' D ' 7. ' D ' 8 ' D ' 9. T 0.r; '/ D. O 1 DR C.0; 2/ D ¹.r; '/ j r > 0; 0 < ' < 2 º; O 2 DR 2 n¹.x; 0/ j x 0º:

Größe: px
Ab Seite anzeigen:

Download "' D ' 7. ' D ' 8 ' D ' 9. T 0.r; '/ D. O 1 DR C.0; 2/ D ¹.r; '/ j r > 0; 0 < ' < 2 º; O 2 DR 2 n¹.x; 0/ j x 0º:"

Transkript

1 1 R Plto Teil VIII Integrtion von Funktionen mehrerer Vriblen Definition 771 Eine stetige Abbildung T W D T!R d mit d D oder d D 3 sowie D T R d heißt Koordintentrnsformtion, flls es wei engen O 1 D T und O R d gibt, die die folgenden Eigenschften besiten: ) es sind O 1 und O beide offen und wegusmmenhängend, b) es unterscheidet sich O nur durch eine Nullmenge vom gesmten RumR d, d h für eine Nullmenge N R d gilt O [ N DR d, c) die Einschränkung T W O 1! O ist umkehrbr und stetig differenierbr, mit dett Ey/ für jedes Ey O 1 Beispiel 77 (elliptische Koordinten) Die Koordinten von Punkten x y/ R lssen sich in der Form x D r cos ' y D br sin ' mit r ', drstellen, > und b > gewisse Konstnten sind Im Speilfll D b D 1 hndelt es sich dbei gerde um die Polrkoordintendrstellung Wir betrchten die u dieser Koordintentrnsformtion gehörende Abbildung T W D T! R mit dem Definitionsbereich D T WDR C Œ und der Abbildungsvorschrift T r '/ D r cos ' br sin ' / (771) mit r ' genuer Grfische Illustrtionen du finden Sie in den Abbildungen 14 und 141 n bechte, dss sich in Abbildung 14 der eingeeichnete Winkel ' für b von dem Polrkoordintenwinkel wischen T r '/ und der x-achse unterscheidet br T r '/ ' D ' 6 ' D ' 7 ' D ' 8 ' D ' 5 ' D ' 9 ' D ' 4 ' D ' 3 ' D ' ' D ' 1 r const ' D ' 1 ' D ' ' D ' 13 ' D ' 1 ' D ' 11 Abb 141: Drstellung elliptischer Koordinten, mit ' k D k=14 für k D 1 : : : 13 Die Koordintentrnsformtion T W D T! R us (771) ist stetig prtiell differenierbr, mit T r '/ D cos ' b sin '! r sin ' br cos ' dett r '/ D br cos ' C br sin ' D br für r ' Diese Trnsformtion erfüllt die Bedingungen us Definition 771 mit den beiden engen O 1 DR C / D ¹r '/ j r > < ' < º O DR n¹x / j x º: n bechte, dss die Hlbgerde ¹x / j x º eine Nullmenge inr drstellt Elliptische Koordinten eignen sich B ur Prmetrisierung von chsenprllelen Ellipsen mit den Hlbchsen > und b > und dem Ursprung ls ittelpunkt Diese sind von der Form E D x y/ j x C y b 1 (vergleiche Beispiel 748 uf Seite 3) it der Trnsformtion T us (771) gilt die Identität T E / D E ' r E D Œ 1 Œ D r '/ j r 1 ' : Abb 14: Drstellung von T r '/ Beispiel 773 (Zylinderkoordinten) Die krtesischen Koordinten von Elementen x y / R 3 des Rums

2 Abschnitt 77 Trnsformtionsst R Plto 11 lssen sich in der Form x D r cos ' y D r sin ' D 9 = (77) mit r ' R, drstellen Die Sitution ist in Abbildung 14 drgestellt y x ' r Abb 14: Zylinderkoordinten Wir betrchten die u dieser Koordintentrnsformtion gehörende Abbildung T W D T! R 3 mit dem Definitionsbereich D T WDR C Œ R und der Abbildungsvorschrift T r ' / D r cos ' r sin ' / (773) mit r ' und Rgenuer Sie ist stetig differenierbr, mit 1 cos ' r sin ' T r ' / D B sin ' r cos ' A Ex 1 dett r ' / D r cos ' C r sin ' D r mit r ' und R Die Determinnte der Ableitungsmtrix T r ' / berechnet mn B durch Entwicklung nch der letten Zeile oder der letten Splte Diese Koordintentrnsformtion erfüllt die Bedingungen us Definition 771 uf Seite 1 B für O 1 D ¹r ' / j r > < ' < Rº O DR 3 n¹x / j x Rº: n bechte, dss die Hlbebene ¹x / j x Rº eine Nullmenge inr 3 drstellt Zylinderkoordinten eignen sich B ur Prmetrisierung von Zylindern, deren Achse mit der -Achse übereinstimmt und deren Grundfläche kreisförmig ist Beispielsweise gilt für den Zylinder Z D x y / R 3 j x C y R b (vergleiche Beispiel 748 uf Seite 3) mit der Trnsformtion T us (893) die Identität T Z / D Z Z D Œ R Œ Œ b D r ' / j r R ' b : Allgemeiner lssen sich mit Zylinderkoordinten uch vertikle Rottionskörper wie Kegel, Trichter oder Prboloid prmetrisieren, sich für die dugehörigen Zylinderkoordintenbereiche jeweils Normlbereiche ergeben Beispiel 774 (Kugelkoordinten) Die krtesischen Koordinten von Punkten x y / R 3 lssen sich in der Form 9 x D r cos ' cos ı = y D r sin ' cos ı (774) D r sin ı mit r ' und Dbei gilt Folgendes: ı drstellen ) Es ist x Cy C D r, wie mn leicht nchrechnet: D 1 ƒ x C y C D r cos ' C sin ' / cos ı C sin ı D r cos ı C sin ı / D r : ƒ D 1 Es ist lso r der Abstnd des Punktes x y / um Ursprung des krtesischen Koordintensystems Bei festem r > werden durch (774) Punkte uf der Kugeloberfläche mit Rdius r um den Ursprung des krtesischen Koordintensystems beschrieben

3 1 R Plto Teil VIII Integrtion von Funktionen mehrerer Vriblen b) In der Polrkoordintendrstellung x D % cos ' y D % sin ' mit % D %ı/ WD r cos ı gibt der Winkel ' den Winkel wischen dem Vektor x y/ und der x-achse n Der Winkel ' ist demnch ein ß für die geogrfische Länge c) Ds Dreieck mit den Eckpunkten / x y / und x y / bildet ein rechtwinkeliges Dreieck, dessen Höhe D r sin ı ist und deren Hypothenuse die Länge r besitt Es bildet dher die Zhl ı den Winkel im Bogenmß wischen den Vektoren x y / und x y /, die dmit ein ß für die geogrfische Breite drstellt Dbei stehen die Werte ı D und ı D für Nord- beiehungsweise Südpol, und ı D repräsentiert den Äqutor Die Sitution ist in Abbildung 143 drgestellt Ex ı y ' x Abb 143: Kugelkoordinten Wir betrchten nun die Längen- und Breitenkreise: (i) Für feste Werte von r und ı wird für Werte ' ein Kreis beschrieben, der uf der Kugeloberfläche x C y C D r verläuft, und dbei in einer Ebene liegt, die prllel x-y- Ebene uf der geogrphischen Breite ı verläuft, dessen ittelpunkt / ist, und dessen Rdius r cos ı ist (siehe Teil b oben) (ii) Für feste Werte von r und ' wird für Werte ı ein Hlbkreis beschrieben, der uf der Kugeloberfläche x C y C D r verläuft, und dbei in einer Ebene liegt, die durch die geogrphischen Länge ' festgelegt ist und durch den Ursprung verläuft Der Vollständigkeit hlber sei hier noch ngegeben, wie die Kugelkoordinten eines Punktes x y / R 3 bestimmt werden können: Für den Rdius r gilt r D p x C y C, für den Breitengrd ı gilt ı D rcsin r /, und den Längengrd ' erhält mn us der Polrkoordintendrstellung x D % cos ' y D % sin ' des Punktes x y/, % D p r D r cos ı gilt Beispiel 775 (Kugelkoordinten, Teil ) Wir betrchten die u dieser Koordintentrnsformtion gehörende Abbildung T W D T!R 3 mit dem Definitionsbereich und der Abbildungsvor- D T WDR C Œ Œ schrift T r ' ı/ D r cos ' cos ı r sin ' cos ı r sin ı / (775) mit r ' und prtiell differenierbr, mit ı Sie ist stetig T r ' ı/ cos ' cos ı r sin ' cos ı 1 r cos ' sin ı D sin ' cos ı r cos ' cos ı r sin ' sin ı C A sin ı r cos ı dett r ' ı/ D r cos ı für r ' und ı Diese Trnsformtion erfüllt die Bedingungen us Definition 771 uf Seite 1 für O 1 D ¹r ' ı/ j r > < ' < O DR 3 n¹x / j x Rº: < ı < º Kugelkoordinten eignen sich beispielsweise ur Prmetrisierung von Kugeln mit dem Ursprung ls ittelpunkt Diese sind von der Form B D ¹x y / j x C y C R º: it der Trnsformtion T us (771) gilt die Identität T B / D B

4 Abschnitt 77 Trnsformtionsst R Plto 13 B D Œ R Œ Œ D r ' ı/ j r R ' ı : n bechte noch, dss es sich bei llen vorgestellten Beispielen um Trnsformtionen in krtesische Koordinten hndelt 77 Trnsformtionsst Es wird nun der Trnsformtionsst ur Berechnung von Integrlen vorgestellt Diese Integrtionsregel stellt wie bereits u Beginn dieses Abschnitts erwähnt ein Anlogon ur Substitutionsregel für Integrle von Funktionen einer Veränderlichen dr Anders ls im eindimensionlen Fll geht es hier jedoch uch drum, den Integrtionsbereich durch eine geeignete Trnsformtion u vereinfchen St 776 (Trnsformtionsst für mehrdimensionle Integrle) it den Beeichnungen us Definition 771 uf Seite 1 gilt für jeden ulässigen Integrtionsbereich D R d und jede stetige Funktion f W D!Rdie Identität R D f Ev/ d Ev D R D f T Eu//jdetT Eu/j d Eu: (776) Hierbei ist D D T eine enge mit T D / D D Beweis Der Beweis wird hier nicht geführt siehe ber die nchfolgende Bemerkung Bemerkung Im Folgenden wird eine heuristische Herleitung der Identität (776) für den Fll eines chsenprllelen weidimensionlen Rechtecks D D Œ b Œc d D x y/ j x b c y d geliefert Hieru wird eine Zerlegung von D in Teilrechtecke Dij WD Œx i 1 x i Œy j 1 y j i D 1 : : : n j D 1 : : : m vorgenommen, die Gitterpunkte äquidistnt gewählt seien: x i D C ix y j D b C jy i D 1 : : : n j D 1 : : : m mit Zhlen n m Nund x D b Wir betrchten dnn n y D d c m : D ij WD T Dij / Ev ij WD T x i y j / i D 1 : : : n j D 1 : : : m: Die Sitution ist in Abbildung 144 m Beispiel weidimensionler elliptischer Koordinten drgestellt ' D T ' D r D r D 7 Abb 144: Zerlegung eines Bereiches beüglich weier Koordintensysteme m Beispiel weidimensionler elliptischer Koordinten Nun gilt für i ¹1 : : : nº und j ¹1 : : : mº fest Folgendes: es ist die Fläche D ij / klein und stimmt dmit näherungsweise mit dem von den beiden Vektoren T x i 1 y j / T x i y j / und T x i y j 1 / T x i y j / ufgespnnten Prllelogrmm überein für diese beiden Vektoren gilt T x i 1 y j / T x i y j / x x! i y x DW Eu i y j / T x i y j 1 / T x i y j / x! i y x DW Ev: i y j / Die Sitution ist in Abbildung 145 drgestellt Dmit stimmt die Fläche D ij / näherungsweise mit dem von den Eu D x x i y x Ev D y x i y j i y j x i y j / ufgespnnten Prllelogrmm überein Die Fläche des von wei Vektoren Eu R und Ev R ufgespnnten Prllelogrmms ist gleich j det Eu (siehe Beispiel 43 uf Seite 95) Dmit gilt D ij / jdeteu Ev/j D jdett x i y j /jxy: Ev/ j

5 14 R Plto Teil VIII Integrtion von Funktionen mehrerer Vriblen x i 1 y j / D ij x i y j / x i y j 1 / T T x i 1 y j / Ev D ij T x i y j 1 / Eu T x i y j / Dieser Wert wurde bereits in Beispiel 7311 uf Seite 198 berechnet Die hier vorgestellte Vorgehensweise unter Anwendung einer geeigneten Koordintentrnsformtion ist llerdings deutlich einfcher Die Flächeninhlte von Sektoren von Ellipsen lssen sich so ebenflls leicht berechnen Beispiel Wir betrchten nun Rottionskörper der Form D D x y / R 3 j b p x C y r/ Abb 145: Trnsformtion eines kleinen Rechteckbereiches Drus resultiert schließlich RD f Ev/ d Ev 1/ / nx mx f Ev ij /D ij / id1j D1 nx mx f T x i y j //jdett x i y j /jxy id1j D1 3 / R D f T Eu//jdetT Eu/j d Eu: Dbei stellt der Ausdruck rechts von 1 / eine riemnnsche Summe ur Approximtion des Integrls links von 1 / dr, es lettlich unerheblich ist, dss die engend ij / keine Rechteckbereiche drstellen Anlog ist der Ausdruck links von 3 / eine riemnnsche Summe ur Approximtion des Integrls rechts von 3 / Im dreidimensionlen Fll ist die heuristische Herleitung der Gültigkeit des Trnsformtionsstes gn nlog n ht nur u berücksichtigen, dss ds Volumen eines von drei liner unbhängigen Vektoren E b E Ec R 3 ufgespnnten Spts durch jdete b E Ec/j gegeben ist (siehe Seite 1) Beispiel (Ellipse) Für eine chsenprllele Ellipse E mit den Hlbchsen > und b > (siehe Beispiel 77) ergibt sich mit der in Beispiel 77 betrchteten Koordintentrnsformtion nch (776) die Identität RE R f Ex/ d Ex D b 1R f r cos ' br sin ' / r d' dr: Insbesondere ergibt sich drus für den Flächeninhlt dieser Ellipse (hier wählt mn f D 1) RE 1 d Ex D R 1 R R 1 br d' dr D b r dr D br ˇˇrD1 rd D b: mit einer nichtnegtiven stetigen Funktion r W Œ b! R C Speilfälle wurden bereits in Beispiel 741 uf Seite 3 betrchtet Für Zylinderkoordinten und die dugehörige Trnsformtion (siehe (77) und (773) uf Seite 11) gilt dnn für die enge D D r ' / j b ' r r/ die Identität T D / D D Anwendung des Trnsformtionsstes ergibt R R f Ex/ d Ex D f r cos ' r sin ' / r dr ' / D D D R b R r/ R f r cos ' r sin ' / r d' dr d: Für ds Volumen des Rottionskörpers D ergibt sich drus (mn sett hier f D 1) D/ D R D 1 d Ex D R b D R b r R r/ r dr d ˇ R ˇrDr/ b d D rd r/ d: Lerniele für diesen Abschnitt VIII Sie sollten Integrle über ebene und räumliche chsenprllele Integrtionsbereiche berechnen können, ebene und räumliche Normlbereiche identifiieren und die Integrtionsgrenen für die dugehörigen Doppel- beiehungsweise Dreifchintegrle formulieren können, Flächen- und Ruminhlte berechnen können, die in diesem Abschnitt vorgestellten elliptischen Koordinten sowie Kugel- und Zylinderkoordinten kennen, den Trnsformtionsst kennen und uf jede relevnte Koordintentrnsformtion nwenden können

br T.r; '/ E 0 D Œ0; 1 Œ0; 2 D.r; '/ j 0 r 1; 0 ' 2 : M 9 = ; x D r cos ' y D r sin ' z D z r const ' D ' 3 ' D ' 4 ' D ' 2 .' D ' 1 ' D ' 7. ' D ' 6.

br T.r; '/ E 0 D Œ0; 1 Œ0; 2 D.r; '/ j 0 r 1; 0 ' 2 : M 9 = ; x D r cos ' y D r sin ' z D z r const ' D ' 3 ' D ' 4 ' D ' 2 .' D ' 1 ' D ' 7. ' D ' 6. 21 R Plato Teil VIII Integration von Funktionen mehrerer Variablen br T r; '/ wobei E D Œ; 1 Œ; 2 ' ar D r; '/ j r 1; ' 2 : ' D ' 6 ' D ' 7 ' D ' 8 Abb 14: Darstellung von T r; '/ ' D ' 5 ' D ' 9 ' D '

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fkultät Mthemtik Institut für Numerische Mthemtik Aufgbe 2.7 Wie groß ist ds Volumen desjenigen Teiles der Kugel 2 + 2 + 2 2, der wischen den Kegelflächen 2 + 2 2 tn 2 α) und 2 + 2 2 tn 2 β)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale KAPITEL 6 Doppel- und Dreifchintegrle 6. Doppelintegrle................................... 74 6.. Flächeninhlt ebener ereiche.......................... 74 6..2 Definition und Eigenschften des Doppelintegrls..............

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

16. Integration über Flächen. Der Gaußsche Integralsatz

16. Integration über Flächen. Der Gaußsche Integralsatz 41 16. Integrtion über Flächen. Der Gußsche Integrlstz Der Gußsche Stz in der Ebene. 16.1. Orientierter Rnd von Normlbereichen. Es sei [, b] ein Intervll, und f 1 und f 2 seien stückweise stetig di erenzierbre

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Anwendungen der Integralrechnung

Anwendungen der Integralrechnung Anwendungen der Integrlrechnung 8. Flächeninhlt und Flächenschwerpunkt............... 4 8. Kurvenlänge............................. 7 8. Rottionskörper........................... 9 8.3 Whrscheinlichkeitsverteilungen

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Ptrizio Neff Christin Thiel 07.07.04 Lösungsvorschlg zu den Präsenzufgben der 3. Übung Präsenzufgbe : Wir hben die Determinnte bisher ls Kriterium zur Invertierbrkeit

Mehr

Übungsaufgaben 2. Komplexe Zahlen. sin 2 ; 2 sin cos D 2 cos 2 1; 2 sin cos D 1 2 sin 2 ; 2 sin cos. 3 k. kd0.cos ; 0/ k.

Übungsaufgaben 2. Komplexe Zahlen. sin 2 ; 2 sin cos D 2 cos 2 1; 2 sin cos D 1 2 sin 2 ; 2 sin cos. 3 k. kd0.cos ; 0/ k. Übungsufgben Komlexe Zhlen Aufgbe. Mn zeige (mit Hilfe der binomischen und der Moivre-Formel), dß..cos ; sin / D cos ; sin cos D sin ; sin cos,..cos ; sin / D 4 cos cos ; sin 4 sin, für lle Œ0; Œ gilt!

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

5.2 Riemannintegral in mehreren Variablen

5.2 Riemannintegral in mehreren Variablen 9 Kpitel 5. Integrtion im Mehrdimensionlen 5.2 Riemnnintegrl in mehreren Vriblen Die Idee, die dem Riemnnschen Integrlbegriff (für Funktionen in einer Vriblen) zugrundeliegt, ist die Approximtion einer

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale Doppel- und Dreifchintegrle Sei [, b] ein Intervll des R 2 oder R 3 (lso ein Rechteck bzw. ein Quder), i.e. [, b] = [, b ] [ 2, b 2 ] oder [, b] = [, b ] [ 2, b 2 ] [ 3, b 3 ]. Für Intervlle des R 2 bzw.

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt:

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt: Mthemtik LK M,. Kursrbeit Integrtion Lösung..3 Aufgbe :. Erkläre mit Hilfe der Definition des Integrls den Unterschied zwischen dem Integrl einer Funktion und dem Flächeninhlt der Fläche zwischen dem Grphen

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

6.4 Die Cauchysche Integralformel

6.4 Die Cauchysche Integralformel Die Cuchysche Integrlformel 6.4 39 Abb 6 Integrtionswege im Fresnelintegrl r ir 2 r 6.4 Die Cuchysche Integrlformel Aus dem Cuchyschen Integrlst folgt eine fundmentle Formel für die Drstellung einer holomorphen

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels:

Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels: Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Übungen zur Vorlesung Elementre Geometrie Sommersemester 1 Musterlösung zu Bltt 1 vom 5. Juli

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Mathematik III. Vorlesung 85. Riemannsche Mannigfaltigkeiten

Mathematik III. Vorlesung 85. Riemannsche Mannigfaltigkeiten Prof Dr H Brenner Osnbrück WS 2010/2011 Mthemtik III Vorlesung 85 Riemnnsche Mnnigfltigkeiten Georg Friedrich Bernhrd Riemnn (1826-1866) Die Kugeloberfläche einer Kugel mit Rdius r besitzt den Flächeninhlt

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld. 28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Integralrechnung. Fakultät Grundlagen

Integralrechnung. Fakultät Grundlagen Integrlrechnung Fkultät Grundlgen März 2016 Fkultät Grundlgen Integrlrechnung Bestimmtes Integrl I n Teilintervlle: x 0 = < x 1 < x 2

Mehr

Kapitel III Funktionen in mehreren Veränderlichen

Kapitel III Funktionen in mehreren Veränderlichen Kpitel III Funktionen in mehreren Veränderlichen Einleitung: Geometrische Interprettionen A: Funktionen f : IR IR f : M IR, M IR Grph: gegebene Kurve. {( x f(x } : x M IR 2 : explizit Legt mn ndere Koordinten

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

1. Beispiel für die Vereinbarung eines Verschiebungsvektors im Zylinderkoordinatensystem. Quellpunkt: ( 0,0, Aufpunkt: ( r,0,0)

1. Beispiel für die Vereinbarung eines Verschiebungsvektors im Zylinderkoordinatensystem. Quellpunkt: ( 0,0, Aufpunkt: ( r,0,0) . Beispiel für die Vereinbrung eines Verschiebungsvektors im Zlinderkoordintensstem ( 0,0, ' ) Quellpunkt: ( 0,0, ') Aufpunkt: ( r,0,0) R r ' r r,0,0 ( ) Vektor um Quellpunkt: 0 r ' 0 ' Vektor um Aufpunkt:

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Abitur 2018 Mathematik Geometrie VI

Abitur 2018 Mathematik Geometrie VI Seite http://www.biturloesung.de/ Seite Abitur 8 Mthemtik Geometrie VI Die Punkte A( ), B( ) und C( ) liegen in der Ebene E. Teilufgbe Teil A (4 BE) Die Abbildung zeigt modellhft wesentliche Elemente einer

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Kapitel 1. Das Riemann-Integral. 1.1 *Motivation

Kapitel 1. Das Riemann-Integral. 1.1 *Motivation Kpitel Ds Riemnn-Integrl. *Motivtion Wir betrchten eine stetige Funktion f : [, b] R, wobei, b R und < b. Frge: Wie groß ist der Flächeninhlt zwischen dem Abschnitt [, b] uf der x-achse und dem Grph von

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

Abitur 2012 Mathematik Geometrie VI

Abitur 2012 Mathematik Geometrie VI Seite 1 http://www.biturloesung.de/ Seite Abitur 1 Mthemtik Geometrie VI In einem krtesischen Koordintensystem sind die Punkte A(1 ), B(1 8 ), C(1 ), R( ), S( 8 ) und T ( ) gegeben. Der Körper A B C R

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit 1 1. Kurven Wir betrchten jetzt vektorwertige Funktionen von einer Veränderlichen. Eine Abbildung f = (f 1,..., f m ) : I R m heißt differenzierbr in t I, flls lle Komponentenfunktionen f 1,..., f m in

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018 HM I Tutorium 14 Lucs Kunz 9. Februr 218 Inhltsverzeichnis 1 Theorie 2 1.1 Uneigentliche Integrle............................. 2 1.1.1 Typ 1.................................. 2 1.1.2 Typ 2..................................

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Das Riemannsche Integral im R n

Das Riemannsche Integral im R n Ds Riemnnsche Integrl im R n Ziel: erechnung sogennnter zlindrischer Körper (s. Abb. ). Vorgehensweise: z z = f(, ) Z c d b R Abbildung : Zlindrische Menge Z. Wir zerlegen R durch chsenprllele Strecken

Mehr

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Probleme, SS 07 Montg 6.6 $Id: trig.tex,v.8 07/06/3 6:0:00 hk Exp $ $Id: convex.tex,v.40 07/06/3 6::43 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlbierungsformeln m Ende der

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Unbestimmte Integrale. Üben. Unbestimmte Integrale. Lösung. Berechne: Klasse. Schwierigkeit. Nr. math. Thema. Art. Klasse. math. Thema.

Unbestimmte Integrale. Üben. Unbestimmte Integrale. Lösung. Berechne: Klasse. Schwierigkeit. Nr. math. Thema. Art. Klasse. math. Thema. f) e) cos sin sin) (cos d) ) ( ) ( Berechne: f) e) sin) (cos d) ) ( ) ( Bestimme diejenige Stmmfunktion von f, deren Grph durch P verläuft! f : ; P( /) f : P(/ ) f : cos P( / ) d) f : P(/ ). Eine beliebige

Mehr

1 Koordinatentransformationen

1 Koordinatentransformationen Technische Universität München Andres Wörfel Ferienkurs Anlysis für Physiker Vorlesung Mittwoch SS 0 Them des heutigen Tges sind zuerst Koordintentrnsformtionen, dnn implizite Funktionen. Diese zwei Kpitel

Mehr

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben.

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben. A Anlysis, Woche Kurven I A. Der n-dimensionle Euklidische Rum A3 Drunter versteht mn für eine Zhl n N + R n := {x, x,..., x n ; mit x i R für lle i {,..., n}}. Ebenso gibt es uch C n := {z, z,..., z n

Mehr

Integralrechnung 29. f(x) dx = F (x) + C

Integralrechnung 29. f(x) dx = F (x) + C Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick uf die letzte Vorlesung 1. Ljpunov-Funktion 2. Rndwertprobleme 3. Lösbrkeit und Eindeutigkeit Ausblick uf die heutige Vorlesung 1. Vritionsrechnung 2. Brchistochrone 3. Euler-Lgrnge Gleichung

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

täglich einmal Scilab (wenigstens)

täglich einmal Scilab (wenigstens) Dr. -ng. Wilfried Dnkmeier Elektro- und nformtionstechnik SS 2012 Mthemtik Mthemtik 1 - Übungsbltt 8 täglich einml Scilb (wenigstens) Aufgbe 1 (Drehung von Koordintensystemen) Gegeben ist der Vektor =[x

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr