Modellbasen für virtuelle Behaglichkeitssensoren

Größe: px
Ab Seite anzeigen:

Download "Modellbasen für virtuelle Behaglichkeitssensoren"

Transkript

1 Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D Kaiseslauten Kuzfassung Diese Beitag päsentiet zwei Ansätze zu echtzeitfähigen Modellieung de theischen Behaglichkeit in kliatisieten Räuen. Die Modelle bescheiben die theische Behaglichkeit in eine ufassenden Weise, die nicht nu Tepeatuen, sonden u. a. auch die Luftbewegung beücksichtigt. Gleichzeitig sollen sie echneisch so effizient sein, dass sie in Echtzeitanwendungen als Basis fü vituelle Sensoen geeignet sind. De este Ansatz beechnet die Stöungsvogänge online aus physikalischen Gesetzen it eine de Echtzeitfodeung angepassten Otsauflösung. De zweite Ansatz geift auf eine Stöungsdatenbasis zuück, die systeatisch aus hoch aufgelösten Offline-Siulationen gewonnen wid. Beide Ansätze weden a Beispiel eines ealen Konfeenzaues veglichen und bewetet. 1 Einleitung Bei de Kliatisieung eines Raues ichten sich heute übliche Regelungen eist nu nach eine punktuell geessenen Tepeatu. Ein behagliche Rauzustand kann auf diese Weise jedoch nicht zuvelässig eeicht weden. So wid z.b. lokal auftetende Zugluft von de Regelung pinzipbedingt nicht ekannt und dahe auch nicht ausgeegelt. Nach de Pedicted Mean Vote (PMV) spielt die Luftbewegung bei de theischen Behaglichkeit eine ähnlich wichtige Rolle wie die Lufttepeatu. Weitehin haben auch die Stahlungstepeatu, die Luftfeuchtigkeit, die Aktivität und die Bekleidung einen Einfluss [1]. Kliageät () z P1 y x P2 P0 Stellgößen/Randbedingungen: T α Massenduchsatz des Kliageäts Austittstep. des Kliageäts Ausstöwinkel des Kliageäts zusätzlich bei geöffneten Fensten: ϕ Fenste Öffnungswinkel de Fenste P3 v Wind Windgeschwindigkeit Kippfenste T o Außentepeatu Bild 1: Modellieungsbeispiel (Konfeenzau de TU Kaiseslauten) In eine DFG-Foschungspojekt wid eine ufassende Methodik zu Regelung de theischen Behaglichkeit entwickelt. Hiebei esetzt das otsabhängige PMV die Tepeatu als Regelgöße. Die gößte Heausfodeung ist die Eittlung de

2 Lufttepeatu T ( x und des Geschwindigkeitsbetags v( x an den inteessieenden Raupunkten x i. U den Aufwand äulich veteilte Sensoen zu veeiden, sollen T ( x und v( x ittels vituelle Sensoen beechnet weden. Die vituellen Sensoen basieen auf Modellen, die die Rauluftstöung abhängig von gegebenen aktuatoischen Randbedingungen hineichend genau bestien. Entscheidend ist, dass diese Modelle auf eine Standad-PC poblelos in Echtzeit auswetba sind. Es wuden zwei Modellansätze entwickelt. Beide lassen sich jeweils in ein Modelica- Modell de uschließenden Wände [3] integieen, u die Stahlungstepeatuen TRad ( x zu odellieen. Egänzt an das Modell u die geessene Luftfeuchtigkeit, den Aktivitätsgad (gegeben duch die At de Raunutzung) und eine wetteabhängige Funktion fü die Bekleidung, lässt sich PMV ( x beechnen. 2 Gobskaliges physikalisches Modell (1. Appoxiation) Die klassische Methode zu Beechnung eine Rauluftstöung ist die Vewendung eines CFD-Modells (CFD = coputational fluid dynaics) it geeignet gewählten Stoffund Tubulenzodellen. De diekte Weg zu vituellen Sensoen fü T ( x und v( x ist ein CFD-Modell, dessen Otsauflösung so niedig gewählt ist, dass es auf eine Standad-PC poblelos in Echtzeit auswetba ist. Hiezu wid die Rauluft in Zonen von eine und bis wenigen Kubiketen Göße unteteilt, wobei jede Zone duch ein finites Voluen odelliet wid, das deen ittlee Tepeatu und Geschwindigkeit nachbildet. I Beispiel aus Bild 1 besteht das Luftodell aus 100 quadeföigen Voluen it 1,45, 0,75 und 0,95 Kantenlänge. Jedes Voluen wid i Wesentlichen duch sieben Diffeentialgleichungen beschieben. Diese sind zunächst die Bilanzen fü Masse, Enegie, und Ipuls (x-, y- und z-koponente). Weitehin wude das k-ε-tubulenzodell ipleentiet (in Anlehnung an [4]), das die Tanspotgleichungen fü die spezifische tubulente kinetische Enegie k und deen Dissipation ε beitägt. Das Luftodell ist übe einen konvektiven Wäeübegang it konzentieten dynaischen Wandodellen veknüpft. Feinskalige Randbedingungen, die sich übe wenige als eine Voluengenzfläche estecken, lassen sich jedoch nicht 1:1 abbilden. So hat das Kliageät i Beispiel eine Auslassfläche von nu ca. 0,07 0,85 und zwei Einlassflächen von je 0,15 1,05. Diese Flächen liegen außede so eng beieinande, dass sie alle dei in die Genzfläche eines einzigen Luftvoluens fallen. Setzt an voaus, dass die ein- und austetenden Massenstöe gleich sind, so fließen übe die Genzfläche zu Rauluft nu ein Enegie- und ein Ipulssto (sowie die konvektiven Anteile von k und ε) (Bild 2). Zu Validieung siulieen wi in Dyola die Spungantwot des Raues bei geschlossenen Fensten fü = 0,232 kg/s, T -ai = 18 K, α = 17,5 und vegleichen it eine hoch aufgelösten Fluent -Siulation (23838 Voluen). I gobskaligen Modell wude dabei zu Kalibieung de Wäeübegangskoeffizient zwischen Luft und Wänden so eingestellt, dass de Velauf de ittleen Lufttepeatu it dejenigen de Fluent -Siulation paktisch übeeinstit. De Mittelwet de Geschwindigkeitsbetäge v avg (als Maß fü die Däpfung de Stöung) zeigt dynaisch und stationä ein seh ähnliches Vehalten wie in de Fluent -Siulation (Bild 3). In den einzelnen Voluen egeben sich eist qualitativ ichtige Abweichungen von diesen

3 globalen Mittelweten. Sie sind jedoch quantitativ oft nicht stak genug ausgepägt (Bild 5). Diese Nivellieung de lokalen Unteschiede folgt pinzipbedingt aus de elativ goben äulichen Mittelung, in de goße T- und v-gadienten untegehen. Diese teten vo alle dot auf, wo de kalte Feistahl des Kliageäts in den Rau eintitt, und bestien letztlich die genaue Richtung und Aufweitung des Stahls bei tiefeen Eindingen in den Rau. Das gobskalige Modell nit hie eine zu schnelle Veischung an. z Kliageät y E ein = c p T I ein = v E aus = c p T I x aus = v Finites Voluen T, v z Bild 2: Dastellung eines Kliageäts als Randbedingung i gobskaligen Luftodell Nicht geeignet ist dieses Modell fü feinskalige Randbedingungen, bei denen wede de Luftassenwechsel noch die ein- und austetenden Ipulsstöe bekannt sind (i Beispiel bei geöffneten Kippfensten). Ebenfalls pobleatisch ist die Abbildung koplexe Geoetien, da dies kleine Voluen und dait eine hohe Voluenzahl efodelich acht. y x T avg / C v avg / (/s) Hoch aufgelöstes CFD-Modell 1. Appoxiation (physikalisch) Bild 3: Mittlee Lufttepeatu und ittlee Geschwindigkeitsbetag 3 Datenodell (2. Appoxiation) Altenativ zu Echtzeitlösung de Stöungsgesetze wude ein neuatiges, datenbasietes Rauluftodell entwickelt [2]. Dieses geift auf eine Datenbasis von T ( x - und v( x -Veläufen zu, die aus systeatischen Offline-Siulationen it eine hoch aufgelösten CFD-Modell gewonnen weden. Dabei liegt jede Siulation ein

4 andees Kliatisieungsszenaio zugunde, das duch ein Tupel von Randbedingungen u k chaakteisiet wid: Ein Szenaio ist die Spungantwot de hoogenen, uhenden Rauluft auf die Randbedingungskobination u = (u 1, u 2,..., u N ). Die Gößen u k weden hie als veallgeeinete Stellgößen intepetiet. Zu diesen zählen alle veändelichen Randbedingungen, die entwede unabhängig vogebba (eale Stellgößen) ode essba sind: die ins Stöungsgebiet eintetenden Luftstöe (z.b. de Massensto des Kliageäts), 0 die Diffeenzen T k ai : = T k T ai zwischen den Tepeatuen T k de 0 eintetenden Stöe und de ittleen Raulufttepeatu T ai zu Beginn eines Szenaios (z.b. die Tepeatudiffeenz T ai zwischen de Rauluft und de Austitt des Kliageäts), weitee Randbedingungen it Einfluss auf das Stöungsvehalten i öglichen Aufenthaltsbeeich von Pesonen (z.b. de Ausstöwinkel α des Kliageäts). Definiet an diskete Wete u (i) k, so wid duch alle deen Kobinationen ein N- diensionale diskete Aktuatoau AR d aufgespannt. Die entspechenden Szenaien weden offline siuliet. I Beispiel könnten etwa folgende Wete u (i) k gewählt weden: ai Veallg. Stellgöße u k T - α Einheit kg/s K (i) Diskete Wete u k , , ,246 Tabelle 1: Stellgößenwete i disketen Aktuatoau AR d fü das Beispiel Dies entspicht 36 Szenaien. Bei diese Modell können auch die Kippfenste it einbezogen weden. In diese Fall koen noch ϕ Fenste, v Wind und T o- ai als veallgeeinete Stellgößen hinzu. Auf eine Standad-PC kann die Offline-Rechenzeit dann auf ehee Wochen ansteigen. Sie lässt sich jedoch deutlich veküzen, da es i.d.r. eine goße Zahl ielevante Szenaien gibt, die nicht siuliet weden üssen. Diese haben edundantes ode tiviales ( T ( x = const., v( x 0 ) Vehalten ode sind aus egelungstechnische Sicht veboten. Einzelheiten hiezu finden sich in [2]. Bei den Offline-Siulationen weden zu jede Szenaio die Veläufe von Lufttepeatu und -geschwindigkeit an zahleichen Punkten aufgezeichnet. Das Gitte de Aufzeichungspunkte sollte dabei den gesaten öglichen Aufenthaltsbeeich von Pesonen abdecken. Diese Siulationsegebnisse bilden eine Datenbasis, auf die das Online-Modell zugeift (Bild 4). Bei gegebene kontinuielichen Stellvekto u weden T ( x und v( x duch Intepolation zwischen den i disketen Aktuatoau nächstliegenden Szenaien appoxiiet. Die Rechenzeit ist hie vo alle von de Zahl

5 de Lesezugiffe abhängig, die je Zeiteinheit in de Szenaien-Datenbasis efodelich ist. Die zu lesende Datenenge wiedeu steigt it de Zahl n P de übewachten Raupunkte und it de Anzahl N IP de Diensionen des Aktuatoaues, in denen intepoliet weden uss. Dies ist auch fü N IP = 6 auf eine Standad-PC poblelos in Echtzeit öglich. In de Regel wid N IP kleine als N sein, da bestite Stellgößen u k pe se disket sind ode zu solchen geacht weden, inde an nu diskete Wete einstellt. Eine gezielte Beeinflussung de Rechengeschwindigkeit ist duch die Abtastzeit öglich. Wid diese ehöht (etwa in eine ealistischen Beeich zwischen 5 s und 30 s), so geht nu die Kuzzeitdynaik innehalb de Abtastpeiode veloen. Diese ist fü eine Behaglichkeitsegelung i Allgeeinen nicht von Inteesse. Aufzeichnungspunkte fü T und v Pesonenodell it PMV-Beechnung Online- Luftodell 1. HOCH AUFGELÖSTES CFD-MODELL (FLUENT ) 2. CFD-DATENBASIS FÜR SZENARIEN 3. RAUMMODELL (MODELICA) Bild 4: Das datenbasiete Luftodell und seine Ezeugung Appoxiiet an dieselbe Situation wie in Abschnitt 2, also das Szenaio u = ( = 0,232 kg/s, T -ai = 18 K, α = 17,5 ), so gilt bei eine Datenbasis nach Tabelle 1 N IP = 3. Alle dei Stellgößen liegen in axiale Abstand von den nächstliegenden Szenaien in AR d. Die Übeeinstiung it de exakten Rechnung ist dennoch gut: An keine von 108 Punkten in 1,2 und 1,8 Höhe ist de ittlee absolute Fehle de intepolieten Tepeatu göße als 0,5 K (i schlechtesten Fall 0,34 K). De ittlee absolute Fehle de Luftgeschwindigkeit liegt an allen Punkten unte 0,1 /s (axial 0,09 /s). In Bild 5 (Abschnitt 4) weden die Egebnisse an vie ausgewählten Punkten de exakten Rechnung und de physikalischen Modell gegenübegestellt. Die efodeliche zeitliche Länge de Szenaiendaten hängt vo jeweiligen Rau und seinen Aktoen ab. Das Augenek liegt hie nicht auf de tägen Langzeitvehalten de Gebäudehülle, sonden auf de viel schnelleen Dynaik de Rauluft. Als Reaktion auf Stelleingiffe können sich die Lufttepeatu und -geschwindigkeit schon innehalb wenige Minuten lokal so stak änden, dass die Stellgößen neu zu bestien sind. I Sinne des Datenodells endet bei jede Stellgößenwechsel das laufende Szenaio. Gundlage fü das nachfolgende Szenaio ist die ittlee Lufttepeatu zu Zeitpunkt des Wechsels. Da die offline siulieten Szenaien it eine hoogenen Tepeatu und uhende Luft beginnen, wid das neue Szenaio kontinuielich übe das alte geblendet.

6 4 Zusaenfassung und Bewetung de Egebnisse Basisodelle fü vituelle Behaglichkeitssensoen üssen vo alle in de Lage sein, die otsabhängige Lufttepeatu und -geschwindigkeit schnell und hineichend genau zu bestien. P0 (3,5 1,8 2,1) P1 (0,7 1,2 2,1) P2 (3,5 1,2 3,5) P3 (6,3 1,2 2,1) Hoch aufgelöstes 1. Appoxiation 2. Appoxiation CFD-Modell (physikalisches Modell) (Datenodell) Bild 5: Validieung de beiden Modelle (Punkte aus Bild 1)

7 Das gobskalige physikalische Modell (1. Appoxiation) stellt hie einen geadlinigen und in sich konsistenten Ansatz da. Gegenübe eine einfachen konzentieten Rauluftknoten liefet es deutlich eh und diffeenzietee Infoationen zu Beuteilung de theischen Behaglichkeit. Auf eine Standad-PC elaubt die Echtzeitanwendung des Finite-Voluen-Vefahens it konventionellen Lösungsethoden jedoch nu wenige Voluina entlang jede Raukante. Dabei ist auch zu beücksichtigen, dass die Rechenzeit nicht ie gleichäßig it de siulieten Zeit ansteigt. Vieleh staut sich zu Beginn und bei eine Wechsel de Randbedingungen eist eine Vezögeung gegenübe de Echtzeit auf. Koplexe Geoetien und feinskalige aktoische Randbedingungen können nu duch konzentiete Bilanzen (z.b. Kliageät) ode ga nicht (Kippfenste) odelliet weden. Die Egebnisse i Beispiel sind qualitativ sinnvoll, neigen quantitativ abe dazu, die lokalen Unteschiede zu unteteiben (Bild 5). Das Datenodell (2. Appoxiation) eweist sich aufgund de geachten Efahungen als bessee Basis fü vituelle Sensoen. I Beispiel ließ sich it ih eine deutlich höhee Genauigkeit als it de physikalischen Online-Modell ezielen. Das efodeliche hoch aufgelöste Offline-Modell bedeutet zwa einen eheblichen Abeitsaufwand, ist abe zu Validieung des physiklischen Modells ebenso notwendig. Voteilhaft bei de Echtzeitanwendung des Datenodells ist, dass seine Rechenzeit velässlich (keine Konvegenzpoblee) ist und sich an die vefügbaen Rechenessoucen anpassen lässt. Da das Modell auf vohandene, stabile Lösungen zuückgeift, kann an gefahlos Kopoisse bei de Online-Abtastate eingehen. Dait bietet sich das Datenodell auch fü pädiktive Regelvefahen an. Diese escheinen fü die angestebte Mehgößenegelung des PMV an unteschiedlichen Raupunkten besondes attaktiv. Die steigende Leistungsfähigkeit de Rechne und ethodische Fotschitte bei de effizienten Lösung von Stöungspobleen können in Zukunft beiden Modellansätzen gleicheaßen zugute koen. 5 Liteatu [1] EN ISO 7730: Eittlung des PMV und des PPD und Bescheibung de Bedingungen fü theische Behaglichkeit. Belin: Beuth Velag, [2] Felgne, F; Litz, L.: Aiflow-dependent odels fo vitual sensing of theal cofot. In: I. Toch, F. Beitenecke (Hsg.): Poceedings 5th Vienna Syposiu on Matheatical Modelling. Wien: ARGESIM-Velag, 2006, Pape 61. [3] Felgne, F.; Mez, R.; Litz, L.: Modula odelling of theal building behaviou using Modelica. In: I. Toch (Hsg.): Matheatical and Copute Modelling of Dynaical Systes. Bd. 12(1), 2006, S [4] Hanel, B.: Rauluftstöung. Heidelbeg: C. F. Mülle Velag, 1996.

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen 2 Vowot 4 1. Einfühung 4 2.

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Bestimmung der massebezogenen Aktivität von Radionukliden

Bestimmung der massebezogenen Aktivität von Radionukliden Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT Beabeite:. Wiechen H. Rühle K. Vogl ISS 1865-8725 Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT-01 Die auf die Masse

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von Unvebindliche Mustebeechnung fü den Wealthmaste Classic Plan von Die anteilsgebundene Lebensvesicheung mit egelmäßige Beitagszahlung bietet Ihnen die pefekte Kombination aus de Sicheheit eine Kapitallebensvesicheung

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

Für den Endkunden: Produkt- und Preissuche

Für den Endkunden: Produkt- und Preissuche Fü den Endkunden: Podukt- und Peissuche Ducke Mit finde.ch bietet PoSelle AG eine eigene, umfassende Podukt- und Peissuchmaschine fü die Beeiche IT und Elektonik. Diese basiet auf de umfassenden Datenbank

Mehr

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen Sympoium EME 2005 5. - 7. Septembe 2005 d Titel de Beitage: Namen de Autoen: Name de Votagenden Fima, Dienttelle: Anchift: Emailadee: Numeiche Feldbeechnung im VCC EME - aktuelle Sachtand und zukünftige

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Herrn N. SALIE danke ich für interessante Diskussionen.

Herrn N. SALIE danke ich für interessante Diskussionen. nen wi, daß das metische Feld im allgemeinen nicht konsevativ ist. Lediglich in dem Fall eines statischen metischen Feldes ( «.,4 = 0) existiet Enegieehaltung: Die bisheigen enegetischen Betachtungen basieen

Mehr

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009 Mustetexte Auftag nach 11 BDSG Gegenstand Auftag nach 11 BDSG 2009 Soweit die DMC ode eine ihe Efüllungsgehilfen als Datenschutzbeauftagte i.s. des 4f Abs. 2 Satz 3 BDSG bestellt und tätig ist, beziehen

Mehr

2.4 Dynamik (Dynamics)

2.4 Dynamik (Dynamics) .4 Dynaik (Dynaics) Def.: In de Dynaik wid die Kaft als Usache de Bewegung betachtet, hie wid die Statik (.) it de Kineatik (.3) zusaengefüht. Inhalt: Bewegungsgleichungen, Enegiesatz, Abeit, Leistung,

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Vortrag von Sebastian Schreier

Vortrag von Sebastian Schreier Sloshing in LNG Tanks Fist Analyses Votag von Zum Thema Este Analysen zum Sloshingvehalten von LNG-Tanks auf Schiffen Im Rahmen de Volesungseihe 1 Gliedeung Einleitung Motivation Modellieung Modellvesuche

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

über insgesamt Vorvertragliche Erläuterungen zum Darlehensantrag Name aller Darlehensnehner Sehr geehrter Kunde,

über insgesamt Vorvertragliche Erläuterungen zum Darlehensantrag Name aller Darlehensnehner Sehr geehrter Kunde, dessaue st. 5 I 06862 dessau-oßlau email info@pobaufi.de I www.pobaufi.de Kundenanschift Ih Anspechpatne Vovetagliche Eläuteungen zum Dalehensantag Name alle Dalehensnehne übe insgesamt Dalehensbetag Seh

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

8.2 Nominaler Zinssatz und die Geldnachfrage

8.2 Nominaler Zinssatz und die Geldnachfrage 8.2 Nominale Zinssatz und die Geldnachfage Die Geldnachfage ist die Menge an monetäen Vemögensweten welche die Leute in ihen Potfolios halten wollen Die Geldnachfage hängt vom ewateten Etag, Risiko und

Mehr

V10 : Elektronenspinresonanz

V10 : Elektronenspinresonanz V10 : Elektonenspinesonanz Vesuchsaufbau: Kontollaum des Tandemgebäudes Beteue SS 2008 - Robet Lahmann 09131/85-27147, Raum TG223 Robet.Lahmann@physik.uni-elangen.de - Rezo Shanidze (Vetetung) 09131/85-27091,

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Technische Fachhochschule Berlin University of Applied Sciences

Technische Fachhochschule Berlin University of Applied Sciences Technische Fachhochschule Belin Univesity of Applied Sciences TFH Belin Fachbeeich III Bauingenieu- und Geoinfomationswesen Luxembuge St. 10 13353 Belin Pof. D. Jügen Schweikat Telefon: 030) 45 04-2038/2613

Mehr

2 Theoretische Grundlagen

2 Theoretische Grundlagen 2 Theoetische Gundlagen 2.1 Gundlagen de dielektischen Ewämung 2.1.1 Mechanismen de dielektischen Ewämung Die dielektische Ewämung beuht auf de Wechselwikung atomae Ladungstäge elektisch nicht leitende

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Zur Gleichgewichtsproblematik beim Fahrradfahren

Zur Gleichgewichtsproblematik beim Fahrradfahren technic-didact 9/4, 57 (984). u Gleichgewichtspoblematik beim Fahadfahen Hans Joachim Schlichting Gleichgewicht halten ist die efolgeichste Bewegung des Lebens. Beutelock. Einleitung Die physikalische

Mehr

Strömungs- und Wärmeübergangseffekte. an der rotierenden temperierten Zylinderwelle. unter Beachtung von Geometrieeinflüssen

Strömungs- und Wärmeübergangseffekte. an der rotierenden temperierten Zylinderwelle. unter Beachtung von Geometrieeinflüssen Stömungs- und Wämeübegangseffekte an de otieenden tempeieten Zylindewelle unte Beachtung on Geometieeinflüssen Uniesität de Bundesweh München Fakultät fü Luft- und Raumfahttechnik Institut fü Themodynamik

Mehr

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation Enegieeffiziente Abscheidung von hochkonzentieten flüssigen Aeosolen mit einem Autogenen Raumladungsgetiebenen Abscheide (ARA) Von de Fakultät fü Umweltwissenschaften und Vefahenstechnik de Bandenbugischen

Mehr

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1 Konzeptionieung eines Feldsondenmeßplatzes zum EMV-geechten Design von Chip/Multichipmodulen 1 D. Manteuffel, Y. Gao, F. Gustau und I. Wolff Institut fü Mobil- und Satellitenfunktechnik, Cal-Fiedich-Gauß-St.

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Grundlagen der Elektrotechnik II

Grundlagen der Elektrotechnik II Volesungsfolien Gundlagen de Elektotechnik II Lehstuhl fü Allgemeine Elektotechnik und Plasmatechnik Pof. D. P. Awakowicz Ruh Univesität Bochum SS 009 Die Volesung wid in Anlehnung an das Buch von Pof.

Mehr

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4 Mai 2010 - An alle Haushalte oe, T h Me sen: n i Z meh % 5 2, 3. Jah im 4 VR-FinalSpaen Unse Anlagepodukt spielt Ihnen beeits vo dem esten Anstoß de Fußball-Weltmeisteschaft 2010 in Südafika einen exklusiven

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

DCF-Verfahren bei Wachstum, Teilausschüttung und persönlicher

DCF-Verfahren bei Wachstum, Teilausschüttung und persönlicher DCF-Vefahen bei Wachstum, Teilausschüttung und pesönliche Besteueung Jög Wiese Discussion Pape 26 19 28. Mai 26 - Vesion vom 29. Novembe 26 - Munich School of Management Univesity of Munich Fakultät fü

Mehr

PASSAUER DISKUSSIONSPAPIERE

PASSAUER DISKUSSIONSPAPIERE Das Keynesianische Konsensmodell eine offenen Volkswitschaft Chistian Engelen Johann Gaf Lambsdoff Diskussionsbeitag N. V-49-07 Volkswitschaftliche Reihe ISSN 1435-3520 PSSUER DISKUSSIONSPPIERE Heausgebe:

Mehr

Testen von Hypothesen eine Anwendung der Binomialverteilung

Testen von Hypothesen eine Anwendung der Binomialverteilung Hebet Saube - Hebet.Saube@t-online.de.5.998 Testen von Hypothesen eine Anwendung de Binomialveteilung I. Einseitige Test eine Hypothese Von einem Wüfel wid vemutet, daß e öftes die Sechs liefet, als es

Mehr

Der eigentliche Druck

Der eigentliche Druck 147 De eigentliche Duck 5 Kamea: Konica Minolta Maxxum 7D Ist das Bild gut vobeeitet und teten keine Pobleme auf, so ist das Ducken mit den heutigen fü Fine-At geeigneten Tintenducken ein Vegnügen. Leide

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

Generalthema: Ausgewählte Fragen der Fremdfinanzierung

Generalthema: Ausgewählte Fragen der Fremdfinanzierung Institut fü Geld- und Kaitalvekeh de Univesität Hambug Pof. D. Hatmut Schmidt Semina zu llgemeinen Betiebswitschaftslehe und Bankbetiebslehe Wintesemeste 1999/2000 Zuständige Mitabeite: Dil.-Kfm. Dik Niedeeichholz

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN Spezialgebiet in Physik Maco Masse BG Bluenstasse 2003 Inhaltsvezeichnis 1.Kenfusion 1 1.1. Allgeeines 1 1.2. Veschelzung 1 1.3. Theonukleae Reaktion 1 2.Die

Mehr

ABSGHIEDVOM GIESSKANNENPRINZIP I I I I I I I. I I I t I I I I. Durch Massenmarketing werden zwar viele Personen gleichzeitig

ABSGHIEDVOM GIESSKANNENPRINZIP I I I I I I I. I I I t I I I I. Durch Massenmarketing werden zwar viele Personen gleichzeitig t DREKTMARKETNG: GEZELTE KUNDENANSPRACHE ABSGHEDVOM GESSKANNENPRNZP Duch Massenmaketing weden zwa viele Pesonen gleichzeitig effeicht, doch meist nicht die ichtigen. Was hat etwa ein Hochhausbewohne von

Mehr

Zahnarztangst? Wege zum entspannten Zahnarztbesuch. Mit einer von Marc A. Pletzer konzipierten und gesprochenen Trance. Bearbeitet von Lea Höfel

Zahnarztangst? Wege zum entspannten Zahnarztbesuch. Mit einer von Marc A. Pletzer konzipierten und gesprochenen Trance. Bearbeitet von Lea Höfel Zahnaztangst? Wege zum entspannten Zahnaztbesuch. Mit eine von Mac A. Pletze konzipieten und gespochenen Tance Beabeitet von Lea Höfel 1. Auflage 2012. Taschenbuch. 136 S. Papeback ISBN 978 3 7945 2870

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen Stahlungseffekte bei instationäen Heizdahtmessungen an poösen Wämedämmstoffen Von de Fakultät fü Maschinenbau, Vefahens- und Enegietechnik de Technischen Univesität Begakademie Feibeg genehmigte DISSERTATION

Mehr

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung NESER, S., A. SEYFARTH: De Einfluss de Lichtquellengeometie auf die Entfenungsmessung von PMD- Kameas, in Th. Luhmann/Ch. Mülle (Hsg.) Photogammetie-Lasescanning Optische 3D-Messtechni, Beitäge de Oldenbuge

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzieung Studiengang B.A. Business Administation Pof. D. Raine Stachuletz Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Somme 2012 slide no.: 1 Handlungsfelde

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

4. Klausur Physik-Leistungskurs Klasse Dauer: 90 min Hilfsmittel. Tafelwerk, Taschenrechner

4. Klausur Physik-Leistungskurs Klasse Dauer: 90 min Hilfsmittel. Tafelwerk, Taschenrechner 4. Klausu Physik-Leistungskus Klasse 11 17. 6. 014 Daue: 90 in Hilfsittel. Tafelwek, Taschenechne 1. Duch eine kuze pule, die an eine Ozsilloskop angeschlossen ist, fällt ein Daueagnet. Welche de dei Kuven

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19 Fachbeeich Mathematik/Infomatik Optimieung de Lagehaltung im Kaftfahzeugteile-Gohandel Diplomabeit beabeitet von Diete Stumpe beteut von Pof. D. Olive Vonbege 2. Apil 1996 Diete Stumpe Am Gewenkamp 19

Mehr

Das Ski-Rental-Problem

Das Ski-Rental-Problem Da Ski-Rental-Poblem (Voläufige Veion, 15. Mai 212) Pof. D. Hanno Lefmann Fakultät fü Infomatik, TU Chemnitz, D-917 Chemnitz, Gemany lefmann@infomatik.tu-chemnitz.de 1 Da Ski-Rental-Poblem Bei dem Ski-Rental-Poblem

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln Peise, Fom und Fabe: Fallsticke zwischen Veodnung und Einnahme von Azneimitteln Seit Jahen ist die Tendenz im Gesundheitswesen unvekennba, dass andee Akteue imme meh ökonomische und egulatoische Ringe

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als Übeblick. Vobemekungen. Ideale ose-gas im goßkanonischen Ensemble ose-veteilungsfunktion. Makoskopische esetzung des Gundzustandes. Übegangstempeatu c 4. Spezifische Wäme in de Umgebung von c 5. finit-size

Mehr

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro 01-U4-JB-2009-Umschlag-Y:01-U4-JB-2008-Umschlag-A 11.03.2010 9:51 Uh Seite 1 JAHRBUCH 2010 29. Euo s unte o f n I Meh sikoi e i d www..de e manag Union Investment Wi optimieen Risikobudgets Union Investment

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION.

ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION. ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION. DIE GASVERBUND MITTELLAND AG Die Gasvebund Mittelland AG (GVM) ist mit und 33 Pozent des nationalen Edgasabsatzes

Mehr

Lösungshinweise und Bewertungskriterien

Lösungshinweise und Bewertungskriterien 27. Bundeswettbeweb Infomatik, 1. Runde Lösungshinweise und Bewetungskiteien Allgemeines Zuest soll an diese Stelle gesagt sein, dass wi uns seh daübe gefeut haben, dass einmal meh so viele Leute sich

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Univesität Ulm 89069 Ulm Gemany Dipl.-WiWi Sabina Böck Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2008/2009 Übung 3 Das

Mehr

Blitz- und Überspannungsschutz hilft Schäden in Milliardenhöhe vermeiden

Blitz- und Überspannungsschutz hilft Schäden in Milliardenhöhe vermeiden Komponenten & Peipheie Blitz- und Übespannungsschutz hilft Schäden in Milliadenhöhe vemeiden Die vom Gesamtveband de Deutschen Vesicheungswitschaft e. V. (GDV) estellten Statistiken weisen aus, dass in

Mehr

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m.

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m. www.schullv.de Basiswissen > Gundlagen > Dynamik Dynamik Skipt PLUS Einfühung Die Dynamik bescheibt die Bewegung von Köpen unte dem Einfluss von Käften. De Begiff stammt von dem giechischen Wot dynamis

Mehr

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme.

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme. Bandenbugische Technische Univesität Cottbus Fakultät fü Mathematik, atuwissenschaften und Infomatik Lehstuhl Gafische Systeme Diplomabeit Umsetzung eines vollautomatisieten Objektefassungs- Systems übe

Mehr

Analytische Berechnung magnetischer Felder in Permanentmagnet erregten Maschinen

Analytische Berechnung magnetischer Felder in Permanentmagnet erregten Maschinen Analytische Beechnung magnetische Felde in Pemanentmagnet eegten Maschinen Vom Fachbeeich Elektotechnik de Helmut-Schmidt-Univesität Univesität de Bundesweh Hambug zu Elangung des akademischen Gades eines

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Die Theorie von Balassa und Samuelson Warum haben arme Länder im Durchschnitt niedrigere Preisniveaus?

Die Theorie von Balassa und Samuelson Warum haben arme Länder im Durchschnitt niedrigere Preisniveaus? Übung zu Volesung Fotgeschittene Monetäe Ökonomik WS 2005/06 Seite 1 Die Theoie von Balassa und Samuelson Waum haben ame Lände im Duchschnitt niedigee Peisniveaus? Eine gute Dastellung findet sich bei:

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Radioaktivität zum Anfassen - Das Philion-Experimentier-set

Radioaktivität zum Anfassen - Das Philion-Experimentier-set 100. MNU Kongess Regensbug 2009 Radioaktivität zum Anfassen - Das Philion-Expeimentie-set Rudolf GeiPel' Ilenning von PhiliPsbon" I Pivate Realschule Pindl Albecht-Düe-St. I l, 93 I 28 Regenstauf geipel@t-online.de

Mehr

1 Strömungsmechanische Grundlagen 1

1 Strömungsmechanische Grundlagen 1 Stömungsmechanische Gundlagen -i Stömungsmechanische Gundlagen. Eigenschaften von Gasen und Flüssigkeiten.. Fluide.. Extensive und intensive Gößen..3 Zähigkeit und Fließvehalten 4. Bilanzgleichungen 0.3

Mehr