No-Arbitrage Modelle

Größe: px
Ab Seite anzeigen:

Download "No-Arbitrage Modelle"

Transkript

1 No-Arbirage Modelle Sefan Fremd 17. Januar 27 1 Einleiung No-Arbirage Modelle: Modelle, bei denen die beobacheen Preise der Anleihen Derivae am Mark P obs (, T ) genau mi denen des Modells ˆP (, T ) übereinsimmen, da sie schon zum Inpu des Modells gehören, wobei den Zeipunk der Anpassung bezeichne. 2 Markov Modelle Markov Modell: Modell, das die folgenden zwei Voraussezungen erfüll: Die Preise P obs (, T ) gehören zum Inpu Die Wahrscheinlichkeisvereilung von P (s, T ) F ensprich der von P (s, T ) X(), für < s < T, wobei X() ein endlich dimensionaler Iô-Prozess is. D.h. zusäzliche Informaionen über die Vergangenhei erhöhen nich den Informaionsgehal der möglichen Aussagen über die zukünfige Enwicklung. Im Folgenden werden zwei Modelle behandel, bei denen der risikolose Zinssaz r() anselle von X() zugre lieg: 2.1 Das Ho Lee Modell Das aus dem Jahr 1986 sammende Modell von Ho Lee verwende folgende Modellierung für den risikolosen Zinssaz:, wobei dr() = θ()d + σd W () W () eine Brownsche Bewegung uner dem äquivalenen Maringalmaÿ Q is θ() sich wie folg ergib: 1

2 Wir nehmen an, dass der Inpu aus den P (, T )) beseh, für alle T >. Sei f(, T ) = logp (, T ) T die zugre liegende Forward-Rae-Kurve. Wenn man θ(t ) als θ(t ) = T f(, T ) + σ2 T voraussez, kann man zeigen, dass ( E Q [exp r()d) r() = P (, T ), wobei Es folg, dass P (, T ) = exp[a(, T ) (T )r() A(, T ) = log P (, T ) P (, ) + (T )f(, ) 1 2 σ2 (T ) 2. f(, T ) = T logp (, T ) = r() + f(, T ) f(, ) + σ2 (T ). Als Lösung für r() ergib sich: Folglich is r() = r() + θ(s)ds + σ W () = r() + f(, ) f(, ) σ2 2 + σ W () = f(, ) σ2 2 + σ W (). f(, T ) = f(, ) σ2 2 + σ W () + f(, T ) f(, ) + σ 2 (T ) = f(, T ) σ2 T σ2 (T ) 2 + σ W (). Bemerkung: Das Ho Lee Modell kann relaiv einfach zu einer Version verallgemeiner werden, in der σ() zwar zeiabhängig, jedoch deerminisisch is. 2

3 2.2 Das Hull Whie Modell Das 199 von Hull Whie veröenliche Modell is eine Verallgemeinerung des Vasicek-Modells, die folgende Modellierung für den risikolosen Zinssaz verwende: dr() = α(µ() r())d + σd W (), wobei W () wiederum eine Brownsche Bewegung uner Q µ() eine deerminisische Funkion is, die auch als Maÿzahl für den (lokalen) Mean-Reversion- Eek inerpreier werden kann. Dami die zugre liegenden heoreischen beobacheenpreise übereinsimmen, wird vorausgesez, dass wobei A(, T ) = log P (, T ) P (, ) µ() = 1 σ2 f(, ) + f(, ) + α 2α (1 2 e 2α ) P (, T ) = exp[a(, T ) B(, T )r(), B(, T ) = ) 1 e α(t, α + B(, T )f(, ) σ2 4α 3 (1 e α(t ) ) 2 (1 e 2α ). Es folg mi Hilfe der Eigenschafen des Ornsein-Uhlenbeck-Prozesses: r() = f(, ) + σ2 2α 2 (1 e α ) 2 + σ e α( s) d W (s) Auch das Hull-Whie-Modell kann rech einfach zu einer Form verallgemeiner werden, in der α() σ() zwar zeiabhängig, jedoch deerminisisch sind. 2.3 Das Black-Karasinski Modell Das Black-Karasinski-Modell geh zunächs aus von Y () = log r() mi der zugehörigen sochasischen Dierenialgleichung (SDE) dy () = α()(log µ() Y ())d + σ()d W (), wobei W () wiederum eine Sandard-Brownsche Bewegung uner Q α(), µ() σ() zeiabhängige, deerminisische Funkionen sind. Durch Anwendung der Iô-formel erhäl man: dr() = α()r() [log µ() + σ()2 log r() d + σ()r()d W () 2α() 3

4 Sei nun Man kann nun zeigen, dass A() = α(u)du. Y (T ) = e A() A(T ) Y ()+ α(u)e A(u) A(T ) logµ(u)du+ σ(u)e A(u) A(T ) d W (u). Da nun aber σ(u) exp[a(u) A(T ) deerminisisch is, folg, dass r(t ) bei gegebenem r() lognormal-vereil is es gil E Q [log r(t ) F = e A() A(T ) Y () + V ar Q [logr(t ) F = α(u)e A(u) A(T ) log µ(u)du σ(u) 2 e 2(A(u) A(T )) du. 3 Das Heah-Jarrow-Moron Modell (HJM) Das Modell von Heah, Jarrow Moren liefer vielmehr einen Rahmen für speziellere No-Arbirage-Modelle, als dass man es selbs als No-Arbirage-Modell bezeichnen könne. Das HJM-Modell geh von den Weren der Forward-Rae-Kurve f(, T ) als Inpudaen aus. Für fese Laufzeien T liefer f(, T ) einen Iô-Prozess mi SDE df(, T ) = α(, T )d + σ(, T )dw () für alle T >, wobei α(, T ) σ(, T ) von f(, T ) selbs, der gesamen Forward-Rae-Kurve oder sogar von F = σ({w (s) : s })) abhängen können. Voraussezungen: Für alle T sind σ(, T ) α(, T ) vorhersehbar hängen von der Vergangenhei von W (s) bis zum Zeipunk ab. σ 2 (, T )d < α(, T ) d < f.s. u f(, T ) is deerminisisch erfüll α(, u) d du < 4 f(, u) du <

5 [ E u σ(, u)dw () < du 3.1 Die risikolose Anlage Aus der SDE für f(, T ) folg: r(t ) = lim f(, T ) = f(, T ) + σ(s, T )dw (s) + α(s, T )ds T Der Bankkonoprozess B() ha die SDE: db() = r()b()d [ B() = B()exp r(u)du [ = B()exp f(, u)du + α(s, u)du ds + s ( s ) σ(s, u)du dw (s). 3.2 Handelbare Anlagen Die Preisgebung der Zerobonds nde wie folg sa: [ P (, T ) = exp [ = exp f(, u)du f(, u)du α(s, u)du ds Der diskoniere Anlagen-Preis wird denier durch: Z(, T ) = P (, T ) B() [ = exp S(s, T )dw (s) f(, u)du ( ) σ(s, u)du dw (s). s α(s, u)du ds, wobei S(s, T ) = σ(s, u)du. s Erneue Anwendung der Iô-Formel ergib: [( 1 T ) dz(, T ) = Z(, T ) 2 S2 (, T ) α(, u)du d + S(, T )dw (). Hierbei kann S(, T ) als Volailiä von P (, T ) inerpreier werden. 5

6 3.3 Maÿwechsel Um den diskonieren Anlagen-Preis in ein Maringal umzuwandeln, wird ein Maÿwechsel durchgeführ, wobei der benöige Drif-Term, also der Markwer des Risikos, für eine Anleihe mi Laufzei T gegeben is durch: γ() = 1 2 S(, T ) 1 α(, u)du S(, T ) In Bezug auf das Girsanov-Theorem muss nun aber γ() die Novikov-Bedingung erfüllen, dami ein ein äquivalenes Maringalmaÿ Q exisier, so dass W () = W () + γ(s)ds eine Brownsche Bewegung uner Q is.uner Q gil dann: dz(, T ) = Z(, T )S(, T )d W () Lau Voraussezung is aber nun Z(, T ) ein Maringal uner Q. Es folg, dass dp (, T ) = P (, T )(r()d + S(, T )d W ()). 3.4 Duplikaionssraegien X Zahlung eines Derivaes beding über F s zur Zei S (S < T ). Ziel: Konsrukion einer Hedging-Sraegie durch Bargeld die T -Anleihe P (, T ). 5 Konsrukionsschrie: Finden des äquivalenen Maringalmaÿes Q, uner dem Z(, T ) ein Maringal is. Denieren des Q-Maringals D() = E Q [B(S) 1 X F. Finden des previsiblen Prozesses φ() so, dass D() = D()+ φ(s)dz(s, T ). Denieren von ψ() = D() φ()z(, T ). Die Handelssraegie (ψ(), φ()), wobei ψ() die Anzahl der Einheien B() φ() die Anzahl der Einheien P (, T ), is eine selbsnanzierende Duplikaionssraegie für X zur Zei S. 6

7 3.5 Der arbiragefreie Mark Sei nun X = 1, d.h. das Deriva is ein Zerobond mi Laufzei S ( S ) P (, S) = B()E Q [B(S) 1 F = E Q [exp r(u)du F. Für den diskonieren S-Bond gil: Z(, S) = P (, s) B() = E Q [B(S) 1 F Somi is Z(, S) ein Q-Maringal. Dies gil jedoch für alle Anleihen, woraus folg, dass diese durch die gleiche Maÿransformaion in Maringale überführ werden. Sie besizen also auch alle den gleichen Markpreis des Risikos Da T γ() = 1 2 S(, T ) 1 S(, T ) α(, u)du α(, u)du = 1 2 S(, T )2 γ()s(, T ). S(, T ) = σ(, T ) ergib Diereniaion nach T α(, T ) = σ(, T )(γ() S(, T )) Hieraus folg für das Ausgangsmodell: somi df(, T ) = α(, T )d + σ(, T )dw () r() = f(, ) = α(, T )d + σ(, T )(d W () γ()d) = σ(, T )S(, T )d + σ(, T )d W () σ(s, )S(s, )ds + σ(s, )d W (s). 4 Zusammenhang zwischen dem HJM den Markov Modellen 4.1 Ho Lee Uner dem HJM erhäl man für σ(s, ) = σ s,, also S(s, ) = ( s)σ r() = f(, ) σ2 2 + σ W (), also den Ausdruck für r() im Ho-Lee-Modell. 7

8 4.2 Hull Whie Ähnlich folg mi σ(s, ) = σe α( s), dass S(s, ) = σ α (1 e α( s) ), woraus wiederum folg Dami erhäl man σ(s, )S(s, )ds = σ2 α e α( s) (1 e α( s) )ds = σ2 2α 2 (1 e α ) 2. r() = f(, ) + σ2 2α 2 (1 e α ) 2 + σ also den Ausdruck für r() im Hull-Whie-Modell. e α( s) d W (s), 5 Fazi Das Rahmen-Modell von Heah, Jarrow Moron liefer also die Grlage für die beschriebenen Markov-Modelle, sowohl das Ho-Lee-Modell als auch das Hull-Whie-Modell. Auÿerdem implizier es Duplikaionssraegien für allgemeine Finanziel somi uner No-Arbirage-Gesichspunken Preisgebungsmechanismen für diese. 8

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

7 Das lokale Ito-Integral

7 Das lokale Ito-Integral 7 Das lokale Io-Inegral 7.3 Ein lokales L p -Maringal is uner einer gleichgradigen Inegrierbarkeisbedingung ein L p -Maringal 7.4 Rechsseiig seiges (seiges), lokales L p -Maringal 7.5 Seige, lokale Maringale

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Akuarielle und finanzmahmaische Bewerung I Xiaoying Xu Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof Schmidli,

Mehr

Das HJM-Modell und das LIBOR Markt Modell zur Beschreibung von Zinsstrukturkurven

Das HJM-Modell und das LIBOR Markt Modell zur Beschreibung von Zinsstrukturkurven Das HJM-Modell und das LIBOR Mark Modell zur Beschreibung von Zinssrukurkurven Diplomarbei von Alexander Oswald Bereuer: Privadozen Dr. Volker Paulsen Mahemaisches Insiu für Saisik Fachbereich 1 - Mahemaik

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2011

Prüfung Finanzmathematik und Investmentmanagement 2011 Prüfung Finanzmahemaik und Invesmenmanagemen 0 Aufgabe : (0 Minuen) a) Auf der Grundlage einer Lagrange-Opimierung ergib sich die folgende funkionale Form für die (, ) -Koordinaen der (rein riskanen) Randporfolios

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2018

Prüfung Finanzmathematik und Investmentmanagement 2018 Prüfung Finanzmahemaik und Invesmenmanagemen 08 Aufgabe : (4 Minuen) (a) (b) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Für den Korrelaionskoeffizienen gele - < ρ(r, R )

Mehr

Stochastische Analysis und Finanzmathematik

Stochastische Analysis und Finanzmathematik Sochasische Analysis und Finanzmahemaik Prof. Dr. Jan Kallsen HVB-Sifungsinsiu für Finanzmahemaik TU München 4. Sepember 6 INHALTSVERZEICHNIS Inhalsverzeichnis Einführung 4. Beispiel: Forward-Geschäf.......................

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2012

Prüfung Finanzmathematik und Investmentmanagement 2012 Prüfung inanzmahemaik und Invesmenmanagemen Aufgabe : (3 Minuen) a) Gegeben sei der Zwei-Werpapier-all sowie die Präferenzfunkion V(R) = E(R) avar(r) Besimmen Sie einen allgemeinen Ausdruck für die Invesmengewiche

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Martingal Pricing Theorie

Martingal Pricing Theorie Vorrag: Chrisina Riedel Maringal Pricing Theorie Präsenaion zum Seminar: Warum wir falsch liegen und rozdem weiermachen Akuelle Themen in Banken und Versicherungen Inhal 1. Einleiung. Maringale 3. Maringal

Mehr

Optimales Management eines Garantiefonds

Optimales Management eines Garantiefonds Opimales Managemen eines Garaniefonds Opimal Managemen of a Garanee Fund Maserarbei vorgeleg von: Sefan Blanke Marikelnummer: 37557 Sudiengang: Maser of Science, Mahemaik Ersprüfer: Priv.-Doz. Dr. Volker

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Portfoliooptimierung in HJM-Modellen

Portfoliooptimierung in HJM-Modellen Porfolioopimierung in HJM-Modellen Maserarbei von Eugenia Kiefel Bereuer: Privadozen Dr. V. Paulsen Mahemaisches Insiu für Saisik Fachbereich - Mahemaik und Informaik Wesfälische Wilhelms-Universiä Münser

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2010

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2010 Prüfung Grunprinzipien er Versicherungs- un Finanzmahemaik Aufgabe : (5 Minuen a Gegeben sei ein einperioiger Sae Space-Mark mi rei Zusänen, er aus rei Werpapieren besehe, einer sicheren Anlage zu % sowie

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2017

Prüfung Finanzmathematik und Investmentmanagement 2017 Prüfung Finanzmahemaik und Invesmenmanagemen 017 Aufgabe 1: (1 Minuen) a) Gegeben seien zwei Anlagemöglichkeien, die Anlage in ein riskanes Porfolio P sowie in eine risikolose Anlage zum Zins r 0. Welche

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2008 über Finanzmathematik und Investmentmanagement Beric zur rüfung im Okober 008 über Finanzmaemaik und Invesmenmanagemen (Grundwissen) eer Albrec (Manneim) Am 7 Okober 008 wurde zum drien Mal eine rüfung im Fac Finanzmaemaik und Invesmenmanagemen nac

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Das Vasicek Modell. Ein Short Rate Modell zur Beschreibung von Rentenmärkten

Das Vasicek Modell. Ein Short Rate Modell zur Beschreibung von Rentenmärkten Das Vasicek Modell Ein Shor Rae Modell zur Beschreibung von Renenmärken Daniel Schlomann 2. Juli 21 Inhalsverzeichnis 1 Der Renenmark 3 2 Einführung Shor Rae Modelle 6 2.1 Grundlagen...................................

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Fokker-Planck-Gleichung

Fokker-Planck-Gleichung Fokker-Planck-Gleichung Beschreibung sochasischer Prozesse David Kleinhans kleinhan@uni-muenser.de WWU Münser David Kleinhans, WWU Münser Fokker-Planck-Gleichung Beschreibung elemenarer sochasischer Prozesse

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Die Put-Call Symmetrie und deren Anwendung bei der Bewertung von Barriereoptionen

Die Put-Call Symmetrie und deren Anwendung bei der Bewertung von Barriereoptionen Die Pu-Call Symmerie und deren Anwendung bei der Bewerung von Barriereopionen Maserarbei von Sefanie Tiemann 06. 08. 013 Bereuer: Privadozen Dr. Volker Paulsen Insiu für mahemaische Saisik Fachbereich

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung.

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung. 1 Lie-Gruppen 1. Lie-Algebren Im lezen Vorrag haben wir bereis das Konzep der Lie-Algebren kennengelern. Zunächs werde ich noch einige weiere grundlegende Definiionen dazu angeben. In diesem Kapiel sei

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5 Seie von 5 Aufgabe : Eine ganzraionale Funkion. Grades habe die Nullsellen ; ;. Ihr Schaubild gehe durch P( 6). Besimme die Exremsellen. Skizziere den Graphen der Funkion. allgemeine Form einer Funkion.

Mehr

Merkmale flexibler Fertigung

Merkmale flexibler Fertigung FFS.41 PROF.DR.-ING. K.RALL TUHH 2-295 - 1 FFS.42 Die Aufgabe des Bedieners wurde anspruchsvoller (wenige psychische und physische Belasung, dafür mehr Warung, Überwachung, Sörungsbeseiigung). Die Ferigung

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

Zusammenfassung Das klassische dynamische Gleichgewichtsmodell Geldtheorie und Geldpolitik Wintersemester, 2011/12

Zusammenfassung Das klassische dynamische Gleichgewichtsmodell Geldtheorie und Geldpolitik Wintersemester, 2011/12 Zusammenfassung Das klassische dynamische Gleichgewichsmodell Geldheorie und Geldpoliik Winersemeser, 20/2 Haushale Wir nehmen an Haushale maximieren ihren ineremporalen Nuzen und leben unendlich lang

Mehr

Stochastische Volatilität vs. Traders Rule of Thumb Bewertung exotischer Optionen im Vergleich

Stochastische Volatilität vs. Traders Rule of Thumb Bewertung exotischer Optionen im Vergleich Sochasische Volailiä vs. Traders Rule of Thumb Bewerung exoischer Opionen im Vergleich Uwe Wysup Universiä Trier 21. Juli 2005 Devisenopionen Vanilla exoische Opionen heue =0 Ausübungszeipunk =T Vanillaopion

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2014

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2014 Prüfung Grundprinzipien der ersicherungs- und Finanzmahemaik 04 Aufgabe : (0 Minuen) a) Gegeben sei ein einperiodiger Sae Space-Mark mi drei usänden, der aus drei Werpapieren besehe, einer sicheren Anlage

Mehr

Hedging von Renten Futures im Modell von Heath, Jarrow und Morton

Hedging von Renten Futures im Modell von Heath, Jarrow und Morton Hedging von Renen Fuures im Modell von Heah, Jarrow und Moron Andreas Löffler Version: November 998 Zusammenfassung In dieser Arbei werden der Bund und der Bobl Fuure sowie der ers kürzlich aufgelege Jumbo

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

Aufgaben zur Zeitreihenanalyse (Kap. 3)

Aufgaben zur Zeitreihenanalyse (Kap. 3) Prof. Dr. Reinhold Kosfeld Fachbereich Wirschafswissenschafen Aufgaben zur Zeireihenanalyse (Kap. Aufgabe. Was verseh man uner einem sochasischen Prozess? Ein sochasischer Prozess is eine zeiliche Folge

Mehr

Übungsblatt 8 Musterlösung

Übungsblatt 8 Musterlösung Numerik gewöhnlicher Differenialgleichungen MA - SS6 Übungsbla 8 Muserlösung Aufgabe 7 Schriweienseuerung) Im Folgenden soll die Differenzialgleichung y ) = f,y)) = sign)y, y ) = e, im Zeiinervall [, ]

Mehr

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse 3. Auoregressive Prozesse (AR-Modelle 3.. AR(-Prozesse Definiion: Ein sochasischer Prozess ( heiß auoregressiver Prozess der Ordnung [AR(-Prozess], wenn er der Beziehung (3.. genüg. ( is darin ein reiner

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Brush-up Kurs Wintersemester 2015. Optionen. Was ist eine Option? Terminologie. Put-Call-Parität. Binomialbäume. Black-Scholes Formel

Brush-up Kurs Wintersemester 2015. Optionen. Was ist eine Option? Terminologie. Put-Call-Parität. Binomialbäume. Black-Scholes Formel Opionen Opionen Was is eine Opion? Terminologie Pu-Call-Pariä Binomialbäume Black-Scholes Formel 2 Reche und Pflichen bei einer Opion 1. Für den Käufer der Opion (long posiion): Rech (keine Pflich!) einen

Mehr

Stochastische Steuerung von Sprung-Diffusionen mit Anwendung in der Portfoliooptimierung

Stochastische Steuerung von Sprung-Diffusionen mit Anwendung in der Portfoliooptimierung Sochasische Seuerung von Sprung-Diffusionen mi Anwendung in der Porfolioopimierung I n a u g u r a l - D i s s e r a i o n zur Erlangung des Dokorgrades der Mahemaisch-Naurwissenschaflichen Fakulä der

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 1 - Grundlagen Einführung in die Verfahren der Zeireihenanalyse (1) Typischerweise beginn man mi einer Beschreibung der jeweils zu unersuchenden Zeireihe (graphisch) Trendverhalen,

Mehr

Aufgabe 1: (18 Minuten) a) Gegeben seien drei Aktien mit den folgenden Werten für die zugehörigen Einperiodenrenditen

Aufgabe 1: (18 Minuten) a) Gegeben seien drei Aktien mit den folgenden Werten für die zugehörigen Einperiodenrenditen Prüfung Finanzmahemaik und Invesmenmanagemen 016 Aufgabe 1: (18 Minuen) a) Gegeben seien drei Akien mi den folgenden Weren für die zugehörigen Einperiodenrendien R1, R und R3: E(R1) = 0., E(R) = 0.1, E(R3)

Mehr

Stochastische Automaten und Quellen

Stochastische Automaten und Quellen KAPITEL 2 Sochasische Auomaen und Quellen Sei A ein Sysem allgemeiner Ar (z.b. ein physikalisches Sysem oder eine Nachrichenquelle), das wir zu diskreen Zeipunken = 0, 1,... beobachen. Wir nehmen an: (SA

Mehr

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3 Bl Nr. 11 Simon Reisser Lösung zur Husufgbe in Topologie und Differenilrechnung mehrerer Vriblen SS 17 Aufgbe () Sei f(x 1, x, x 3 ) = (y 1, y, y 3 ) = (e x1x x3, e x1x+x3, e xx3 ) und dg(y 1, y, y 3 )

Mehr

Prof. Dr. Marc Gürtler Klausur zur Veranstaltung Finanzwirtschaftliches Risikomanagement Lösungsskizze

Prof. Dr. Marc Gürtler Klausur zur Veranstaltung Finanzwirtschaftliches Risikomanagement Lösungsskizze Prof. Dr. Marc Gürler Klausur zur eransalung Finanzwirschafliches Risikomanagemen Lösungsskizze Aufgabe : (9 Punke) ) (9 Punke) Inerne Sicherungsinsrumene: Ohne Hinzuziehung Drier. Monolaerale Sicherungsinsrumene:

Mehr

5. Übungsblatt zur Differentialgeometrie

5. Übungsblatt zur Differentialgeometrie Insiu für Mahemaik Prof. Dr. Helge Glöckner Dipl. Mah. Rafael Dahmen 5. Übungsbla zur Differenialgeomerie (Aufgaben und Lösungen) SoSe 3.05.0 Gruppenübung Aufgabe G9 (Submersionen und Unermannigfaligkei)

Mehr

Stochastische Analysis

Stochastische Analysis Sochasische Analysis Maringale und sochasisches Inegral Franz Hofbauer Einleiung Sei (Ω, A, P ) ein Maßraum mi P (Ω) = 1. Die messbaren Mengen, das sind die Mengen in der σ-algebra A, werden als Ereignisse

Mehr

Zinsratenmodelle in stetiger Zeit: Teil II

Zinsratenmodelle in stetiger Zeit: Teil II Zisratemodelle i stetiger Zeit: Teil II Simoe Folty 1.11.006 1. Vasicek Modell (1977) 1.1 Eiführug Vasicek schlug das folgede Modell für die risikofreie Zisrate r(t) vor, basiered auf der SDGL d r t α

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

7. Funktionalgleichung der Zeta-Funktion

7. Funktionalgleichung der Zeta-Funktion Oo Forser: RZF 7 Funkionalgleichung der Zea-Funkion 7 Funkionalgleichung der Zea-Funkion 7 Saz (Poissonsche Summaionsformel Sei f : R C eine seig differenzierbare Funkion mi f(x O ( x für x Sei ˆf : R

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie ifo Insiu für Wirschafsforschung an der Universiä München Zeireihenökonomerie Kapiel 6 Nichsaionäre univariae Zeireihenmodelle ifo Insiu für Wirschafsforschung an der Universiä München Nichsaionäre Prozesse

Mehr

Ornstein-Uhlenbeck-Prozesse

Ornstein-Uhlenbeck-Prozesse Ornstein-Uhlenbeck-Prozesse M. Gruber 3. 4 214 Zusammenfassung Der Ornstein-Uhlenbeck-Prozess (oft abgekürzt OU-Prozess) ist ein spezieller stochastischer Prozess, der nach den beiden niederländischen

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirschafsforschung Prof. Dr. Bernd Süßmuh Universiä Leipzig Insiu für Empirische Wirschafsforschung Volkswirschafslehre, insbesondere Ökonomerie 9.6. Zeireihen und Zeireihenmodelle Prinzipielle

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirschafsforschung Prof. Dr. Bernd Süßmuh Universiä Leipzig Insiu für Empirische Wirschafsforschung Volkswirschafslehre, insbesondere Ökonomerie 6.4. Mulikollineariä a) Das Problem und seine

Mehr

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz Der Primzahlsaz, Teil Vorrag zum Seminar zur Funionenheorie, 07.05.0 Raffaela Biesenbach Diese Arbei beschäfig sich mi der Herleiung des Primzahlsazes. Dazu werden Definiionen und Säze aus dem Sri zur

Mehr

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Berich zur Prüfung i Okober 9 über Grundrinziien der Versicherungs- und Finanzaheaik (Grundwissen Peer lbrech (Mannhei 6 Okober 9 wurde zu vieren Mal eine Prüfung i Fach Grundrinziien der Versicherungs-

Mehr

Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz

Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz Finanzmahemaik Wolfgang Müller 213 Insiu für Saisik Technische Universiä Graz Inhalsverzeichnis 1. Markmodelle in diskreer Zei 1 1.1. Das Binomialmodell................................ 1 1.2. Das allgemeine

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Stationarität/Ergodizität

Stationarität/Ergodizität Empirische Mehoden (MA) SS 011 Übungsbla 3 Willi Muschler willi.muschler@uni-muenser.de Saionariä/Ergodiziä 1. Beanworen Sie folgende Fragen: (a) Was verseh man uner einem sochasischen Prozess, was uner

Mehr

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2)

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2) Unerschied : kurzfrisige vs langfrisige Zinssäze Inermediae Macro - Uni Basel 10 Arbirage implizier: (1) () Es gib eine klare Beziehung zwischen langfrisigen Zinsen und erwareen künfigen Kurzfriszinsen

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Risikoneutrale Wahrscheinlichkeit

Risikoneutrale Wahrscheinlichkeit Risikoneutrale Wahrscheinlichkeit M. Gruber 11. 6 214 Rev.3 Zusammenfassung Diskontierter Aktienpreisprozess, Risiko-Marktpreis, Risikoneutralität; Verschiebung des Erwartungswerts einer Zufallsvariablen,

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 6 5. Juni 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 6 5. Juni 2013 1 / 23 8. Fundamentalsatz der lokalen Kurventheorie (Fortsetzung)

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Optimierung eines Mean-Variance Portfolios. Diplomarbeit

Optimierung eines Mean-Variance Portfolios. Diplomarbeit Universiä Leipzig Fakulä für Mahemaik und Informaik Mahemaisches Insiu Opimierung eines Mean-Variance Porfolios Diplomarbei Leipzig, 23. Januar 212 vorgeleg von: Oliver Janke, B.Sc. Sudiengang Diplom-Wirschafsmahemaik

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Wintersemester 2003/ Teil / 3 und 4 Univ. Ass. Dr. Matthias G.

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Wintersemester 2003/ Teil / 3 und 4 Univ. Ass. Dr. Matthias G. Universiä Wien Insiu für Beriebswirschafslehre ABWL IV: Finanzwirschaf 401 441/3+4 Univ. Ass. Dr. M.G. Schuser Foliensaz Veriefungskurs aus ABWL: Finanzwirschaf im Winersemeser 2003/2004 5. Teil 401 441

Mehr

Short Rate Modelle. Simon Dettmer Betreut von: Dr. Zoran Nikolić & Dr. Tamino Meyhöfer

Short Rate Modelle. Simon Dettmer Betreut von: Dr. Zoran Nikolić & Dr. Tamino Meyhöfer Seminar: Finanzmarktmodelle in der Lebensversicherung Universität zu Köln SS 2016 Short Rate Modelle Simon Dettmer 17.06.2016 Betreut von: Dr. Zoran Nikolić & Dr. Tamino Meyhöfer Motivation: Prämienberechnung

Mehr

Optimale stochastische Steuerung in der Finanzmathematik

Optimale stochastische Steuerung in der Finanzmathematik Opimale sochasische Seuerung in der Finanzmahemaik Peer Kohl-Landgraf 15.11.2004 1 Inhalsverzeichnis 1 Finanzmahemaische Grundlagen 3 1.1 Einige Definiionen.......................... 3 1.2 Anwendungen

Mehr

Numerische Lösung stochastischer Differentialgleichungen: (Brownsche Bewegung, Laser ) Numerische Physik SS 07, Aufgabe 2, Ausdruck: 23.

Numerische Lösung stochastischer Differentialgleichungen: (Brownsche Bewegung, Laser ) Numerische Physik SS 07, Aufgabe 2, Ausdruck: 23. Numerische Lösung sochasischer Differenialgleichungen: (Brownsche Bewegung, Laser ) Numerische Physik SS 7, Aufgabe, Ausdruck: 3. April 7 P.Z.,M.F.,H.E.,H.R. 1 Moivaion Hisorisch gesehen selle die Beschreibung

Mehr

Musterlösung Serie 10

Musterlösung Serie 10 Prof. D. Salamo Aalysis I MATH, PHYS, CHAB HS 04 Muserlösug Serie 0. a Wir bereche mi der biomische Formel e cos ix + e ix x = = =0 =0 e ix e i x = =0 e i x Da = gil, öe wir i der leze Summe die Terme

Mehr

Übungsaufgaben zu Kapitel 1: Offene Güter- und Finanzmärkte

Übungsaufgaben zu Kapitel 1: Offene Güter- und Finanzmärkte Kapiel 1 Übungsaufgaben zu Kapiel 1: Offene Güer- und Finanzmärke Übungsaufgabe 1-1 1-1 Berachen Sie zwei Werpapiere, das eine wird in Deuschland in Euro emiier, das andere in den USA in Dollar! Nehmen

Mehr

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand 8.5 Uneigenliche Inegrle Inegrle über unbeschränke Bereiche,, Inegrle über unbeschränke Funkionen mi Singulriäen m Rnd, f : (, b] R seig, f : [, b) R seig Lokle Inegrierbrkei: Definiion: Eine Funkion f

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

V1 - Poisson-Statistik

V1 - Poisson-Statistik V1 - Poisson-Saisik Michael Baron, Sven Pallus 03. Mai 2006 Inhalsverzeichnis 1 Aufgabensellung 1 2 Theoreischer Hinergrund 2 2.1 Geiger-Müller-Zählrohr...................... 2 2.2 Poisson-Vereilung........................

Mehr

Abschlussprüfung an Fachoberschulen in Bayern Mathematik mit CAS 2015 Analysis A2 Ausbildungsrichtung Technik

Abschlussprüfung an Fachoberschulen in Bayern Mathematik mit CAS 2015 Analysis A2 Ausbildungsrichtung Technik MK.7.05 B5_T_A MK_Loes.xmc Abschlussprüfung an Fachoberschulen in Bayern Mahemaik mi 05 Analysis A Ausbilungsrichung Technik.0 Gegeben sin ie reellen Funkionen f a : x --> x x x Definiionsmenge D fa R

Mehr

Unendliche Folgen und Reihen

Unendliche Folgen und Reihen . ) Zu Beginn befinde sich ein neu geborenes Kaninchenpaar K im Gehege (), ebenso zu Beginn des zweien Monas (), zu Beginn des drien Monas wird ein Kaninchenpaar K geboren (), zu Beginn des vieren Monas

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quaniaives Risikomanagemen Dynamische Kredirisikomodelle II Jens Brumhard Mahemaisches Insiu der Universiä zu Köln Winersemeser 9/1 Bereuung: Prof. Schmidli, J. Eisenberg Inhalsverzeichnis 4 Pricing mi

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Stochastische Analysis

Stochastische Analysis Skrip Sochasische Analysis Seffen Schwarz 17. April 216 Dozen: PD Dr. Volker Paulsen Fakulä für Mahemaik Wesfälische Wilhelms-Universiä Münser Inhalsverzeichnis Einleiung 1 I Sochasische Inegraion 1 1

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizschule Hannover - Seminararbei - Medikameneneinnahme -Modellierung- M D Schuljahr: 20 Fach: Mahemaik Inhalsverzeichnis 1 Einleiung 2 2 Einfache Verabreichung 3 21 Die inravenöse Variane 3 22 Die

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr