3. Anwendungen der Differentialrechnung

Größe: px
Ab Seite anzeigen:

Download "3. Anwendungen der Differentialrechnung"

Transkript

1 3.1 Kurveutersuchuge mittels der Differetialrechug Aweduge der Differetialrechug 3.1 Kurveutersuchuge mittels der Differetialrechug I diesem Abschitt betrachte wir Fuktioe f: D, welche je ach Bedarf zumidest ei- oder zweimal differezierbar sei möge, ud utersuche de Verlauf des zugehörige Fuktiosgraphe. Zu eier Kurvediskussio zähle u.a. die Feststellug des Defiitiosbereichs D, ggf. Periodizität oder Symmetrie, Bestimmug vo Grezwerte, Nullstelle, Etrema, Mootoie, Wedepukte ud Koveität. Theoretische Grudlage für die im Folgede geführte Beweise ist eie wichtige Eigeschaft differezierbarer Fuktioe: Mittelwertsatz der Differetialrechug: Ist f auf [a,b] differezierbar, da gibt es midestes eie Stelle ξ mit a < ξ < b, sodass f (b f (a f ( ξ =. b a Der Mittelwertsatz, ei für Theorie ud Aweduge gleichermaße wichtiger Satz der Differetialrechug, ist i achsteheder Abbildug veraschaulicht. y y = f( f(a f(b a ξ b (i Mootoie Das Vorzeiche der erste Ableitug f vo f gibt das Mootoieverhalte vo f a: Die Fuktio f ist ämlich auf eiem Teilitervall I D streg mooto wachsed, we f ( >, streg mooto falled, we f ( <, mooto wachsed, we f (,

2 3.1 Kurveutersuchuge mittels der Differetialrechug 34 mooto falled, we f ( für alle I gilt. Beweis: Um de Nachweis für de Fall streg mooto wachsed zu erbrige, wähle wir 1, I mit 1 < ud erhalte mit Hilfe des Mittelwertsatzes der Differetialrechug f( f( 1 = f (ξ( 1 > f( > f( 1, da laut Voraussetzug f (ξ >. Somit ist f streg mooto wachsed, wie behauptet. Beispiel: Für die Fuktio f( = 6 ist f ( = 6 = ( 3, folglich ist f streg mooto falled für < 3 ud streg mooto wachsed für > 3. (ii Etremwerte rel.ma. = abs.ma. y = f( rel.ma. rel. Mi. abs.mi. a 1 b Wir uterscheide relative ud absolute Etremwerte: Eie Fuktio f: D besitzt a der Stelle D ei relatives Maimum, we f( f( i eier Umgebug vo, d.h. für alle mit < δ (für ei δ > gilt. Ist dagege f( f( für alle D, so besitzt f a der Stelle ei absolutes Maimum. Aalog sid relative ud absolute Miima erklärt. Relative Etrema köe mit Hilfe der Differetialrechug wie folgt bestimmt werde: Notwedige Bedigug: Besitzt f ei relatives Etremum i, so ist f ( =. Hireichede Bedigug: Gilt f ( = ud zugleich f ( < (bzw. f ( >, so hat f ei relatives Maimum (bzw. relatives Miimum a der Stelle. Beweis: Besitzt f etwa ei relatives Maimum i, gilt also f( f( i eier Umgebug vo, so folgt Geauso gilt aber auch f ( f ( für < f ( f ( für > f ( f ( f ( = lim f (,.

3 3.1 Kurveutersuchuge mittels der Differetialrechug 35 also muss f ( = gelte. Gilt adererseits f ( = ud f ( <, erhalte wir mit Hilfe der Taylorsche Formel (siehe Abschitt über Vertiefug der Differetial- ud Itegralrechug im 3. Semester f ( = f ( f ( ( f ( ξ (! f ( f ( ξ! + + = + ( Da f (ξ <, falls ξ ahe geug bei liegt, folgt daraus f( f( i eier Umgebug vo, also liegt ei relatives Maimum vo f i vor. Der Nachweis für de Fall eies relative Miimums wird aalog geführt. Beispiel: Für die Fuktio f( = e bereche wir f ( = ( + e ud f ( = ( e. Aus f ( = ergebe sich die mögliche relative Etremstelle 1 = ud =. Wege f ( = > liegt bei 1 = ei relatives Miimum, wege f ( = e < liegt bei = ei relatives Maimum vo f vor. Das relative Miimum ist zugleich absolutes Miimum, de f( = ud f( > für. Ei absolutes Maimum eistiert dagege auf icht, de lim f ( = Bemerkuge:. Die Bedigug f ( = ist otwedig, aber icht hireiched für ei relatives Etremum a der Stelle. So gilt z.b. für die Fuktio f( = 3, dass f ( =, obwohl bei = kei relatives Etremum vorliegt. Aderseits ist die Bedigug f ( =, f ( < hireiched, aber icht otwedig für ei relatives Maimum a der Stelle, wie etwa das Beispiel f( = 1 4 mit = zeigt. Die obe agegebee Bediguge sid klarerweise ur zur Bestimmug relativer Etrema vo differezierbare Fuktioe geeiget, wie das Beispiel f( = verdeutlicht. Absolute Etrema eier Fuktio f köe relative Etrema sei, oder aber sie liege am Rad des Defiitiosbereichs vo f. So fidet ma die absolute Etremwerte eier Fuktio f auf eiem Itervall I = [a, b] uter de relative Etremwerte im Iere des Itervalls oder uter de Fuktioswerte i de Radpukte = a bzw. = b. Beispiel: Betrachte wir ochmals die Fuktio f( = 6, ud zwar auf dem Defiitios- Itervall [; 5]. Das eizige mögliche relative Etremum ergibt sich aus der Bedigug f ( = 6 = ud liegt a der Stelle = 3. Wege f (3 = > liegt tatsächlich ei relatives Miimum vor. Zur Bestimmug der absolute Etremwerte bereche wir de Fuktioswert f(3 = 9 im Miimum, ud vergleiche mit de Werte der Fuktio a de Itervallgreze a = ud b = 5, also f( = ud f(5 = 5. Folglich liegt das absolute Maimum vo f am like Radpukt a =, ud das absolute Miimum fällt mit dem relative Miimum a der Stelle = 3 zusamme..

4 3.1 Kurveutersuchuge mittels der Differetialrechug 36 Beispiel: Wir betrachte eie Eiseker i eier zylidrische Spule vom Radius r. Der Eiseker habe eie kreuzförmige Querschitt Q mit de Abmessuge a ud b (siehe achstehede Abbildug, welche derart zu bestimme sid, dass Q maimal wird. Für de Querschitt Q des Eisekers gilt Q = ab b bzw. mit a = r cosϕ, b = r siϕ Q(ϕ = 8r siϕ cosϕ 4r si ϕ = 4r (siϕ si ϕ = ma!, wobei ϕ π/4. Differeziere ud Nullsetze der erste Ableitug führt zu dq = 4r ( cosϕ siϕ cosϕ = 4r ( cosϕ siϕ =, dϕ woraus taϕ = bzw. ϕ = (1/arcta =,55 (d.s. ca. 3 folgt. Wege d Q d ϕ = 8r ( siϕ cosϕ < für ϕ π/4 besitzt Q i ϕ tatsächlich ei relatives Maimum mit Querschittswert Q(ϕ =,47r. Die Radwerte Q( = ud Q(π/4 = r sid dagege beide kleier als Q(ϕ, so dass a der Stelle ϕ das absolute Querschittsmaimum liegt. Die Abmessuge des optimale Eisekers betrage demach a = r cosϕ = 1,7r ud b = r siϕ = 1,5r. r ϕ b a Beispiel: Ei Moopolist bietet auf eiem Markt ei Produkt a, desse Nachfrage durch die Preis-Absatz-Fuktio p( = 89/( + 1 (p Preis, achgefragte Mege gegebe sei, währed die Herstellugskoste durch die Kostefuktio K( = 1 bestimmt seie. Es ist der Gewi des Moopoliste zu maimiere. Wir bestimme zuächst de Umsatz, d.i. das Produkt vo abgesetzter Mege ud Preis, gemäß U( = p( = 89/( + 1. Werde davo die Koste abgezoge, erhalte wir daraus de Gewi ud usere Optimierugsaufgabe lautet Wir bereche G( = U( K( = 89/( = ma! 89( ( = 1 = 1 = ( + 1 ( + 1 G ud erhalte die quadratische Gleichug ( + 1 = 89 mit de Lösuge 1 = 5 ud = 9. Wege < kommt diese Lösug jedoch icht i Betracht. Wir bereche och

5 3.1 Kurveutersuchuge mittels der Differetialrechug G ( = 3 ( + 1 < ud erkee daraus, dass i 1 = 5 ei relatives Gewimaimum vorliegt. Ei Vergleich des Gewis G(5 = 5 mit de Radwerte G( = ud lim G( = zeigt, dass a der Stelle 1 = 5 das relative ud zugleich absolute Gewimaimum des Moopoliste liegt. (iii Wedepukte ud Koveität Das Vorzeiche vo f ermöglicht die Bestimmug des Krümmugsverhaltes bzw. der Koveität vo f: Die Fuktio f ist ämlich auf eiem Teilitervall I D kove, we f mooto wachsed bzw. f (, ud kokav, we f mooto falled bzw. f ( für alle I gilt. Ferer besitzt f a der Stelle eie Wedepukt, we f ( = ud f (. Wedepukt mit Wedetagete y = f( Kurve uterhalb der Tagete: Rechtskrümmug, kokav Kurve oberhalb der Tagete: Likskrümmug, kove kokav kove Beispiel (Kurvediskussio: Wir wähle f( = e (s.o. ud bereche f ( = ( + e, f ( = ( e ud f ( = ( e. Nullstelle: Die eizige Nullstelle liegt bei (,, de f( = 1 =. Grezwerte: Es ist, wie ma leicht überlegt, lim f ( = ud lim f ( =. Etrema: Aus f ( = ergebe sich die mögliche relative Etremstelle 1 = ud =.

6 3.1 Kurveutersuchuge mittels der Differetialrechug 38 Tatsächlich liegt bei (, ei relatives ud zugleich absolutes Miimum, bei (,4e ei relatives Maimum, ei absolutes Maimum eistiert icht (s.o.. Mootoie: Aus f ( = ( + e folgt f ( > ud damit f streg mooto wachsed für < bzw. für >. Aderseits gilt f ( < ud damit f streg mooto falled für < <. Wedepukte: Wir setze f ( =, d.h = ud erhalte die mögliche Wedestelle 3,4 = ±. Wege f ( 3,4 = Stelle. ± ± e besitzt f wirklich zwei Wedepukte a diese beide Koveität: Das Vorzeiche vo f ( = ( 3 ( 4 e gibt Aufschluss über die Koveität vo f. Für 4 ist f ( ud damit f kove, für 4 3 ist f ( ud f kokav, ud im Fall 3 ist wieder f ( ud f kove. 3. Weitere Aweduge (i Das Differetial Ist eie Fuktio y = f( i differezierbar, so ka f i eier Umgebug vo durch eie lieare Fuktio, ämlich durch die Tagete i approimiert werde. Geht ma u vo zu eier beachbarte Stelle + über, so ädert sich der Fuktioswert vo f um y = f( + f(, der Wert der lieare Näherug um dy = f ( (siehe Abbildug. Für die idetische Fuktio y = gilt atürlich dy = d = 1, weshalb ma statt auch d schreibe ka. Der Ausdruck dy = f ( = f ( d

7 3. Weitere Aweduge 39 heißt Differetial vo y = f( a der Stelle ud gibt de Zuwachs etlag der Tagete im Pukt (,f( a y = f( zwische ud + d a; er ist eie Näherug für y, falls d klei ist: dy y. y Tagete y = f ( y dy = f ( Das Differetial wird i der Fehlerrechug zur Beatwortug folgeder Frage verwedet: Wie wirkt sich ei Fehler eier Größe auf eie vo abhägige Größe y = f( aus? Dieser Fehler ka als absoluter oder als relativer Fehler bestimmt werde: absoluter Fehler: y dy = f (, relativer Fehler: y dy f ( = d. y y y Beispiel: I welche Fehlergreze bewegt sich das Volume eier Kugel, dere Durchmesser gemäß d = 4,5 ±,1 cm gemesse wurde? Das Kugelvolume V i Abhägigkeit vom Durchmesser d beträgt V(d = πd 3 /6, die erste Ableitug lautet V (d = πd /. Zum Messwert d = 4,5 cm ud zur Toleraz d =,1 cm erhält ma somit das Volume V = V(d = 47,71 cm 3 ud de absolute Fehler V dv = V (d d = π 4,5 /,1 = 3,18 cm 3, also V = V ± V = 47,71 ± 3,18 cm 3 bzw. 44,53 cm 3 V 5,89 cm 3. Der relative Fehler vo V beträgt V V dv V V (d = d = V o πd πd 6 d d = 3 3 d ud ist stets dreimal so groß wie der relative Fehler vo d. =,67 = 6,7% (ii Ubestimmte Forme Auf die Frage, wir groß etwa der Ausdruck / sei, gibt es viele Atworte. So gilt z.b.

8 3. Weitere Aweduge 4 si lim = = 1 si 3 lim = = 3 lim lim = = = = Der Ausdruck / ist eie ubestimmte Form, welche im Rahme vo Grezwertberechuge auftritt ud dere Wert icht vo vorherei agegebe werde ka. Weitere ubestimmte Forme sid /,,,, ud 1. Zur Berechug ubestimmter Forme ka folgeder Satz ützlich sei: Regel vo de l Hospital: Sid die Fuktioe f ud g a der Stelle (liksseitig oder rechtsseitig differezierbar, gilt ferer lim f ( = = lim g( ud eistiert lim, so folgt f ( g ( f ( f ( lim = lim. g( g ( Eie aaloge Aussage gilt, falls lim f ( = = lim g(. Beispiele: si cos lim = = lim = cos lim = = lim si = lim cos = 1! lim = = lim =... = lim =, d.h., die Epoetialfuktio e e e e wächst scheller als jede Potez vo. l 1/ lim l = ( = lim = lim = lim( = 1/ 1/ 1 lim(l 1 ist eie ubestimmte Form. Wege wir zuächst l(l 1/(l 1/ lim( 1l(l = lim = lim 1 1 1/( 1 1 1/( 1 1 ud damit lim(l = e = (l ( 1 = lim 1 l 1 = ( 1 l(l e bestimme ( 1 = lim = 1 l + 1 (iii Das Newto-Verfahre Das Iteratiosverfahre vo Newto diet zur Bestimmug der Nullstelle eier differezierbare Fuktio f ud liefert ausgehed vo eiem Startwert eie Folge vo Näherugswerte, 1,,..., welche i der Regel gege eie Nullstele * vo f kovergiert. Dabei ist 1 die Nullstelle der Tagete i a f: y = f( + f ( ( = 1 = f( /f (.

9 3. Weitere Aweduge 41 Ferer ist die Nullstelle der Tagete i 1, usw. (siehe Abbildug. y y = f ( 1 Allgemei gilt f ( + 1 =, =,1,,... f ( Bemerkuge: Offesichtlich muss für jede Näherugswert die Voraussetzug f ( erfüllt sei. Die Kovergez des Verfahres ist jedefalls gesichert, we der Startwert ahe geug bei eier Nullstelle * vo f liegt. Verschiedee Startwerte köe uterschiedliche Nullstelle liefer. Das Newto-Verfahre kovergiert i.a. sehr schell (ma spricht vo quadratischer Kovergez für eifache Nullstelle. Beispiele: f( = e 1: Wir bereche f ( = e 1 ud erhalte damit die Iteratio e =. e 1 Setzt ma =, so folgt 1 = + 1/99 =,1, =,1, usw. Somit lautet eie Nullstelle 1 * =,1. Zum Startwert = 1 higege erhält ma die Iteratiosfolge 1 = 9.4, = 8,14,..., welche gege die zweite Nullstelle * = 6,47 vo f kovergiert. Zur Berechug der Wurzel a (für a + wähle wir die Fuktio f( = a ud gewie damit die Iteratiosformel a 1 a + 1 = = ( +. Das ist die Formel zum sogeate Babyloische Wurzelziehe, ei Verfahre, welches für jede beliebige positive Startwert gege a kovergiert.

2 Differentialrechnung und Anwendungen

2 Differentialrechnung und Anwendungen Differetialrechug ud Aweduge Differetialrechug ud Aweduge Der Begriff des Differetialquotiete hat sich i zahlreiche Aweduge ierhalb ud außerhalb der Mathematik als äußerst fruchtbar erwiese. Bestimmug

Mehr

3. Anwendungen der Differentialrechnung

3. Anwendungen der Differentialrechnung Talorsche Formel ud Mittelwertsatz 4 Aweduge der Differetialrechug Talorsche Formel ud Mittelwertsatz Die Gleichug der Tagete = f ( ( a die Kurve = f( im Pukt (, liefert eie grobe Näherug für die Fuktio

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

6. Differentialrechnung in mehreren Variablen

6. Differentialrechnung in mehreren Variablen 6. Grudbegriffe 6 6. Differetialrechug i mehrere Variable 6. Grudbegriffe I diesem Abschitt werde reelle Fuktioe i Variable betrachtet, d.s. Fuktioe f: D R mit D R, welche jedem Vektor (,..., vo Eiflussgröße

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend FerUNI Hage WS 00/0 Differetialrechug für Fkt. Eier Variable Ziel: Maß für lokale Äderuge eier Fuktio Bei Etscheiduge sid of icht die absolute Koste iteressat, soder vielmehr die Veräderug, die eie Produktio

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

10 Anwendungen der Differential- und Integralrechnung

10 Anwendungen der Differential- und Integralrechnung 0 Aweduge der Dieretial- ud Itegralrechug 0. Relative Extrema Eie Fuktio sei i eier Umgebug des Puktes ξ deiiert. ξ heißt relatives Miimum vo, we es eie Umgebug U vo ξ gibt mit (ξ) ür alle x U. I eiem

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Aufgabe 8.24 Bestimme das Minimum und das Maximum der stetigen Funktion

Aufgabe 8.24 Bestimme das Minimum und das Maximum der stetigen Funktion 58 II. ANALYSIS Aufgabe 8.24 Bestimme das Miimum ud das Maximum der stetige Fuktio f : [ 2,2] R : x 1 2x x 2. Aufgabe 8.25 Überprüfe, ob die folgede Fuktioe f eie Umkehrfuktio besitze ud bestimme diese

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

3.2 Funktionsuntersuchungen mittels Differentialrechnung

3.2 Funktionsuntersuchungen mittels Differentialrechnung 3. Funktionsuntersuchungen mittels Differentialrechnung 46 3. Funktionsuntersuchungen mittels Differentialrechnung In diesem Abschnitt betrachten wir Funktionen f: D, welche je nach Bedarf zumindest ein-

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Musterlösung der Klausur. Analysis I WS 2012/13

Musterlösung der Klausur. Analysis I WS 2012/13 Musterlösug der Klausur Aalysis I WS 202/3 Aufgabe (C) Die Folge ( ) 2N 2 R N sei durch : (2 + 32 )( + 2) 2 3 + 2 2 gegebe Ma utersuche mittels der Recheregel für Kovergez, ob ( ) 2N kovergiert ud bereche

Mehr

Scheinklausur Analysis 1 WS 2007 /

Scheinklausur Analysis 1 WS 2007 / Scheiklausur Aalysis 1 WS 2007 / 2008 08.02.2008 Es gibt 11 Aufgabe ud 1 Zusatzaufgabe. Die jeweilige Puktzahl steht am like Rad. Die Gesamtpuktzahl ist 40 Pukte plus 4 Zusatzpukte. Zum Bestehe der Klausur

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen Prof. Dr. H. Breer Osabrück WS 2014/2015 Aalysis I Vorlesug 20 Kovexe Fuktioe Eie kovexe Teilmege. Eie ichtkovexe Teilmege. Defiitio 20.1. Eie Teilmege T R heißt kovex, we mit je zwei Pukte P, Q T auch

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. 4. Differentialrechnung für Funktionen einer reellen Veränderlichen. wird in Umgebung von x0 D f

Mathematik für VIW - Prof. Dr. M. Ludwig. 4. Differentialrechnung für Funktionen einer reellen Veränderlichen. wird in Umgebung von x0 D f 4. Dieretilrechug ür Fuktioe eier reelle Veräderliche 4. Begri des Dieretilquotiete :D, D wird i Umgebug vo D bzgl. ihrer "Veräderug" utersucht. De. 4. Dieretilquotiet Die i eier Umgebug vo deiierte Fuktio

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden Mathematik I für Naturwisseschafte Dr. Christie Zehrt 7.09.18 Übug (für Pharma/Geo/Bio) Ui Basel Besprechug der Lösuge: 1. Oktober 018 i de Übugsstude Aufgabe 1 Sid die folgede Abbilduge f : X Y umkehrbar?

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Analysis Übungen Hausaufgaben für 4. April

Analysis Übungen Hausaufgaben für 4. April Aalysis Übuge Hausaufgabe für 4. April Reihe sg 1. AN 8.2. c), AN 8.9. a). 2. Beweise die otwedige Bedigug für die Kovergez eier Reihe: we a koverget ist, da lim a = 0. (I der Praxis: we lim a 0, da ist

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Istitut für Techologie KIT) WS 0/3 Istitut für Aalysis 030 Prof Dr Tobias Lamm Dr Patrick Breuig Höhere Mathematik I für die Fachrichtug Physik 8 Übugsblatt Aufgabe Bereche Sie die Ableituge

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Grenzwertberechnungen

Grenzwertberechnungen Katosschule Solothur Grezwertberechuge Grezwertberechuge Grezwertberechuge bei Folge ud Reihe Folge sid Fuktioe; die Begriffe beschräkt ud mooto trete daher auch bei Folge auf. Isbesodere habe sie eie

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Didaktik der Mathematik der Sek II Umkehrfuktioe Ableitugsregel für Umkehrfuktioe (Umkehrregel) Beispiele für die Awedug der Umkehrregel Stetigkeit ud Differezierbarkeit Neuma/Roder Umkehrfuktio Fuktio

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Korrektur 6.06.06:.,3. ; 7.07.06: 3. Name, Vorame: Studiegag: Matrikelummer: 3 4 5 6 Z Pukte Note Klausur zum Grudkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 0.

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Angewandte Differential- und Integralrechnung

Angewandte Differential- und Integralrechnung Agewadte Differetial- ud Itegralrechug. Semester Begleitedes Skriptum zur Vorlesug im Fachhochschul-Studiegag High Tech Maufacturig vo Güther Karigl FH Campus Wie 8 Ihaltsverzeichis Kovergez, Stetigkeit

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Kurvendiskussion. Sei c R. Skizzieren Sie den Graphen von f(x) = 1 + x e 2x.

Kurvendiskussion. Sei c R. Skizzieren Sie den Graphen von f(x) = 1 + x e 2x. Kurvediskussio Vorzeigeaufgabe: Sei c R. Skizziere Sie de Graphe vo fx) = + x e x. HS4 Probeprüfug Aufgabe 5 Bestimme Sie das Miimum ud das Maximum der Fuktio fx) = x 3 + 3x x + 0 auf dem Itervall [ 3,

Mehr

4 Differential- und Integralrechnung in mehreren Variablen

4 Differential- und Integralrechnung in mehreren Variablen 4 Dieretial- ud Itegralrechug i mehrere Variable 8 4 Dieretial- ud Itegralrechug i mehrere Variable Fuktioe i mehrere Variable I diesem Abschitt werde reelle Fuktioe i Variable betrachtet, d.s. Fuktioe

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

3.3 Grenzwert und Stetigkeit

3.3 Grenzwert und Stetigkeit 50 KAPITEL 3. FUNKTIONEN 3.3 Grezwert ud Stetigkeit Wichtige Eigeschafte eier Fuktio f a eier Stelle 0 sid mit ihrem Verhalte bei beliebiger Aäherug a 0 verbude. Eier dieser Eigeschafte ist die Stetigkeit

Mehr

Die Jensensche Ungleichung

Die Jensensche Ungleichung Die Jesesche Ugleichug Has-Gert Gräbe, Uiv Leipzig Februar 1998 1 Kovexe ud kokave Fuktioe Wir betrachte eie stetige Fuktio y = (x), die au eiem oee Itervall ]a, b[ deiiert sei möge Eie solche Fuktio köe

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Monotonie einer Folge

Monotonie einer Folge Mootoie eier Folge 1 E Mootoe Folge We jedes Folgeglied eier Folge größer oder gleich dem vorhergehede Folgeglied ist a 1 a ℕ so et ma die Folge mooto steiged (oder mooto wachsed). Die geometrische Folge

Mehr

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12 FAKULTÄT FÜR MATHEMATIK, CAMPUS ESSEN Prof. Dr. Patrizio Neff 0.04.0 Lösugsvorschlag zur. Hausübug i Aalysis II im SS Hausaufgabe (8 Pute): Bereche Sie für die Futio f : R! R; f() : ep( ) a der Stelle

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Elementare Erfahrungen mit chaotischem Verhalten beim NEWTON-Verfahren

Elementare Erfahrungen mit chaotischem Verhalten beim NEWTON-Verfahren Elemetare Erfahruge mit chaotischem Verhalte beim NEWTON-Verfahre Das NEWTON sche Näherugsverfahre zur äherugsweise Bestimmug der Nullstelle eier stetig differezierbare Fuktio f beruht auf der eifache

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr Christoph Schmoeger Dipl-Math Sebastia Schwarz WS 4/5 45 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Übugsklausur Aufgabe

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Miisterium für Bildug, Juged ud Sport Zetrale Prüfug zum Erwerb der Fachhochschulreife im Schuljahr 6/7 Mathematik B. Mai 7 9: Uhr Uterlage für die Lehrkraft Lad Bradeburg. Aufgabe: Differetialrechug Gegebe

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiegag: Matrikelummer: 4 5 6 Z Pukte Note Prüfugsklausur zum Modul Höhere Mathematik für Igeieure 7. 7. 7, 8. -. Uhr Zugelassee Hilfsmittel: A4-Blätter eigee, hadschriftliche Ausarbeituge aber keie

Mehr

Gebrochenrationale Funktionen

Gebrochenrationale Funktionen Gebrocheratioale Fuktioe Aufgabe Bestimme de Defiitiosbereich der Fuktio f() = ösug: Hier ist der maimale Defiitiosbereich icht R, de im der Neer wird für = Null ud ma würde durch Null teile. Aus diesem

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

6.2 Das Newtonverfahren zur Nullstellenbestimmung. x für k

6.2 Das Newtonverfahren zur Nullstellenbestimmung. x für k 6. Das Newtoverahre zur Nullstellebestimmug Gesucht sid Nullstelle eier ichtlieare stetig di bare Futio :RR, also R mit = 0! Zurücührug des Nullstelleproblems au das izwische beate Fiputproblem. Also gesucht:

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 7..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 5. Übugsblatt Aufgabe

Mehr

2. Grundlagen der Differentialrechnung

2. Grundlagen der Differentialrechnung . Kovergez vo Folge ud Reihe. Grudlage der Differetialrechug. Kovergez vo Folge ud Reihe I diesem Abschitt betrachte wir uedliche Folge reeller Zahle ( ) =,, 3,..., d.s. geau geomme Fuktioe f: Õ, f() =.

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr