Vertrauensintervalle für multiple Vergleiche bei ungleichen Standardfehlern der Differenzen

Größe: px
Ab Seite anzeigen:

Download "Vertrauensintervalle für multiple Vergleiche bei ungleichen Standardfehlern der Differenzen"

Transkript

1 Hans-Peter Pepho Vertrauensntervalle für multple Vergleche be unglechen Standardfehlern der Dfferenzen De vorlegende Arbet stellt en Verfahren vor, mt welchem Vertrauensntervalle für Behandlungsmttelwerte berechnet werden können. Dese ntervalle egnen sch zum multplen Verglech von Mttelwerten. Se können auch be unbalancerten Daten angewendet werden und snd von besonderem Vortel, wenn de Zahl der Behandlungen so groß st, dass ene paarwese Betrachtung aller Dfferenzen unpraktkabel st. Enletung Multple Vergleche snd en sehr häufg angewendetes Verfahren zur Auswertung von Versuchen und Erhebungen. Herbe werden verschedene Behandlungen mtenander verglchen. Angenommen, θ se en zu schätzender Parameter der -ten Behandlung ( =,..., ), bespelswese der Erwartungswert oder en addtver Effekt, und es sollen alle paarwesen Vergleche durchgeführt werden. Herzu können smultane Konfdenzntervalle für de Dfferenzen aufgestellt werden nach θ θ θˆ θˆ ± d ], () ' [ ' ' wobe θˆ de Schätzung von θ st und d ' de halbe ntervallbete der Dfferenz darstellt. Enthält en ntervall den Wert 0, so snd de betreffenden beden Behandlungen ncht sgnfkant vonenander verscheden. De halbe ntervallbrete d ' berechnet sch m allgemenen nach d ' q ' ( θˆ θˆ ) = geschätztevaranz von (2) wobe q ' das Quantl ener geegneten Prüfvertelung st. De Wahl von q ' hängt u.a. davon ab, ob der verglechsbezogene oder der versuchsbezogene Fehler. Art engehalten werden soll (Hochberg und Tamhane, 987; Hsu, 996). Das Zel der vorlegenden Arbet st de graphsche Darstellung der durch de Vertrauensntervalle n () gegebenen nformaton. Herbe soll um jeden Schätzwert en ntervall der Form θ ˆ ± w ] (3) [ gelegt werden, so dass folgende Aussage möglch st: Überlappen sch de ntervalle zweer Behandlungen, so snd dese Behandlungen ncht sgnfkant vonenander verscheden (vgl. Abb.). Ene solche Darstellung st den paarwesen Vertrauensntervallen für alle Dfferenzen () vorzuzehen, da anstelle von ( )/2 ntervallen ledglch ntervalle zu betrachten snd. Es sollte an deser Stelle ausdrücklch darauf hngewesen werden, dass de n deser Arbet dskuterten ntervalle der Form n (3) ausschlesslch zur Beurtelung von ' Mttelwertdfferenzen, ncht aber der Mttelwerte θ selbst herangezogen werden können. 2 Methode Das n der Enletung beschrebene Vorgehen zur Berechnung von Vertrauensntervallen der Dfferenzen () glt ganz allgemen, nsbesondere für das lneare Modell (LM), das lneare gemschte Modell (LMM) und das generalserte lneare Modell (GLM). Zur Enhaltung des verglechsbezogenen Fehlers wrd für das LM en t-quantl für q ' gewählt. Für das LMM st en approxmatves ntervall baserend auf der t-vertelung (Gesbrecht und Burns, 985) oder der Standardnormalvertelung möglch. Für das GLM st q ' das Quantl der Standardnormalvertelung (McCullagh und Nelder, 989). Be Überdsperson st das Quantl ener t- Vertelung vorzuzehen (McCullagh, 983). Tests m GLM snd mest nur approxmatv gültg. De Enhaltung des versuchsbezogenen Fehlers. Art für LM, LMM und GLM st m allgemenen mt Hlfe der Unglechung von Bonferron möglch. m LM können alternatv de Unglechung von Sdak (Hsu, 996) oder das Smulatonsverfahren von Edwards und Berry (987) verwendet werden. n engen Fällen snd m LM spezelle Verfahren verfügbar we z.b. de Tukey-Kramer Prozedur für de unbalancerten enfaktore l- len Varanzanlyse. Nun zur Berechnung der Vertrauensntervalle (3). m varanzbalancerten Fall, also wenn de geschätzte Varanz von θˆ ˆ θ ' konstant für alle Vergleche st und somt d ' = d, so wählen wr enfach w = 0.5d. Hermt werden alle Vergle - che exakt abgebldet. m unbalancerten Fall st dagegen ledglch ene konservatve Lösung möglch (Hochberg et al., 982). Wr wählen w unter den Nebenbedngungen w + w ' d ' für alle ' und (4) w 0 (5) De Nebenbedngung (4) stellt scher, dass de ntervalle de vorgegebene rrtumswahrschenlchket konservatv enhalten. De w werden nun so gewählt, dass de ntervalle möglchst klen snd, dabe aber (4) und (5) engehalten werden. Zur Wahl von w gbt es zwe verschedene, relatv 54

2 ähnlche Vorschläge (Hochberg et al., 982; Hochberg und Tamhane, 987): Mnmere ( w + und (6) Mnmere = + w ' ) ( w + w ' ) / d' = +, (7) jewels unter den Nebenbedngungen (4) und (5). Bede Anwesungen snd Spezalfälle der Anwesung Mnmere ( w + w' ) /( d' ) = + φ (φ 0), (8) welche m folgenden verwendet wrd. Herbe st φ en Parameter, dessen Wert durch Proberen so zu wählen st, dass alle Sgnfkanzen abgebldet werden können. Es gbt n der Regel vele Werte für φ, de dese Bedngung erfüllen. Allerdngs kann auch der Fall entreten, dass ken Wert für φ ene Darstellung aller Sgnfkanz erlaubt. n anderen Worten, es st möglch, dass de ntervalle für zwe Behandlungen überlappen, obwohl dese Behandlungen sgnfkant verscheden snd. Des trtt vor allem n solchen Fällen auf, n denen der betreffende Verglech an der Sgnfkanzgrenze st. Für enen gegebenen Wert von φ stellt de Anwesung (8) en klasssches Problem der lnearen Optmerung dar, für das als Standardlösung der Smplex-Algorthmus zur Verfügung steht (Bronsten, 989). Wr verwenden her de SAS/ML Subroutne LNPROG (SAS nsttute, 989, S. 38ff.) zur Lösung von (8). Man beachte, dass wr durch de Vertrauensntervalle (3) mplzt de halbe ntervallbrete approxmeren durch d ' (w + w ' ) (9) Wegen der Nebenbedngung (4) snd de ntervalle n der Regel konservatv, also breter als zur Enhaltung der rrtumswahrschenlchket notwendg. m varanzbalancerten Fall glt d ' = w + w ', so dass ken Approxmatonsfehler vorlegt und de rrtumswahrschenlchket exakt engehalten wrd. 3 Bespel Zur Erläuterung der Methode verwenden wr ene unbalancerte Sere von Versuchen mt Trtcale (vgl. auch Pepho, 2000). De Enzelversuche waren als Blockanlage ausgelegt. Von den nsgesamt = 560 möglchen Ko m- bnatonen Sorte Jahr Ort Block wurden nur 96 beobachtet, so dass de Daten stark unbalancert snd. Zur Auswertung wurde das folgende gemschte Modell mt der SAS Prozedur MXED angepasst (zufällge Terme unterstrchen): Ertrag = Sorte + Jahr + Ort + Sorte*Ort + Sorte*Jahr + Jahr*Ort + Sorte*Ort*Jahr + Block(Ort*Jahr) + Fehler (0) Es wurde en multpler t-test zum verglechsbezogenen Nveau α = 5% durchgeführt. De Frehetsgrade wurden nach Gesbrecht und Burns (985) approxmert. De generalserten Klenstquadrat-Mttelwerte snd n Tab. aufgeführt. Es stellte sch heraus, dass be Anwendung von (8) mt φ = 0 und φ = de Sgnfkanz der Dfferenz von C52 und C78 verloren geht, ncht aber mt φ = 0,5. Daher wrd her φ = 0,5 verwendet. De paarwesen Vergleche fnden sch n Tab.2. De approxmatven ntervalle (3) snd n Abb. wedergegeben. De Summe der approxmerten halben ntervallbreten st ( w + = + w ' ) = 220, während de Summe der tatsächlchen ntervallbreten gegeben st durch = + d ' = 75. Somt st de Approxmaton als relatv gut zu bezechnen. m Enzelfall kann de Dskrepanz aber recht deutlch ausfallen. De größte Abwechung zwschen d ' und w + w ' ergbt sch für den Verglech C7 vs. C0 (d ' = 8,99; w + w ' = 24,44). Der "reale α-wert", d.h. derjenge α-wert, für den der berechnete Wert für d ' der approxmatven halben ntervallbrete w + w für das nomnale α entsprechen würde, beträgt her 0,04 statt des nomnalen Nveaus von 0,050 (Tab.2), so dass das ntervall relatv konservatv st. Für de anderen Vergleche st das reale α zum größten Tel deutlch näher am nomnalen Wert, so dass der Verlust an Trennschärfe gernger ausfällt, und für vele Vergleche snd reales und nomnales α sogar dentsch. Trotz des mt der Approxmaton enhergehenden nformatonsverlustes können alle Sgnfkanzen abgebldet werden. Abb. st m.e. ener paarwesen Betrachtung aller 3 2/2 = 78 (!) ntervalle oder Tests für Dfferenzen (Tab.2) vorzuzehen. C99 C79 C78 C70 C67 C65 C58 C55 C52 C38 C0 C7 C Mttelwert (dt/ha) Abb.: Vertrauensntervalle um Mttelwerte (dt/ha) der Sorten des Trtcale-Datensatzes zur Beurtelung von Mttelwertdfferenzen [Behandlungen, deren ntervalle sch überlappen, snd ncht sgnfkant vonenander verscheden (α = 5%, verglechsbezogen). Es geht kene sgnfkante Dfferenz be deser Darstellung verloren. φ = 0,5.]. 55

3 Tab.: Generalserte Klenstquadratschätzungen der Sortenmttelwerte (dt/ha) der Trtcale-Daten. Sorte Mttel 4 En SAS Macro Standardfehler C55 97, 6,89 a C65 86,6 7,27 a b C79 86,2 8,3 a b C70 85,2 7,27 b C58 84,7 7,5 b C67 84,2 7,5 b C52 80,6 6,96 b Grupperung* C0 78,0 9,84 b c d C38 77,3 6,67 b c C7 76,8 9,84 b c d C2 76,6 7,30 b c d C78 65, 8,73 c d C99 60,3 9,70 d *: Behandlungen, de mt demselben Buchstaben versehen snd, snd ncht sgnfkant vonenander verscheden. Vergleche mt t- Test (α = 5% verglechsbezogen) und Frehetsgraden nach Gesbrecht und Burns (985). Buchstabendarstellung nach Pepho (2000). ch habe en SAS Macro geschreben, welches das her beschrebene Verfahren für LM und LMM mt Hlfe der des Modules ML umsetzt. Das Macro wrd unter verfügbar gemacht. Es verwendet Output der SAS Prozedur MXED (Verson 6.2) und st we folgt defnert: %macro mcagraph(dff=, lsmean=, error='comp', alpha=0.05, ph=0); De Date dff enthält de paarwesen Vergleche we se mt Hlfe der 'Dffs' Tabelle von MXED (MAKE Anwesung) erhalten werden kann. De Date lsmean enthält de Behandlungsmttelwerte und wrd über de 'LsMeans' Tabelle von MXED erzeugt (MAKE Anwesung). De Varable error gbt vor, ob der verglechsbezogene Fehler. Art (error='comp'; Vorenstellung) oder der versuchsbezogene Fehler. Art (error='exp') mt Hlfe der Bonferron- Unglechung kontrollert werden soll. De Varable alpha gbt den α-fehler vor (Vorenstellung α = 0.05). Der Parameter φ des zu mnmerenden Krterums (8) wrd durch de Varable ph festgelegt (Vorenstellung φ = 0). Für das Trtcale-Bespel benötgen wr de Daten n enem Datensatz mt den Varablen sorte, ort, jahr, block und ertrag mt ener offenschtlchen Belegung deser Bezechnungen. Zunächst wrd das Macro verfügbar gemacht (Macro n den Edtor laden und 'abschcken' oder de %NCLUDE Anwesung verwenden). Dann werden de Daten mt der Prozedur MXED durch untenstehende Anwesungen ausgewertet: data temp; nput sorte ort jahr block ertrag; cards; <Daten> ; proc mxed data=temp; class sorte ort jahr block; model ertrag=sorte/ddfm=satterth; random jahr ort jahr*ort sorte*jahr sorte*ort sorte*ort*jahr block(ort*jahr); lsmeans sorte/pdff; make 'dffs' out=dff; make 'lsmeans' out=lsmean; run; Abschlessend wrd das Macro we folgt aufgerufen: %mcagraph(dff=dff, lsmean=lsmean, error= 'comp', alpha=0.05, ph=0.5); Der Output enthält zum enen de Mttelwerte (_LSMEAN_) und Vertrauensntervalle (_LOWER_, _UPPER_): lsmeans wth confdence lmts SORTE _LSMEAN LOWER UPPER_ Zum anderen werden de 'verlorenen' sgnfkanten Dfferenzen (_DFF_) mt Überschretungswahrschenlchket des t-tests (_PT_) ausgegeben. Mt φ = 0,5 ergbt sch kene verlorene Sgnfkanz. Mt φ = 0 dagegen erhalten wr ene verlorene Sgnfkanz: lost sgnfcances SORTE _SORTE _DFF PT_ Da das Macro Output der SAS Prozedur MXED verwendet (SAS nsttute, 997), st es für LM und LMM geegnet. Zur Anwendung be GLM muss zuvor en SAS-Datensatz erstellt werden, welcher de nformaton über de paarwesen Vergleche m selben Format we de 'Dffs' Tabelle von MXED enthält. Auch de Sorterung der Vergleche muss sch an dese Tabelle anlehnen. De paarwesen Vergleche können z.b. mt der CONTRAST Anwesung n der Prozedur GENMOD (SAS nsttute, 997) durchgeführt werden. 56

4 57

5 5 Abschleßende Bemerkung De graphsche Darstellung von Konfdenzntervallen für Mttelwertdfferenzen hat den Vortel der Überschtlchket und der Möglchket, neben den Sgnfkanzen auch de Genaugket der Schätzungen von Mttelwertdfferenzen darstellen zu können. En Nachtel besteht n der Enbusse von Trennschärfe be unbalancerten Daten. Als Alternatve für ene kompakte graphsche Darstellung kommt de Buchstabendarstellung n Frage, welche auch m unbalancerten Fall mmer ene Abbldung aller Sgnfkanzen erlaubt (Pepho, 2000). Allerdngs kann dese Darstellung be ener großen Zahl von Mttelwerten unüberschtlch werden. Außerdem lefert de Buchstabendarstellung m Gegensatz zu den her vorgestellten ntervallen kene Aussage über de Genaugket der Mttelwertdfferenzen. 6 Danksagung ch danke Frau PD Dr. M. Karpensten-Machan (nsttut für Nutzpflanzenkunde, Unverstät-Gesamthochschule Kassel) sowe den betelgten Landesanstalten und Landwrtschaftskammern für de Trtcale Daten. Außerdem bedanke ch mch be Herrn Dpl. ng. agr. V. Mchel (Landesforschungsanstalt für Landwrtschaft und Fschere Mecklenburg-Vorpommern, Gülzow) sowe den Gutachtern für hlfreche Kommentare. 7 Lteratur BRONSTEN,.N., Semendajew, K.A. (989): Taschenbuch der Mathematk. Thun, Frankfurt/Man. EDWARDS, D.G., Berry, J.J. (987): The effcency of smulaton-based multple comparsons. Bometrcs 43, GESBRECHT, F.G., Burns, J.C. (985): Two-stage analyss based on a mxed model: large-sample asymptotc theory and small-sample smulaton results. Bometrcs 4, Hochberg, Y., Tamhane, A. (987): Multple comparson procedures. Wley, New York. HOCHBER, G.Y., Wess, G., Hart, S. (982): On graphcal procedures for multple comparsons. Journal of the Amercan Statstcal Assocaton 77, HSU, J.C. (996): Multple comparsons. Theory and methods. Chapman and Hall, London. MCCULLAGH, P. (983): Quas lkelhood functons. Annals of Statstcs, MCCULLAGH, P., Nelder, J. (989): Generalzed lnear models. 2nd edton. Chapman and Hall, London. PEPHO, H.-P. (2000): Multple treatment comparsons n lnear models when the standard error of a dfference s not constant. Bometrcal Journal (m Druck). SAS nsttute, nc. (989): SAS/ML software: usage and reference, verson 6, frst edton. SAS nsttute, Cary. SAS nsttute, nc. (997): SAS/STAT software: changes and enhancements through release 6.2. SAS nsttute, Cary. Vertrauensntervalle für multple Vergleche be unglechen Standardfehlern der Dfferenzen (H.-P. Pepho) Zusammenfassung Paarwese Vergleche von Behandlungen m lnearen Modell können mt Hlfe smultaner Vertrauensntervalle für alle Dfferenzen durchgeführt werden. Be ener sehr großen Zahl von Behandlungen st de Zahl der zu betrachtenden ntervalle so groß, dass ene nterpretaton schwerg bs unmöglch wrd. Daher betet sch als Alternatve de Berechnung von Vertrauensntervallen um de Behandlungsmttelwerte an, welche zum paarwesen Verglech herangezogen werden können. Be Konstanz der Standardfehler der Mttelwertdfferenzen st ene solche Darstellung ohne nformatonsverlust möglch. Be unbalancerten Standardfehlern/Varanzen st dagegen ene Approxmaton notwendg, und es st en gewsser nformatonsverlust unvermedbar. Dennoch snd de erhaltenen graphschen Darstellungen n der Regel ener paarwesen Betrachtung aller Vergleche vorzuzehen. Stchworte: Vertrauensntervall, multple Vergleche, t-test, unbalancerte Daten, lneare Optmerung, Smplex Algorthmus. Confdence ntervals for multple comparsons n case of non-constant standard errors of a dfference (H.-P. Pepho) Summary Parwse treatment comparsons n the lnear model can be performed usng smultaneous confdence ntervals for all dfferences. Ths approach becomes nfeasble wth a large number of treatments. An alternatve s to compute confdence lmts around the treatment means amenable to parwse comparsons. When the standard error of a dfference s constant, such ntervals can be computed wthout loss of nformaton. n case of varance mbalance an approxmaton s necessary, and some loss of nformaton s unavodable. Nevertheless, the resultng graphcal dsplays are usually preferable to a lne-by-lne dsplay of all parwse comparsons. Key words: Confdence nterval, multple comparsons, t- test, unbalanced data, lnear programmng, smplex algorthm. PD Dr. sc. agr. Hans-Peter Pepho st Hesenberg-Stpendat der DFG und arbetet zur Zet als Bometrker am nsttut für Nutzpflanzenkunde (NK), Unverstät Gesamthochschule Kassel (Stenstrasse 9, 3723 Wtzenhausen, emal: pepho@wz.un-kassel.de). 58

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

ANOVA (Analysis of Variance) Varianzanalyse. Statistik Methoden. Ausgangssituation ANOVA. Ao.Prof.DI.Dr Josef Haas

ANOVA (Analysis of Variance) Varianzanalyse. Statistik Methoden. Ausgangssituation ANOVA. Ao.Prof.DI.Dr Josef Haas Ao.Prof.DI.Dr Josef Haas josef.haas@medungraz.at ANOVA (Analyss of Varance) Varanzanalyse Statstk Methoden Verglech von Mttelwerten Ao.Unv.Prof.DI.Dr. Josef Haas josef.haas@medungraz.at Ausgangsstuaton

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren Mehrfachregresson: Enfluss mehrerer Merkmale auf en metrsches Merkmal Desgnmatrx Bestmmthetsmaß F-Test T-Test für enzelne Regressoren Mehrfachregresson Bvarat: x b b y + = 0 ˆ k k x b x b x b b y + + +

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alternatve Darstellung des -Stchprobentests für Antele DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Response No Response Total absolut DCF 43 68 111 CF 6 86 11 69 154

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 8. Übung (08.01.2008) Agenda Agenda Verglech Rasch-Modell vs. 2-parametrsches logstsches Modell nach Brnbaum 2PL-Modelle n Mplus Verglech

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Klausur zur Vorlesung Lineare Modelle SS 2006 Diplom, Klausur A

Klausur zur Vorlesung Lineare Modelle SS 2006 Diplom, Klausur A Lneare Modelle m SS 2006, Prof. Dr. W. Zucchn 1 Klausur zur Vorlesung Lneare Modelle SS 2006 Dplom, Klausur A Aufgabe 1 (18 Punkte) a) Welcher grundsätzlche Untersched besteht n der Interpretaton von festen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y 5. Probt-Modelle Ökonometre II - Peter Stalder "Bnar Choce"-Modelle - Der Probt-Ansatz Ene ncht drekt beobachtbare stochastsche Varable hängt von x ab: x u 2 u ~ N(0, ( Beobachtet wrd ene bnäre Varable

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Das Cutting Stock-Problem

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Das Cutting Stock-Problem 1 Problem Technsche Unverstät München Zentrum Mathematk Dskrete Optmerung: Fallstuden aus der Praxs Barbara Wlhelm Mchael Rtter Das Cuttng Stock-Problem Ene Paperfabrk produzert Paperrollen der Brete B.

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Nichtparametrische Statistik. Verteilungsfreie Tests. Nichtparametrische Statistik. Verteilungsfreie Tests. Parametrische und Nichtparametrische Tests

Nichtparametrische Statistik. Verteilungsfreie Tests. Nichtparametrische Statistik. Verteilungsfreie Tests. Parametrische und Nichtparametrische Tests TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Nchtparametrsche Statstk Vertelungsfree Tests Bometrsche und Ökonometrsche Methoden II SS

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3)

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3) Kaptel 5: Inferenz m multplen Modell 5 Inferenz m multplen Modell 5. Intervallschätzung m multplen Regressonsmodell Analog zum enfachen Regressonsmodell glt: Dem Intervallschätzer der Parameter legt zugrunde,

Mehr

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 =

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 = Hochschule Harz Fachberech Automatserung und Informatk Prof. Dr. T. Schade Ft for Ab & Study - Aprl 2014 Lösungen zu den Aufgaben zu elementarer Wahrschenlchketsrechnung 1. a 12 11 10 9 = 33 = 0.102 20

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell Kaptel : Das enfache Regressonsmodell - Das enfache Regressonsmodell. En ökonomsches Modell Bespel: De Bezehung zwschen Haushaltsenkommen und Leensmttelausgaen Befragung zufällg ausgewählter Haushalte

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden.

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden. Stoffwerte De Stoffwerte für de enzelnen omponenten raftstoff, Luft und Abgas snd den verschedenen Stellen aus den Lteraturhnwesen zu entnehmen, für enge Stoffe sollen jedoch de grundlegenden Zusammenhänge

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

Multivariate Analysemethoden

Multivariate Analysemethoden Multvarate Analysemethoden q-q-plot Methode zur Prüfung der Multvaraten Normalvertelung Günter Menhardt Johannes Gutenberg Unverstät Manz Prüfung der NV-Annahme Vertelungsanpassung/Prüfung Prüfung der

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Automotive Auswertung der Betriebserfahrung zum Zuverlässigkeitsnachweis sicherheitskritischer Softwaresysteme. S. Söhnlein, F.

Automotive Auswertung der Betriebserfahrung zum Zuverlässigkeitsnachweis sicherheitskritischer Softwaresysteme. S. Söhnlein, F. Auswertung der Betrebserfahrung zum Zuverlässgketsnachwes scherhetskrtscher Softwaresysteme Unverstät Erlangen-Nürnberg Unverstät Erlangen-Nürnberg Sete 1 Glederung Motvaton Grundlagen des statstschen

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik Grundlagen sportwssenschaftlcher Forschung Deskrptve Statstk Dr. Jan-Peter Brückner jpbrueckner@emal.un-kel.de R.6 Tel. 880 77 Deskrptve Statstk - Zele Beschreben der Daten Zusammenfassen der Daten Überblck

Mehr

Konzept der Chartanalyse bei Chart-Trend.de

Konzept der Chartanalyse bei Chart-Trend.de Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Konzept der Chartanalyse be Chart-Trend.de Konzept der Chartanalyse be Chart-Trend.de... Bewertungsgrundlagen.... Skala und Symbole.... Trendkanalbewertung.... Bewertung

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Menhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzet nach Verenbarung und nach der Vorlesung. Mathematsche und statstsche Methoden II Dr. Malte Perske perske@un-manz.de

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastk, 11.5.13 Wr gehen stets von enem Maßraum (, A, µ) bzw. enem Wahrschenlchketsraum (,A,P) aus. De Borel σ-algebra auf R n wrd mt B n bezechnet, das Lebesgue Maß auf R n wrd mt

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechank 3.6. In desem Grundversuch zur Mechank werden dre verschedene Arten von Pendeln untersucht. Das Reversonspendel, das Torsonspendel und gekoppelte Pendel. A. Das Reversonspendel

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

2.1 Einfache lineare Regression 31

2.1 Einfache lineare Regression 31 .1 Enfache lneare Regresson 31 Regressonsanalyse De Regressonsanalyse gehört zu den am häufgsten engesetzten multvaraten statstschen Auswertungsverfahren. Besonders de multple Regressonsanalyse hat große

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr