meine Geomappe Name: Bearbeitungszeitraum: vom bis zum Aufgabe 1 Zeichne einen Kreis mit a) Radius 2 cm. b) Radius 3,5 cm. c) Radius 1,7 cm. Aufgabe 2 Zeichne einen Kreis mit einem Durchmesser von 5 cm

Mehr

4 Brechung und Totalreflexion

4 Brechung und Totalreflexion 4 Brechung und Totalreflexion 4.1 Lichtbrechung Experiment: Brechung mit halbkreisförmigem Glaskörper Experiment: Brechung mit halbkreisförmigem Glaskörper (detailliertere Auswertung) 37 Lichtstrahlen

Mehr

3 Brechung und Totalreflexion

3 Brechung und Totalreflexion 3 Brechung und Totalreflexion 3.1 Lichtbrechung Experiment: Brechung mit halbkreisförmigem Glaskörper Experiment: Brechung mit halbkreisförmigem Glaskörper (detailliertere Auswertung) 26 Lichtstrahlen

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21 BMT8 010 A Byerischer Mthemtik-Test für die Jhrgngsstufe 8 der Gymnsien Nme: Note: Klsse: Punkte: 1 Aufgbe 1 Berechne und gib ds Ergebnis in der Einheit t n. 5,4t 360kg b Berechne und gib ds Ergebnis in

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

1. Schulaufgabe Physik am Klasse 7a; Name

1. Schulaufgabe Physik am Klasse 7a; Name 1. Schulaufgabe Physik am _ Klasse 7a; Name _ 1. Welche Aussagen sind wahr (w) oder falsch (f)? Eine zutreffende Antwort bringt 1 Punkt, eine fehlende 0 Punkte und eine falsche -1 Punkt. a) Wir sehen Gegenstände,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Organisationsformen für den naturwissenschaftlichen Unterricht

Organisationsformen für den naturwissenschaftlichen Unterricht Orgnistionsformen für den nturwissenschftlichen Unterricht Der nturwissenschftliche Unterricht wird in den Jhrgängen 5-7 integriert unterrichtet. Für die Jhrgänge 8-10 git es drei verschiedene Konzepte

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

3. Seminar Statistik

3. Seminar Statistik Sndr Schlick Seite.Seminr05.doc. Seminr Sttistik 0 Kurztest 5 Präsenttion diskrete Verteilungen Puse 0 Üungen diskrete Verteilungen 5 Präsenttion stetige Verteilungen 0 Üungen stetige Verteilungen Husufgen:

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π =

= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π = Seiten 5 / 6 ufgaben Kreis 1 1 a) u Kreis r 15 30 cm ( 94.5 cm) Kreis r 15 5 cm ( 706.86 cm ) b) u Kreis r d 5.6 cm ( 17.59 cm) Kreis r.8 7.84 cm ( 4.63 cm ) c) u Kreis r 99 198 cm ( 6.04 cm) Kreis r 99

Mehr

Bögen und Kreise II wo liegen denn die Mittelpunkte? - wie groß ist der Radius?

Bögen und Kreise II wo liegen denn die Mittelpunkte? - wie groß ist der Radius? 1. Die folgenden, kreisförmigen Fenster findet mn in der Zisterzienserbtei Huterive in Fribourg (Schweiz). Anlysiere die Konstruktion und fertige eigene Fenster uf der Grundlge des Konstruktionsprinzips

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Simulation von Störungen mit zeitlichen Schranken

Simulation von Störungen mit zeitlichen Schranken Simultion von Störungen mit zeitlichen Schrnken Die geräuchlichen sttistischen Verteilungen können elieig große Werte hervorringen, ws ei der Simultion von Störungen oft nicht erwünscht ist. Verwendet

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Ein Parallelogramm aus 2 Dreiecken

Ein Parallelogramm aus 2 Dreiecken 6. Schulreit us MATHEMATIK KL.: M2/I. - S. 7.06.20 reieckskonstruktionen in elieigen Viereckskonstruktionen nwenden. Prllelogrmm:,, α ) Zeichne eine Skizze! 6) Ein Prllelogrmm us 2 reiecken Zeichne die

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Einige elementargeometrische Sätze über Dreiecke

Einige elementargeometrische Sätze über Dreiecke Seite I Einige elementrgeometrische Sätze üer Dreiecke Durch drei nicht uf einer Gerden gelegene (d.h. nicht-kollinere) Punkte A, B, C in der euklidischen Eene ein Dreieck ABC mit Seiten,, c und (Innen-)Winkeln,,

Mehr

Kegelschnitte. Geschichte der Kegelschnitte

Kegelschnitte. Geschichte der Kegelschnitte Kegelschnitte Kegelschnitte ds sind geometrische Figuren, die sich ergeen, wenn mn einen Kegel und eine Eene einnder schneiden lässt. Wir unterscheiden 3 Tpen von Kegelschnitten: Prel, Ellipse und Hperel.

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

MB1 LU 5 und 12 Geometrische Grundbegriffe

MB1 LU 5 und 12 Geometrische Grundbegriffe M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

M 2 - Übungen zur 2. Schularbeit

M 2 - Übungen zur 2. Schularbeit M - Üungen zur. hulreit ) erehne ds Ergenis! ) ( ) + ) ( ) ) ( ) ( ) + 0 ) erehne! )( ) + ( ) ) ( + ) )( ) ( ) + ) hreie ds Ergenis ls gemishte Zhl! (Kürze ereits vor dem Multiplizieren!) ) ) ) Löse die

Mehr

Download. Mathe an Stationen Umgang mit Geodreieck. Winkel mit Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Umgang mit Geodreieck. Winkel mit Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Mathe an Stationen Umgang mit Geodreieck Winkel mit Geodreieck Downloadauszug aus dem Originaltitel: Mathe an Stationen Umgang mit Geodreieck Winkel mit Geodreieck Dieser

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr