Grundlagen der Biostatistik und Informatik

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Biostatistik und Informatik"

Transkript

1 Aalyiche Saiik Grudlage der Bioaiik ud Iformaik Saiiche Schäzuge, Kofidez, Sigifikaz Populaio N uedlich Sichprobe edlich dr. Lázló Smeller 1 Theoreiche Vereilug Erwarugwer Theoreiche Sreuug Häufigkeivereilug Durchchi Sadardabweichug Repräeaiviä der Sichprobe Quoeichprobe Die gleiche Vereilug für wichige (bekae) Variable i der Sichprobe wie i der Grudgeamhei (z. B. Aler, Gechlech, ) Problem: Sozio-demographiche ud pychologiche, uw. Merkmale id of ich beka (Vereilug ud Relevaz). Zufallichprobe Zufällig augewähle Elemee der Grudgeamhei Problem mi der Repräeaiviä, z.b.: 50:50 Mäer ud Fraue komm mi 8 Wahrcheilichkei vor. (iehe Biomiale Vereilug) Aufgabe der Schäzheorie Au eier Sichprobe Schäzwere für Wahrcheilichkei Erwarugwer Sreuug oder adere Parameer eier Vereilug zu ermiel. Type der Schäzuge: Pukchäzug Iervallchäzug 3 4

2 Pukchäzuge Pukchäzuge Wir wolle jez die Parameer eier Vereilug (,) au de kokree Were 1,... eier Sichprobe möglich gu beimme, d.h. eie Näherugwer erreche. Krierie: Erwarugreue Erwarugwer der (uverzerr) Schäzwere zu chäzeder Parameer Koiez beere Schäzug Effiziez (wirkam) kleie Sreuug Ehauiviä berückichig alle (erchöpfed) Iformaioe 5 Der Parameer wird mi eiem Wer gechäz. Relaive Häufigkei i ei Schäzwer für die Wahrcheilichkei Siehe Defiiio der aiiche Wahrcheilichkei! 6 Durchchi i ei Schäzwer für de Erwarugwer Sadardabweichug i ei Schäzwer für die Sreuug Pukchäzuge Iervallchäzuge Iervallchäzug oder Kofidezchäzug* gib zu eier vorgewähle Sicherheiwahrcheilichkei γ, (Kofideziveau) ei Iervall (c 1,c ) a, i dem der ubekae Parameer (zb. oder ) mi eier Wahrcheilichkei vo midee γ lieg. Pukchäzuge age ich über die Geauigkei bzw. Sicherhei der Schäzug 7 c 1 c Zb.: Erwarugwer der Pulzahl i bei Kofideziveau: 74±6 1 / Mi *Kofidez (Laei): Verraulichkei 8

3 Iervallchäzuge Wie große γ (Kofideziveau) oll gewähl werde? Wie groß id die Schade bei eier falche Schäzug? Sozialwiechaf γ0,9 Medizi γ0,95 Techik γ0,99 Eiflu der Sreuug ud de Sichprobeumfage Kofideziervall für de Erwarugwer bei bekaer Sreuug 1. Nehme wir a, da die Variaz (ud dami die heoreiche Sreuug) beka i. Gedakeveruch: Sei eie Zufallgröße (zb: Pulzahl) mi eier beliebige Vereilug mi eiem Erwarugwer ud eier Sreuug. Nehme wir jez viele Sichprobe (zb: viele Sudeegruppe), alle mi gleichem Sichprobeumfag. Sei i der Durchchi der i-e Sichprobe Wie ieh die Vereilug vo Were au? Zeraler Grezweraz: bei geüged hohem i die Vereilug eie Normalvereilug. Lage ( ) ud Breie ( ) der Vereilug der Durchchiwere? α1-γ Irrumwahrcheilichkei (Sigifikaziveau) 9 10 i Zur Erierug: Kofideziervall für de Erwarugwer die Durchchiwere reue um de Dae ud ihre Durchchiwere die Dae reue um de Durchchiwer Pulfrequeze (1/Mi) zb:pulzahl Sreuug? Erwarugwer 11 1 f() + f( )? zb: durchchiliche Pulzahl i eier Sudeegruppe vo Sudee

4 Vereilug vo Durchchi der Zufallgröße Kofideziervall für de Erwarugwer Sei 1 ud id uabhägige Zufallgröße. Beide folge eier Normalvereilug mi derelbe Erwarugwere ud Sreuuge. Welche Vereilug folg der Durchchi ( 1 + )/? Normalvereilug, mi de folgede Parameer: f() Mewere Summe Durchchi Allgemei für Mewere 1, 1 + ( 1 + )/ ( )/ f( ) zb:pulzahl Sreuug? / / 13 zb: durchchiliche Pulzahl i eier Sudeegruppe vo Sudee 14 Kofideziervall für de Erwarugwer Kofideziervall für de Erwarugwer f( ) i i + i + we + da i lieg mi Wahrcheilichkei im Iervall + + i i i i oder + i i oder i + Wahrch. Wahrch Wahrch. 5 Wahrch. 16 f( ) i + i i + i lieg mi Wahrcheilichkei im Iervall + d.h. +

5 Kofideziervall für de Erwarugwer Kofideziervall für de Erwarugwer We die heoreiche Sreuug beka i, da ka da Iervall (Kofideziervall), + agegebe werde, i dem der Erwarugwer () mi Wahrcheilichkei lieg. Eie ähliche Herleiug gib: i -mi 68 Wahrcheilichkei im Iervall:, + -- mi 99,7 Wahrcheilichkei im Iervall: 3, + 3 Je größer die i Sicherheiwahrcheilichkei, deo zb: Eie Machie herell Tablee, je mi eiem vorgechriebee Wirkoffgehal vo 0 mg. Der Wirkoffgehal vo 10 Tablee wurde gemee. Der Durchchi beräg 18,9 mg. Au eier frühere Meug i e beka, da die Sreuug de Wirkoffgehal 1,6 mg i. Gebe Sie da zur Sicherheiwahrcheilichkei gehörede Kofideziervall a! (17,9 mg 19,9 mg) I diee Machie gu eigeell? Mi eier ehr lage Me-Serie habe wir der Erwarugwer ud die heoreiche Sreuug der Bluzuckerkozeraio beimm. Jez wird die Bluzuckerkozeraio i 40 Sudeegruppe beimm. Wir beimme da Kofideziervall für jede Gruppe. Wieviele Kofideziervalle ehale de Erwarugwer? breier i da Kofideziervall! Kofideziervall für de Erwarugwer bei ubekaer Sreuug. Am häufige i ich beka. Wie ka ma da Kofideziervall bereche? Weil die Sadardabweichug eie Pukchäzug der Sreuug i: Kofideziervall für de Erwarugwer Lieg aächlich mi Wahrch. im i, i + Bereich? + lieg mi Wahrcheilichkei im Bereich. Sadardfehler, + ± i al da zu Kofideziveu (Wahrch.) gehörede Kofideziervall gea. Bemerkug: we da 0 Die Ugeauigkei erhöh ich mi der Schäzug der Sreuug i Die Schäzug i i beoder grob, we der Sichprobeumfag () klei i. i i i + i + Da Kofideziervall mu vergrößer werde!

6 Kofideziervall für de Erwarugwer Bei bekaem folg eie Sadard-Normalvereilug: G() Bei ubekaem aber bekaem folg eie -Vereilug: Kofideziervall für de Erwarugwer G() - 0 Zu W.: < < < < + 1 < > + < < < 5 < 5 < 5 5 < 5 < + 5 > < < + 5 Kofideziervall für de Erwarugwer G() Sa Normalvereilug, habe wir eie -Vereilug. Sa müe wir die -Were der -Vereilug awede. ± ± 5 3 Die -Tabelle: -1 Kofideziervall für de Erwarugwer Freiheigrad uedlich Sigifikaziveau (1-γ) ,3,3 lieg i ± 5 mi Wahrcheilichkei 4

7 Kofideziervall für de Erwarugwer Bedeuug der Kofidez Mi Ecel: TINV(Wahrcheilichkei;Freiheigrad) z.b.: 1-γ ,3,3 TINV(0,05,8),30601,3 lieg i ± 5 mi Wahrcheilichkei 18 / 9 6 z.b / Mi, 18 1 / Mi, 9 1 / Mi 74±14 1 5,3 / Mi W. 5 Pr.Buch Abb Zuammefaug der Schäzuge Beimmug de Sichprobeumfage Pukäzuge: Grudgeamhei Sichprobe _ Iervallchäzuge 1. i beka: ±. i ubeka: Grob: Geau: ± ± 5 7 Welcher Sichprobeumfag i owedig zu eier beimme Geauigkei? (z.b.: Körperhöhe mi ±1cm Geauigkei bei Kofideziveau) 1cm 0,5 cm? ka au eier kleiere Sichprobe gechäz werde. Z.B.: Körperhöhe i eier Sudeegruppe (0 S.): 8,3 cm 8.3 cm 0.5 cm 76 8

8 Kofideziervall für Quoiee Zwei Möglichkeie: (E/E, z.b.: Raucher/Nichraucher) Biomialvereilug E komm mi Wahrcheilichkei p vor. Sichprobeumfag: p wird au der relaive Häufigkei gechäz: p E / Sreuug der Biomialvereilug: Aalog zu ±/ p ± p (1-p)/ Kofideziveau zb.: 0 Raucher au 100 0,± 0, 0,8/100 0, ± 0,08 9

Hypothesenprüfungen II.

Hypothesenprüfungen II. Grudlage der Bioaiik ud Iformaik Hypoheeprüfuge II. Zwei Sichprobe -Te, F-Te, Bediguge der Awedug der -Tee Variazaalye Lázló Smeller Widerholug: Grudprizip der Hypoheeprüfuge Zu echeidede Frage Idireker

Mehr

Schätzungen und Hypothesenprüfungen Schätzungen Hypothesenprüfungen Typische Entscheidungsfragen in der Medizin Die Alternativhypothese

Schätzungen und Hypothesenprüfungen Schätzungen Hypothesenprüfungen Typische Entscheidungsfragen in der Medizin Die Alternativhypothese Hypoheeprüfuge. Zweiichprobe -Te, F-Te, Variazaalye Schäzuge ud Hypoheeprüfuge Schäzuge Wie gro i eie Gröe? Pukchäzuge ei Wer i gegebe ud ich über die Sicherhei Parameer der Sichprobe Parameer der Populaio

Mehr

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich Aalyche Sak Zur Ererug Sache Schäzuge ( Forezug) Populao N = uedlch Theoreche Verelug Erwarugwer Theoreche Sreuug Schprobe = edlch Häufgkeverelug Durchch Sadardabwechug Aufgabe der Schäzheore Zur Ererug

Mehr

Statistische Schätzungen

Statistische Schätzungen Statitiche Schätzuge Statitiche Schätzuge, Ei Wiechaftler mu geau mee, icht chätze! Da it aber eie wiechaftliche Schätzug! Lázló Smeller? (8,5±1,5) cm Aalytiche Statitik (iduktive o. chließede Statitik)

Mehr

2.3 Schätzeigenschaften der OLS-Methode

2.3 Schätzeigenschaften der OLS-Methode .3 Schäzeigechafe der OLS-Mehode Jede Schäzmehode wei beimme Güeeigechafe auf, die vo der Erfüllug beimmer Vorauezuge abhäge. Wa die gewöhliche Mehode der kleie Quadrae (OLS-Mehode) beriff, id beimme Schäzeigechafe

Mehr

Vergleich der Schätzungen und Hypothesenprüfungen. μ=? Typische Aufgaben der Hypothesenprüfung. Typische Fragen - gebrauchte Merkmale

Vergleich der Schätzungen und Hypothesenprüfungen. μ=? Typische Aufgaben der Hypothesenprüfung. Typische Fragen - gebrauchte Merkmale Hypoheseprüfuge Dr László Smeller Vergleich der Schäzuge ud Hypoheseprüfuge Schäzuge: Frage: Wie groß (is eie physikalische Größe) Bluzuckerkozeraio... Awor: Pukschäzug: z.b.: Körperhöhe, Bludruck, μ?

Mehr

Normalverteilung (Gauss Verteilung) Gauss Kurve. ( x. (Deskriptive Statistik, Vortsetzung)

Normalverteilung (Gauss Verteilung) Gauss Kurve. ( x. (Deskriptive Statistik, Vortsetzung) (Dekrpve Sak, Vorezug) Achaulche Darellug der Fläche uer der heoreche Verelugkurve De heoreche Verelug ka Abhäggke vo der ueruche Varable uerchedlche Forme aehme, der Mehrzahl der Fälle e aber ee ymmerche

Mehr

Was benötigen wir dafür?

Was benötigen wir dafür? Wahrcheilicheirechug Die Laufzei vo radomiiere zufallgeeuere lgorihme häg vo gewie zufällige reigie ab eiiel Quicor. Um die Laufzeie dieer lgorihme ueruche zu öe, udiere wir im Folgede zufällige reigie

Mehr

Klausur Einführung in die statistische Messdatenauswertung für Biotechnologen Kurzfragen

Klausur Einführung in die statistische Messdatenauswertung für Biotechnologen Kurzfragen Klauur Eführug de ache Medaeauwerug für Boechologe 3.7.9 Kurzfrage. We wrd przpell de relave Summehäugke S() au der relave Häugkedche h() bemm?. Welche Skaleveau müe zwe Merkmale habe um ee Regreogerade

Mehr

4 Messfehler. 4.1 Fehlerquellen und Fehlerarten

4 Messfehler. 4.1 Fehlerquellen und Fehlerarten Versuchsechik Es is eie Erfahrugsasache, dass eder Messwer aufgrud vo Uvollkommeheie i der Messechik ud i de Messverfahre mehr oder weiger vo dem zureffede, wirkliche Wer der zugehörige Messgröße abweich.

Mehr

Vorbereitung und Protokoll zum Praktikum Elektronische Messtechnik

Vorbereitung und Protokoll zum Praktikum Elektronische Messtechnik Techiche Uiveriä Chemiz Fakulä für Elekroechik u Iformaioechik Profeur für Me- u Seorechik Vorbereiug u Prookoll zum Prakikum Elekroiche Meechik Veruch: Berührugloe Diazmeug miel Ulrachall Veruchag: 13.1.

Mehr

Aufgaben zur Ökonometrie I

Aufgaben zur Ökonometrie I Aufgabe zur Ökoomerie I 3. Sigifikazess ud Kofideziervalle 3. Wie groß is der Sadardfehler der Regressio vo GASV auf VEINKR ( Eergiemodell Ib, s. Ergebisse i Aufgabe.8) (mi Ierpreaio)? Der Sadardfehler

Mehr

richtige Entscheidung mit Wahrscheinlichkeit 1 α Fehlentscheidung 1. Art mit Wahrscheinlichkeit α

richtige Entscheidung mit Wahrscheinlichkeit 1 α Fehlentscheidung 1. Art mit Wahrscheinlichkeit α II Lösug zu Aufgabe 7: -Tes für Erwarugswer Saisische Tess diee dazu Hypohese abzusicher oder begrüde zu verwerfe. Hypohese esehe aus eperimeelle Beobachuge oder formale Überleguge, die eier Prüfug uerzoge

Mehr

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung.

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung. R Lösug zu Aufgabe 4: Kofideziervall a) Abschäzug vo Erwarugswer ud adardabweichug: Wie bereis i Übugsaufgabe eigeführ, selle der Mielwer ud die reuug eier ichprobe die bese chäzwere für de Erwarugswer

Mehr

Intervallschätzung. Bibliografie:

Intervallschätzung. Bibliografie: Ierallschäzug Ierallschäzug (allgemei Kofidezierall des arihmeische Miels Kofidezierall für die ifferez zweier arihmeischer Miel Lehrsuhl aisik chäzug II Bibliografie: Prof r Kück Uiersiä Rosock aisik,

Mehr

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur Iu für Produkomeechk Techche Uverä Brauchweg Klauur Eführug de ache Medaeauwerug für Boechologe 4.3. Name:............................... Markel-Nr.:............................... Aufgabe Kurfrage Geam

Mehr

Schätzungen und Hypothesenprüfungen. Hypothesenprüfungen. t Tests. Gibt es eine Wirkung einer Behandlung? Typische Entscheidungsfragen in der Medizin

Schätzungen und Hypothesenprüfungen. Hypothesenprüfungen. t Tests. Gibt es eine Wirkung einer Behandlung? Typische Entscheidungsfragen in der Medizin Hypoheenprüfungen. Te Schäzungen Wie gro i eine Gröe? Punkchäzungen Schäzungen und Hypoheenprüfungen ein Wer i gegeben und nich über die Sicherhei Parameer der Sichprobe Parameer der Populaion μ σ ( n

Mehr

Statistik Formelsammlung (gekürzt für 5 Abende Veranstaltung)

Statistik Formelsammlung (gekürzt für 5 Abende Veranstaltung) Saisik Formelsammlug (gekür für 5 Abede Verasalug) Formel um Kurs "Saisik" a der VWA Esse vo Prof. Dr. Peer vo der Lippe Ihalsvereichis: (gesrichee Abschie sid grau markier). Häufigkeisvereiluge S.. Mielwere

Mehr

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur Iu für Produkomeechk Techche Uverä Brauchweg Klauur Eführug de ache Medaeauwerug für Boechologe.7. Name:............................... Markel-Nr.:............................... Aufgabe Kurfrage Geam

Mehr

Das Skalarprodukt ist ein Produkt zweier Vektoren, das als Ergebnis ein Skalar (eine reelle Zahl) liefert. Es ist folgendermaßen definiert: r o

Das Skalarprodukt ist ein Produkt zweier Vektoren, das als Ergebnis ein Skalar (eine reelle Zahl) liefert. Es ist folgendermaßen definiert: r o Rechemehode de Aalyiche Geomeie B & S Skipedie, 6. bee. Nowedige Gudlage.. a Skalapoduk a Skalapoduk i ei Poduk zweie Vekoe, da al gebi ei Skala eie eelle Zahl liefe. i folgedemaße defiie b a b a b a b

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

26 Eigenschaften der Eigenwerte, Eigenvektoren und Eigenräume

26 Eigenschaften der Eigenwerte, Eigenvektoren und Eigenräume Lieare Algebra II SS 211 - Prof Dr Mafred Leiz Kapiel VIII: Das Eigewerproblem 26: Eigeschafe der Eigewere, K 26 Eigeschafe der Eigewere, Eigeveore ud Eigeräume A Eigeschafe der Eigewere B Eigeschafe der

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion Normalverteilug Stadardormalverteilug Normalverteilug N(μ, ) mit ichte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 6/7 Prof. r. J. Schütze, FB GW NV π Eigechafte der ichte: - Maimum i μ - mmetrich

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Kapitel 17 : Lineare Regression Darstellung von zweidimensionalen Daten : (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n )

Kapitel 17 : Lineare Regression Darstellung von zweidimensionalen Daten : (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) (Kapitel 7: Lieare Regreio) Kapitel 7 : Lieare Regreio 7. Dartellug vo zweidimeioale Date : (, ), (, ),..., (, ). 7.. Beipiel : (a) Körpergewicht eie erwachee mäliche Pfälzer. Körpergröße (b) Azahl der

Mehr

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr.

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr. Zahlefolge Teil 3: Reihe Arithmetiche Reihe Geometriche Reihe Theorie ud Muterbeipiele E wird auch da Arbeite mit dem Summezeiche geübt! Datei Nr. 40050 Stad 7. September 06 Friedrich W. Buckel INTERNETBIBLIOTHEK

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Korrelationsanalyse zwischen kategorischen Merkmalen. Kontingenztabellen. Chi-Quadrat-Test

Korrelationsanalyse zwischen kategorischen Merkmalen. Kontingenztabellen. Chi-Quadrat-Test Kotigeztabelle. Chi-Quadrat-Test Korrelatiosaalyse zwische kategorische Merkmale Beispiel 1 ohe Frau 8 75 1 Ma 48 49 97 76 14? Häufigkeitstabelle (Kotigeztabelle): eie tabellarische Darstellug der gemeisame

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrheilihkeittheorie, Shätz- ud Tetverfahre ÜBUNG 0 - LÖSUNGEN. Kofidezitervall für de Mittelwert eier ormalverteilte Grudgeamtheit bei gegebeer Variaz a. Gegebe id

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

ue biostatistik: hypothesen, t test 1/8 h. lettner / physik

ue biostatistik: hypothesen, t test 1/8 h. lettner / physik ue biotatitik: hypothee t tet /8 h. letter / phyik Hypothee Augagituatio ud Problemtellug * Populatio σ * Lagjähriger Durchchitt Erte * Wahrcheilichkeit für Ereigie Müze Roulette * Radioaktivität Hitergrudtrahlug

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Schätzverfahren bei der linearen Einfachregression

Schätzverfahren bei der linearen Einfachregression chäzverfahre e der leare fachregreo Kofdezervalle der Regreokoeffzee Kofdezervalle der Progoewere Prof. Kück / Dr. Rcaal Delgado Lehruhl ak Regreo IV lografe: Prof. Dr. Kück Uverä Roock ak, Vorleugkrp.

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Die zweite Implikation der Annahme einer skalaren Kovarianzmatrix, (2.7) 2 nxn

Die zweite Implikation der Annahme einer skalaren Kovarianzmatrix, (2.7) 2 nxn 6. Auokorrelaio 6. Form ud Auswirkug Die zweie Implikaio der Aahme eier skalare Kovariazmarix, (.7) Cov( u) E( uu') I x is, dass sich Sörerme uerschiedlicher Beobachuge ich beeiflusse, also ukorrelier

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Klausur Einführung in die Messtechnik. Klausur Einführung in die Messtechnik. Klausur Einführung in die Messtechnik

Klausur Einführung in die Messtechnik. Klausur Einführung in die Messtechnik. Klausur Einführung in die Messtechnik Name: Markel-Nr.: SCHRIFTLICHE PRÜFUNG 5. Februar 9 Klauur Eführug de Meechk für Machebauer ach DPO 3 Klauur Eführug de Meechk für Wrchafgeeure/MB ach DPO 4 Klauur Eführug de Meechk für Bachelor: Klauur

Mehr

α β Ein sphärisches Dreieck ist durch drei Großkreise begrenzt (Abb. 2).

α β Ein sphärisches Dreieck ist durch drei Großkreise begrenzt (Abb. 2). Has Walser, [20150801] Sphärische Vielecke Aregug: H. E., P. 1 Worum geht es? Die Flächeformel für sphärische Vielecke, isbesodere sphärische Dreiecke, lässt sich eifach ud kosistet mit Hilfe der Außewikel

Mehr

Übungsblatt Folgen, Reihen, Finanzmathematik

Übungsblatt Folgen, Reihen, Finanzmathematik Tutorium zu Mathematik für WFB Übugsblatt Folge, Reihe, Fiazmathematik Aufgabe (Grezwerte vo Folge) Bestimme Sie die Grezwerte der Folge ( ), N 4 b) c) d) e) si( ) f) a () g) a cos( ) Aufgabe (4 ) 4 b)

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Die Jensensche Ungleichung

Die Jensensche Ungleichung Die Jesesche Ugleichug Has-Gert Gräbe, Uiv Leipzig Februar 1998 1 Kovexe ud kokave Fuktioe Wir betrachte eie stetige Fuktio y = (x), die au eiem oee Itervall ]a, b[ deiiert sei möge Eie solche Fuktio köe

Mehr

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit 3. Itervallschätzuge 3.1. Zufallsstichprobe ud Stichprobefuktioe 3.1.1 Zufallsstichprobe 1 Sei eie Zufallsvariable ud seie gemeisamer Verteilug,,,, Zufallsvariable mit - da heiße 1,,, Zufallsstichprobe

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Vergleich vo mehrere Stichprobe Grudlage der Biostatisti ud Iformati Hypotheseprüfuge III., Nichtparametrische Methode dr László Smeller Semmelweis Uiversität 0 Vergleich vo mehrere Stichprobe Boferroi

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

Lösungen (6. Blatt) 2 ny + dy b. = ö nein, aber asymptotische Erwartungstreue. } = ö ja. 4 4n ...

Lösungen (6. Blatt) 2 ny + dy b. = ö nein, aber asymptotische Erwartungstreue. } = ö ja. 4 4n ... Mahemak-Servce Dr. Frch uk- ud Kofdechäuge www.mah-ervce.de.a Für ee Wer y [ 0,] F gl: Löuge 6. Bla y Y y Y y y,..., y y... y ud dfy y y. fy y dy Erwarugreue der 3 Schäer: E{ Θ } E{ } ö ja y y E{ Θ } E{0,5

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II Strukturelle Modelle i der Bildverarbeitug Markovsche Kette II D. Schlesiger TUD/INF/KI/IS Statioäre Verteilug Verborgee Markovsche Kette (HMM) Erkeug stochastisches Automate D. Schlesiger SMBV: Markovsche

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 8

Übung zur Vorlesung Statistik I WS Übungsblatt 8 Übug zur Vorlesug Statistik I WS 2013-2014 Übugsblatt 8 9. Dezember 2013 Aufgabe 25 (4 Pukte): Sei X B(, p) eie biomial verteilte Zufallsvariable. Schreibe Sie i R eie Fuktio PWert, die für jedes Ergebis

Mehr

Behandlung statistisch verteilter Messwerte

Behandlung statistisch verteilter Messwerte Phyikaliche Grudpraktikum Veruch 00 Behadlug tatitich verteilter Mewerte Aufgabe:. Führe Sie am PC Eperimete mit dem Galtoche Nagelbrett durch. Lae Sie mehrmal Kugelmege durchlaufe ud regitriere Sie die

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung Wichtigste Verteiluge der Biostatisti Disrete Zur Erierug Klassifizierug der Verteiluge Kotiuierliche Disrete Gleichverteilug Kotiuierliche Gleichverteilug Biomialverteilug Normalverteilug Poisso Verteilug

Mehr

2. Repetition relevanter Teilbereiche der Statistik

2. Repetition relevanter Teilbereiche der Statistik . Repetitio Statistik Ökoometrie I - Peter Stalder. Repetitio relevater Teilbereiche der Statistik (Maddala Kapitel ) Zufallsvariable ud Wahrscheilichkeitsverteiluge Zufallsvariable X (stochastische Variable)

Mehr

Quadratfraktal. Abbildung 1 Abbildung 2 Abbildung 3

Quadratfraktal. Abbildung 1 Abbildung 2 Abbildung 3 Nimm ei quadratisches Blatt Papier. Scheide lägs eier Diagoale eimal die Hälfte ab. Zerlege die zweite Hälfte i vier rechtwiklige gleichscheklige Dreiecke (Abb. ). Zwei dieser vier Dreiecke kast du u abscheide

Mehr

Korrekturliste zum Studienbuch Statistik

Korrekturliste zum Studienbuch Statistik Korrekturlite zum Studiebuch Statitik I der aktuelle Auflage wurde durch ei Kovertierugproblem i de Kapitel 0 (S. 3 3 ud de etprechede Abchitte i de Löuge (S. 39 07 teilweie die Zeiche µ durch ud π durch

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

SPIRALE AUS RECHTECKEN

SPIRALE AUS RECHTECKEN SPIRALE AUS RECHTECKEN Die Rechtecke sid aus eiem Papierblatt im Format DIN A4 durch sukzessives Halbiere herausgeschitte ud da "über Eck" eu ageordet worde. Welche Folge bilde die Flächeihalte der Rechtecke

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 5 1. Die Beroullische Ugleichug besagt, dass für N 0 ud x R mit x 1 stets 1 + x 1 + x gilt. Wir wolle u aaloge Ugleichuge für

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Zenraler Grenzwertsatz

Zenraler Grenzwertsatz Zeraler Grezwertsatz Ato Klimovsky Zetraler Grezwertsatz. Kovergez i Verteilug. Normalapproximatio. I diesem Abschitt beschäftige wir us mit der folgede Frage. Frage: Wie sieht die Verteilug eier Summe

Mehr

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Messug 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Ziel der Meßübug: Besimmug des Bresoffverbrauchs, des spezifische Bresoffverbrauchs, Aggregawirkugsgrades,

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr