Mathe II 7. Übung mit Lösungshinweisen

Größe: px
Ab Seite anzeigen:

Download "Mathe II 7. Übung mit Lösungshinweisen"

Transkript

1 Facbereic Matemati Prof. Dr. Fels Marti Fucssteier TECHNISCHE UNIVERSITÄT DARMSTADT ASS Jui 007 Mate II 7. Übug mit Lösugsiweise Gruppeübuge (G ) Offee/Abgesclossee ud ompate Mege Etsceide Sie, welce der folgede Teilmege vo R jeweils offe, abgesclosse oder ompat sid. (a) N (b) [0, ) (c) = (, ) (d) M = {( ) N} {0} (a) Die Mege der atürlice Zale ist abgesclosse i R, da das Komplemet R \ N offe ist. Die durc a = gegebe Folge at eie overgete Teilfolge, somit ist N ict ompat. (b) Dieses Itervall ist weder offe (da 0 ei ierer Put ist) oc abgesclosse (da ei Häufugsput ist, der ict zur Mege geört). Damit ist die Mege auc ict ompat. (c) Diese Mege ist, da sie Vereiigug vo offee Mege ist auc wieder offe. Da sie de Häufugsput (ud auc de Häufugsput 0) ict etält, ist sie ict abgesclosse ud damit auc ict ompat. (d) M ist abgesclosse. Der eizige Häufugsput ist 0 ud ist etalte i M. Wir zeige, daß es eie adere Häufugsput als 0 gibt. Ist x R mit x 0, da gilt x für ei N. Da etält (x (), x + () ) M öcstes ei Elemet vo M. Somit ist x ei Häufugsput vo M. Da die Mege M bescrät ud abgesclosse ist, ist sie ompat. Da M viele isolierte Pute etält, ist diese Mege ict offe, da diese Pute eie iere Pute sid. (G ) Ei uedlicdimesioaler Baacraum Zeige Sie, dass die abgesclossee Eieitsugel auf dem uedlicdimesioalem Baacraum (C([a, b]), ) ict ompat ist.

2 Wir suce us eie Folge (i der Eieitsugel), die eie overgete Teilfolge besitzt. Sei o.b.d.a. [a, b] = [0, ]. Wir setze f : [0, ] R { x für x < x 0 sost Die eizele Futioe f sid alle stetig ud es gilt f =, also f B (0). Aber: Die Folge (f ) N overgigert ict gleicmäßig. Zwar overgiert f putweise, jedoc gege die ustetige Futio f : [0, ] R { für x = x 0 sost Damit a (f ) eie overgete Teilfolge abe. (G 3) Potezreie Berece Sie die Kovergezradie der folgede Potezreie: (a) = (x), x R (b) (x ) =, x R. (c) (+i) = z, x C. Für welce Werte sid die Reie overget, auf welce Teilmege vo R bzw. C sid sie gleicmäßig overget? Mace Sie sic jeweils lar, um welce Futioefolge es sic dabei adelt. (a) Zuäcst beobacte wir, dass gilt = (x) = = x. Wir öe u de Kovergezradius ρ mit dem Quotieteriterium für Reie bestimme. a + + x + = = a ( + ) x + x. Damit die Reie für ei x overgiert, muss gelte ifty x = x < + (siee Quotieteriterium). Da für x < also die Reie overgiert, vermute wir u ρ =. Da die Reie für x > offesictlic divergiert (warum?), folgt, daß ρ = tatsäclic der Kovergezradius ist. Nu betracte wir oc die Fälle x =. x = : Da die Reie für x = x = : Da die Reie für x = overgiert sie. die armoisce Reie ist, divergiert die Reie. die alterierede armoisce Reie ist, Isbesodere folgt daraus, daß die Futioefolge g := = (x) für alle x < absolut ud gleicmäßig overgiert. (b) Wir gee vor wie bei a): a + a ( + ) x. a Gesuct sid also alle x mit + a = x <, ud damit overgiert die Reie für alle x ], 3[. Sie divergiert für alle x > 3 ud alle x <. Für x {, 3} see wir, daß beide zugeörige Reie overget sid, die Reie overiert also für alle x [, 3], ud overiert auf diesem Bereic auc gleicmäßig ac Weierstraß, da = (x ) [,3] = = <.

3 (c) Es gilt a + a ( + i) + ( + ) z = z, ( + i) ( + ) a we also gelte muß + a z <. Wege = (+i) z z Futioefolge g := für alle z C mit z =. (G 4) Kovergez vo Futioefolge z < für Kovergez, da ergibt sic = < overgiert die Reie, also die (+i) z sogar absolut ud gleicmäßig ac Weierstraß Für alle N seie die Futioe f : R R mit D := D(f ) = [0, ] durc die Zuordugsvorscrift { x, falls 0 x f (x) := 0, falls < x defiiert. Sizziere Sie f ud f sowie qualitativ f ud utersuce Sie die Futioefolge (f ) N isictlic putweiser ud gleicmäßiger Kovergez auf D. Sizze: Vermutug: Aufgrud obiger Sizze liegt die Aame ae, daß die Futioefolge (f ) N auf dem Itervall D putweise (aber ict gleicmäßig) gege die Grezfutio f : R R mit D(f) = [0, ] ud {, falls x = 0 f(x) = 0, falls x (0, ] overgiert. Putweise Kovergez: Zum Nacweis der putweise Kovergez der Futioefolge (f ) N gege die (vermutete) Grezfutio f solle u zwei Fälle utersciede werde: x = 0: I diesem Fall gilt ud wir eralte f (0) = für alle N f (0) = = f(0). x (0, ]: Wir müsse zeige, daß für jedes x (0, ] ud für jedes ε > 0 ei N = N(ε, x) N existiert, so daß für alle N die Bezieug f (x) f(x) < ε erfüllt ist. Sei u ε > 0 beliebig gewält. Für ei vorgegebees x (0, ] existiert wege = 0 ei N N mit N < x,

4 wesalb für alle N da ud somit folgt. < x N f (x) f(x) = 0 0 = 0 < ε Damit abe wir bewiese, daß die Futioefolge (f ) N auf dem Itervall [0, ] putweise gege die Grezfutio f overgiert. Gleicmäßige Kovergez: Für jedes N ist die Futio f stetig. Wäre u die Futioefolge (f ) N auf D gleicmäßig overget, so müßte die Grezfutio f ebefalls stetig sei. Da aber die Futio f a der Stelle x 0 = 0 (ud damit auf D) ict stetig ist, folgt, daß die Futioefolge (f ) N auf D ict gleicmäßig gege f overgiert. (G 5) Tayloretwiclug Bestimme Sie die Tayloretwiclug der Futio f(x) = l x um de Put ud dere Kovergezradius. gegebe. Die Koeffiziete a der Tay- Die Ableituge sid durc f (x) = ( ) ( )! x lorreie berece sic somit zu a =! f () = ( ). Die Tayloretwiclug lautet demac ( ) = (x ). Hausübuge (A 0) Potezreie (0 Pute) (a) Wir defiiere ( ) λ := λ (λ ) (λ +) für beliebige λ R, N. Berece Sie de! Kovergezradius R der Reie ) =N z. Hägt R vo N ab? (b) Es sei ϕ(z) := =0 ( λ ) z. Beweise Sie ϕ(z) = ( + z) λ. ( λ Hiweis: Beutze Sie ( + z)ϕ (z) = λϕ(z) ud betracte Sie die Futio (+z)λ ϕ(z). (c) Berece Sie die Taylorreie vo f(z) := +z im Nullput. (d) Berece Sie die Potezreieetwiclug des Arcustages arcta um de Nullput. Hiweis: Bestimme Sie zuerst die Ableitug des Arcustages ud beutze Sie Teilaufgabe (c). ( (a) Es gilt R ) λ ( +) λ + =. Der Kovergezradius ägt somit λ ict vo N ab. Dies folgt u.a. auc daraus, daß die Afagsglieder eier Reie dere Kovergez ict beeiflusse.

5 (b) Aus dem Hiweis folgt ϕ (z) = λϕ(z)( + z). Es folgt d (+z) λ = 0. Der Quotiet dz ϕ(z) ist somit eie ostate Futio. Aus ( + 0) λ = = ϕ(0) ergibt sic damit die Gleiceit der Futioe im Zäler ud im Neer. (c) Auf der Eieitsugel gilt f(z) = =0 ( x ). Somit ergebe sic die Koeffiziete der Taylorreie zu a = { ( )! f () für Z (0) = 0 sost (d) Aus arcta (z) = f(z) ergibt sic arcta(z) = ( ) =0 + x+ auf der Eieitsugel. (A ) Potezreie (0 Pute) Bestimme Sie die Kovergezradie der folgede Reie: (a) =0 ( + si())(x ) (b) a (a) Es ist a + Da si() =0 (d) ( ) =0 + x+. +si() ++si(+) (!) ()! x + si() + + si(+) si(+), gilt. ud damit a a =. si() = 0, Also ist der Kovergezradius ac dem Quotieteriterium. (b) Es ist a a + (!) ()! ( + ) ( + ) ( + )! (( + )!) ( + )( + ) ( + ) = 4. Also ist der Kovergezradius ac dem Quotieteriterium 4. (c) Mit z = (x 5) 5 screibt sic die gegebee Reie als z. Wir bestimme zuäcst de Kovergezradius dieser Reie: Wege ( ) = = = (c) = (x ) 5 ist dieser ac dem Wurzelriterium. Also overgiert die ursprüglice Reie für alle x R mit x 5 = z <, d.. x < 5. Der Kovergezradius ist damit 5. (d) Es ist a a + ( ) + ( ) + + Der Kovergezradius ist also ac dem Quotieteriterium. =.

6 (A ) (0 Pute) Fertige Sie eie Sizze der Futio f : R R, f(x) = { e x fr x > 0 0 sost a. Beweise Sie, daß diese Futio beliebig oft differezierbar ist ud berece Sie die Taylorreie um de Put 0. Da die ostate 0-Futio ud die Expoetialfutio beliebig oft differezierbar sid, ist ur die Differezierbareit der Futio f im Put 0 zu beweise. Aad der Sizze vermute wir f (0) = 0. Da die Expoetialfutio sceller fällt als jedes Polyom, folgt e e 0 0 Somit ist die Futio f i 0 Differezierbar mit Ableitug f (0) = 0. Aalog beweise wir die Existez der öere Ableituge. Die Futio f ist auf dem Itervall [, 0) beliebig oft differezierbar mit Ableitug 0. Auf dem Itervall (0, ) ist sie auc beliebig oft differezierbar. Die. Ableitug berecet sic ier zu f (x) = e x. Weiteres Ableite x 3 ergibt immer eie summe des Typs f p i mit Polyome p i i. Auc ier gilt x 0 0 f () 0 0 i f() p i() 0 i = 0. 0 f() p i () 0 0. somit ist die Futio f im Put 0 beliebig oft Differezierbar ud die Ableituge verscwide i 0:f (0) = 0 für alle N. Die Taylorreie ist somit die Nullfutio.

Klausur Analysis I (WS 2010/11) mit Lösungen

Klausur Analysis I (WS 2010/11) mit Lösungen Humboldt-Uiversität zu Berli Istitut für Matematik Prof. Dr. B. Kummer Klausur Aalysis I (WS 00/) mit Lösuge Vorbemerkuge: Wäle Sie aus de vorgegebee Ausgabe 8 aus! Trage Sie am Ede i der folgede Tabelle

Mehr

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe.

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe. Musterlösug Vortragsübug Blatt 4 Vorwort. Variate der harmoische Reihe. Folgede Aussage wird i der achfolgede Musterlösug ab ud a gebraucht ud öte sich für Sie auch außerhalb der HM durchaus als ützlich

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

Wir wünschen Ihnen viel Erfolg bei der Klausur.

Wir wünschen Ihnen viel Erfolg bei der Klausur. Klausur zur Vorlesug Aalysis I Bo, de. Februar 009 Prof. Dr. W. Müller Dr. A. Wotze Nachame, Vorame: Matrielummer: Nummer der Übugsgruppe: A Drehe Sie diese Zettel bitte erst auf Aufforderug um. Sollte

Mehr

Aufgabensammlung aus Mathematik 1 UMIT, WS 2010/11

Aufgabensammlung aus Mathematik 1 UMIT, WS 2010/11 Aufgabesammlug aus Mathemati UMIT, WS 200/ I Aufgabe I detailliert gerechet Aalysis / K Zeige Sie, dass für N ud N, gilt: ( ) + = ( ) ( ) + Zusatzfrage: Uter welche Bediguge a ma zwei Biomialoeffiziete

Mehr

Die Eulersche Reihe (Eine spezielle Fourierreihe)

Die Eulersche Reihe (Eine spezielle Fourierreihe) Die Eulersche Reihe (Eie spezielle Fourierreihe) Luis Felipe Müller Ausarbeitug zum Vortrag im Prosemiar Aalysis (Sommersemester 009, Leitug Prof. Dr. Eberhard Freitag) Ihaltsverzeichis Abbildugsverzeichis

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

1. Übungsblatt zur Analysis I

1. Übungsblatt zur Analysis I Haover, de 1 Otober 00 1 Übugsblatt zur Aalysis I Abgabe am 8/9 Otober 00 vor de Studeübuge Mit (* oder Kaci geezeichete Aufgabe sid Zusatzaufgabe, die Etrapute ergebe Aufgabe 1 (5 Pute Ma zeige: Für jedes

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Bestimmung von Vertrauensintervallen (Konfidenzintervallen) bei unbekannten Wahrscheinlichkeiten

Bestimmung von Vertrauensintervallen (Konfidenzintervallen) bei unbekannten Wahrscheinlichkeiten Bestimmug vo Vertrauesitervalle (Kofidezitervalle bei ubekate Warsceilickeite Beispiel : Es soll utersuct werde, wie viele 8-järige Erstwäler bei der äcste Budestagswal wäle gee werde. Dazu werde 600 Persoe

Mehr

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen Agabe Aalysis - Beweise, Vollstädige Idutio, Folge 4. März 0 Aufgabe : Zum Aufwärme i Zeige durch geschictes Umforme, dass + + gilt. +!!!!!! +!! +! + + + + + ii Zeige durch vollstädige Idutio, dass 6 +

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Kapitel 2 Splineinterpolation

Kapitel 2 Splineinterpolation Kapitel 2 Splieiterpolatio Eifürug ud Motivatio Kubisce Splies Felerdarstellug B-Splies Fazit Numerisce Matemati II Herbsttrimester 202 Problemstellug: Wir abe gesee, dass Polyomiterpolate bei Eröug des

Mehr

13. Übungsblatt zur Vorlesung Mathematik I für Informatik

13. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 3. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 6./7. Jauar 00 Gruppeübug Aufgabe G (Reihe)

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier Die eideutige Duplizierug ud Replizierug mit spezielle Supplemetsysteme Rudolf Pleier D-92694 tzerict, Mai 2015 Ialtsverzeicis 1 1 Die xistez ud izigeit der Duplizierug ud der Replizierug mit Termigescäfte...

Mehr

Übungen zu Einführung in die Analysis, WS 2014

Übungen zu Einführung in die Analysis, WS 2014 Übuge zu Eiführug i die Aalysis, WS 2014 Ulisse Stefaelli 19. Jauar 2015 1 Wiederholug 1. Seie p, q ud r Aussage. Zeige Sie, dass dei Aussage Tautologie sid. p ( p q), (b) ( p q) ( p q), [ ((p ) ( ) ]

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

3.2 Potenzreihen und komplexe Taylorentwicklung

3.2 Potenzreihen und komplexe Taylorentwicklung 40 Kapitel 3. Holomorphe Fuktioe 3.2 Potezreihe ud komplexe Tayloretwicklug Wede wir us u de Reiheetwickluge vo Fuktioe zu. 3.2. Defiitio Uter eier Potezreihe um de Pukt z 0 C versteht ma eie Reihe der

Mehr

Lösungen 7.Übungsblatt

Lösungen 7.Übungsblatt Karlsruher Istitut für Techologie (KIT) WS 20/202 Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.tech. Raier Madel Lösuge 7.Übugsblatt Aufgabe 25 (K) Bestimme Sie de Kovergezradius der folgede

Mehr

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min.

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min. Facbereic Wirtscaftswissescaft PO 95 D I P L O M P R Ü F U N G Prüfugstermi: Sommersemester 2002 Studiescwerpukt: - - - Prüfugsfac: Walfac Steuerlere Puktzal: 100 Prüfer: Prof. Dr. Volker Breitecker Bearbeitugszeit:

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Kapitel IV: Unendliche Reihen

Kapitel IV: Unendliche Reihen Igeieurmathemati I WS 13/14 - Prof. Dr.. Mafred Leitz Kapitel IV: Uedliche Reihe 11: Uedliche Zahlereihe Kapitel IV: Uedliche Reihe 11 Uedliche Zahlereihe A Zum Begriff uedliche Zahlereihe B Uedliche Reihe

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Ler-Olie.et Matematiportal Eifürug i die Itegralrecug Eifürug i die Itegralrecug Bestimme der Fläce uter der Kurve I de Naturwissescafte (z.b. i der Pysi) ist es macmal ötig, de Fläceialt zu ermittel,

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Kapitel 9. Aufgaben. Verständnisfragen

Kapitel 9. Aufgaben. Verständnisfragen Kapitel 9 Aufgabe Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt? a c 3! j0 x! j x j

Mehr

Eulersche Summationsformel

Eulersche Summationsformel Eulersche Summatiosformel ei Prosemiarvortrag Sve Grützmacher Betreut vo Dr. Kaste Cotets Vorwort Die eifache Formel 3 Die allgemeie Formel 5 4 Awedug 7 VORWORT Vorwort Dieser Prosemiarvortrag beschäftigt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Kaiser Prüfungsordner Analysis Theoriefragen

Kaiser Prüfungsordner Analysis Theoriefragen Mtemti ür Iormtier Kiser Prüugsorder Alysis Teorierge tulisierte Ausreitug vo Micel Jros mici24, Std 6..24 23:37 revisio # 89 Alle Atworte wurde vo mir muell eu eigetippt. Sie stmme teilweise us dem Kiser-Sriptum,

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Aufgrund der Körperaxiome ist jedoch

Aufgrund der Körperaxiome ist jedoch Hiweise: Der Doppelstrich // steht für eie Kommetarzeile. Tipp- ud Rechtschreibfehler köe trotz mehrfacher Kotrolle icht hudertprozetig vermiede werde. Die selbst erstellte Lösugsasätze orietiere sich

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10 Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Gleichwertige Feststellung von Schülerleistungen

Gleichwertige Feststellung von Schülerleistungen (c) 2006 ttp://www.emat.de Friedric-Sciller-Gymasium Ludwigsburg Jargagsstufe 3 Gleicwertige Feststellug vo Scülerleistuge Profilfac Matematik Tema: Verfasser: Kurslerer: Die -Fuktio Adrea Wedelgaß Frau

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an.

Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an. System- ud Gerätetecik Projekt Kocplatte Uterrictsleitug: Bucer Name: Datum: Seite C C C Sie abe u die Kocplatte repariert ud das Prüfprotokoll fertiggestellt Als der Kude die Kocplatte bei Ie abolt, will

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt Prof. Dr. Berd Dreseler 6 Reihe 6.1 Kovergez vo Reihe Gegebe sei eie Folge s 1 1, 2 1 2 3 1 2 3... s s, s..., 1 2 1, wird der Folge eie weitere Folge omplexer Zhle. Durch s zugeordet. www.berd-dreseler.de

Mehr

7. Potenzreihen und Taylor-Reihen

7. Potenzreihen und Taylor-Reihen 7. Potezreihe ud Taylor-Reihe 39 7. Potezreihe ud Taylor-Reihe Mit Hilfe der Cauchysche Itegralformel wolle wir u i diesem Kapitel ei weiteres sehr zetrales Resultat der Fuktioetheorie herleite, ämlich

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

Analysis III (Teil 1: Maßtheorie)

Analysis III (Teil 1: Maßtheorie) Blatt WS 24/5 Lösugsvorschläge zu de Aufgabe zur Vorlesug Aalysis III Teil : Maßtheorie J. Lohamp/M. Förster Abgabe: Motag, 25..24,8:5 Uhr Aufgabe : Sei ε > beliebig. Kostruiere eie Folge a, b, a 2, b

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

37. Österreichische Mathematik Olympiade Gebietswettbewerb für Fortgeschrittene 27. April 2006

37. Österreichische Mathematik Olympiade Gebietswettbewerb für Fortgeschrittene 27. April 2006 7. Österreichische athemati Olympiade Gebietswettbewerb für Fortgeschrittee 7. April 006 ) Es seie 0 < < y reelle Zahle. H y, G y y, A y, Q y das harmoische, geometrische, arithmetische ud quadratische

Mehr

dx f(x). Den Kern dieser Definition kann man in der folgenden Formel zusammenfassen: = f (x 0 ) 0 = 0

dx f(x). Den Kern dieser Definition kann man in der folgenden Formel zusammenfassen: = f (x 0 ) 0 = 0 Kapitel 4 Differetialrecug 4. Ableitug eier differezierbare Fuktio Die Ableitug eier Fuktio ist der zetrale Begriff der Differetialrecug. Diese Teorie wurde uabägig voeiader vo Leibiz ud Newto begrüdet.

Mehr

9 Differenzierbare Funktionen

9 Differenzierbare Funktionen 9 Differezierbare Fuktioe Lerziele: Kozept: Ableitugbegriff Reultat: Ketteregel Defiito. E ei I R ei Itervall. Eie Fuktio f : I R eißt ifferezierbar im Pukt a I, fall er Grezwert f (a) := lim x a f(a;x)

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben.

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben. Pof. D. Jüge Rot Didati de eometie alte Pizip d Satz vo Cavaliei dlage des olmebegiffs (eiscließlic Satz vo De) olme de d des stmpfs Kgelvolme d Kgelobefläce Pizip vo Cavaliei Boaveta Cavaliei (598 47;

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

Lösungen der Übungsaufgaben von Kapitel 2

Lösungen der Übungsaufgaben von Kapitel 2 Aalysis I Ei Lerbuch für de safte Wechsel vo der Schule zur Ui Lösuge der Übugsaufgabe vo Kapitel zu... Ma zeige: Jede Teilfolge eier Umordug eier Folge ka als Umordug eier Teilfolge geschriebe werde.

Mehr

Tutoraufgabe 1 (Rekursionsgleichungen):

Tutoraufgabe 1 (Rekursionsgleichungen): Prof. aa Dr. E. Ábrahám Datestrukture ud Algorithme SS4 Lösug - Übug F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Rekursiosgleichuge): Gebe Sie die Rekursiosgleichuge für die Laufzeit der folgede

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

2.3 Binäre Linearcodes

2.3 Binäre Linearcodes Codierusteorie Biäre Liearcodes Es stellt sic eraus, dass a, u bei der Kostrutio effizieter Codes wirlic weiterzuoe, sic az wesetlic auf de Beriffsapparat der odere Alebra stütze uss, sodass auc wir ict

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Inhaltsverzeichnis. 3 Stetigkeit. 3.1 Reelle und komplexe Funktionen

Inhaltsverzeichnis. 3 Stetigkeit. 3.1 Reelle und komplexe Funktionen Ihaltsverzeichis 3 Stetigkeit 1 3.1 Reelle ud komplexe Fuktioe........................ 1 3. Grezwerte vo Fuktioe.......................... 3.3 Eiseitige oder ueigetliche Grezwerte................... 3

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)!

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)! Aufgabe.4 Die Verallgemeierug der biomische Formel für (x y ist der Biomische Lehrsatz: (x y x y, x, y R, N. (a Zeige Sie die Beziehug ( ( ( zwische de Biomialoeffiziete. (b Beweise Sie de Biomische Lehrsatz.

Mehr

Copyright, Page 1 of 6 Unendliche Produkte

Copyright, Page 1 of 6 Unendliche Produkte www.mtemti-etz.de Copyrigt, Pge of 6 Uedlice Produte. Überblic ud Motivtio Wir betrcte uedlice Produte vo Folge omplexer oder reeller Zle. Diese sid beispielsweise i der Futioeteorie (Weierstrßsce Produte)

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma SS 204 6.04.204 Höhere Mathematik II für die Fachrichtug Iformatik. Saalübug (6.04.204) Grezwerte ud Stetigkeit

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

3. Übungsblatt zur Vorlesung Mathematik I für Informatik

3. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathemati Prof. Dr. Thomas Streicher Dr. Sve Herrma Dip.-Math. Susae Pape. Übugsbatt zur Voresug Mathemati I für Iformati Witersemester 2009/2010 27./28. Otober 2009 Gruppeübug Aufgabe G1 (Biomiiaoeffiziete

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Gesetz der großen Zahlen

Gesetz der großen Zahlen KAPITEL 0 Gesetz der große Zahle 0.. Zwei Beispiele Beispiel 0... Wir betrachte ei Beroulli-Experimet, das uedlich oft wiederholt wird. Die Wahrscheilichkeit für eie Erfolg sei p. Die Zufallsvariable,

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr