Das virtuelle Bildungsnetzwerk für Textilberufe

Größe: px
Ab Seite anzeigen:

Download "Das virtuelle Bildungsnetzwerk für Textilberufe"

Transkript

1 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete / 9 Grudlage der Statstk Uter eer Statstk versteht ma ee Aufglederug vo Merkmale eer Gesamthet ud de Utersuchug hrer Vertelug. Merkmale sd z.b. Läge, Gewcht, Fehet, Dehug, Festgket,... De Gesamthet umfasst alle möglche Ezelobjekte eer statstsche Utersuchug, de Ezelobjekte werde machmal auch Merkmalsträger oder m Zusammehag mt Prüfuge - Messprobe geat. De Egeschafte, de be eer statstsche Utersuchug vo Iteresse sd, heße Merkmale. De Ergebsse eer statstsche Utersuchug werde daher auch Merkmalsauspräguge geat. De Auswertug eer Statstk st a Skale oretert. Dabe uterschedet ma: Nomalskala Ordalskala Beebare Merkmale ohe Ragfolge we Beruf, Blutgruppe, Wareherkuftslad Oft werde ur zwe Merkmalsauspräguge verwedet, z.b.: schwarz/weß oder mälch/weblch. De Merkmalsauspräguge gebe e Ragfolge weder: z.b.: heß/warm/lau/kühl/kalt/eskalt oder groß/mttel/kle Kardalskala De Merkmalsauspräguge lege als Zahlewerte vor: z.b.: Gewcht, Azahl Dabe köe dskrete ("abzählbare") Ergebswerte (z.b. atürlche Zahle) oder kotuerlche ("überabzählbare") Werte (mest reelle Zahletervalle) zugelasse se. Ma sprcht desem Zusammehag auch vo dskrete bzw. kotuerlche Merkmale. Bespel: Grudgesamthet: Täglche Garsorterug eer Rgspmasche Fehet 0 tex) (Soll- Ezelobjekt (Merkmalträger): Kops Merkmal: Fehet ( tex). Merkmalausprägug: Zahlewerte zwsche 7,00 ud 3,00 Skala: (kotuerlche) Kardalskala Messbare Merkmale sd der Regel kotuerlche Merkmale. E statstsches Expermet, also ee Prüfug oder Umfrage o.ä., wrd etweder auf de Gesamthet oder ee Tel davo, der zufällg ausgewählt wurde, agewadt. Im letzte Fall sprcht ma vo eer Stchprobe. De ezele Messwerte trete dabe uterschedlch häufg auf ud blde ee sogeate Häufgketsvertelug. De relatve Häufgket (d.h. der Quotet aus der Azahl des Auftretes ud dem Umfag des Expermets bzw. der Stchprobe) st e ugefähres Maß für de Wahrschelchket dafür, dass der jewelge Wert als Ergebs etrtt.

2 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete / 9 Zur Auswertug eer Stchprobe sd bestmmte Parameter zu bereche, de ee Beurtelug der Ergebsse ermöglche. Des sd ebe de Häufgkete erster Le de Lage- ud de Streumaße. De Lagemaße sd de Bezugspukte für de zetrale Lage der Ergebsse. Sd de Ergebsse kardal skalert, d.h. lege se Form vo Messergebsse vor, so wrd der Durchschtt der Messwerte, also hr arthmetsches Mttel als häufgstes Lagemaß verwedet: x = x = Dabe st der Umfag der Stchprobe, also de Azahl der durchgeführte Messuge, ud de x sd de ezele Messwerte. Der arthmetsche Mttelwert st glechzetg e Schätzwert für de Erwartugswert m der Grudgesamthet, das st der "m Mttel" zu erwartede Wert des Expermets, glechsam der Durchschttswert bezoge auf de Grudgesamthet. De Schätzug st der Regel umso geauer je größer der Stchprobeumfag st. Nebe dem arthmetsche Mttelwert st der Meda e weteres, häufg verwedetes Lagemaß. Der Meda wrd we folgt bestmmt: Ma ordet zuächst de Messergebsse der Größe ach. Ist der Stchprobeumfag ee ugerade Zahl, so st der Meda der geau der Mtte der geordete Stchprobe legede Wert, st der Umfag gerade, so bldet der Durchschtt der bede der Mtte legede Werte de Meda. Der Meda st aders als der Mttelwert uabhägg vom Abstad zu de ezele Messwerte ud daher uempfdlch gege sogeate Ausreßer, das sd Messwerte, de um mehr als de verfache Stadardabwechug vom Mttelwert etfert sd. Außerdem ka der Meda auch be ordal skalerte Merkmale verwedet werde. Das drtte wchtge Lagemaß st der sogeate Modalwert, das st der Wert uter de Messergebsse, der am häufgste vorkommt. We der Meda st auch der Modalwert uabhägg vo der Etferug zu de ezele Messwerte. Der Modalwert st zwar cht mmer edeutg bestmmt, aber er ka auch für ordal ud omal skalerte Merkmale verwedet werde. Nebe der Lage eer Stchprobe st auch de Streuug der Messwerte vo großer Bedeutug für de Auswertug ud Aalyse der Date. De Streuug wrd durch de sogeate Streumaße beschrebe. De wchtgste sd: De Spawete, das st de Dfferez zwsche dem größte ud dem kleste Wert eer Stchprobe. De Spawete gbt also de maxmale Streuug der Messwerte a. Häufger als de Spawete werde de Streumaße Varaz ud Stadardabwechug verwedet. Dabe st de Varaz das Quadrat der Stadardabwechug ud wrd we folgt berechet: s = (x x ) =

3 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete 3 / 9 De Stchprobestadardabwechug st e Schätzwert für de Stadardabwechug s der Grudgesamthet, das st de m Mttel zu erwartede Streuug der Ergebsse ees statstsche Expermets um de Erwartugswert. Auch deser Schätzwert wrd der Regel mmer geauer, je größer der Stchprobeumfag st. E wchtges Qualtätsmerkmal textler Produkte st der Varatoskoeffzet, mest c v -Wert geat. Deser wrd als Quotet der Stchprobestadardabwechug ud des arthmetsche Mttels berechet ud mest als Prozetzahl agegebe. Der Varatoskoeffzet ka also auch als relatve Streuug bezechet werde. Bespel: Aus der täglche Garsorterug eer Rgspmasche werde 0 Kopse zufällg ausgewählt. De Soll-Fehet betrage 0 tex. Kops Nr Fehet [ tex ] (x - x) x = 0. s = 0.03 s = 0.76 c v = 0. % Der Meda st desem Fall 0,05, der Modalwert 0,0, de Spawete beträgt = 0,6. Uter der absolute Häufgket j ees Wertes versteht ma de Azahl sees Auftretes eer Stchprobe, see relatve Häufgket hj st gegebe durch hj = j/. Wert j h j f j De fj sd de aufsummerte relatve Häufgkete: fj = h + h hj, se werde auch kumulerte Häufgkete geat. Grafsche Darstellug der relatve Häufgkete ( %) als Säuledagramm: 40% 35% 30% 5% 0% 5% 0% 5% 0% 9,9 0,0 0, 0, 0,3 0,4 0,5

4 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete 4 / 9 Be kotuerlche Merkmale ud zur bessere Überscht be vele Messwerte (sbesodere we gerge absolute Häufgkete vorlege) fasst ma de Ergebsse sogeate Klasse zusamme. Zur verefachte Auswertug berechet ma de statstsche Parameter da cht aus de ezele Messwerte, soder aus de Klassemtte oder Klassemttelwerte, d.h. ma ersetzt de ee bestmmte Klasse fallede Messwerte durch de jewelge Klassemtte bzw. de Klassemttelwert. Bespel: Be der Prüfug der Festgket ees Kammgars st ee Stchprobe vom Umfag = 50 erhobe worde, de Werte werde Klasse der Brete w = 0 zusammegefasst. Absolute Klasseummer z k Klassegrezemtte a k Klasse- Strchlste Häufgket k k z k k z k ab 0 ab 300 ab 30 ab 340 ab 360 ab 30 ab 400 ab 40 ab 440 ab 460 ab w = 0 a = 390 = 50 A = 9 B = 97 x = 397,6 s = 549,4 s = 39,4 Dabe st w = 0 de (kostate) Klassewete, a k de Klassemtte der k-te Klasse. Be der Klasseummermethode erhält de mttlere Klasse (oder de Klasse mt der höchste Häufgket) de Klasseummer 0, hre Klassemtte de Wert a, de übrge Nummererug ka ma der Bespeltabelle etehme. Se geügt der Formel: z k = (a k - a)/w. Mt de Hlfsgröße A ud B (sehe Tabelle: Spaltesumme) berechet ma da Mttelwert ud Varaz ach de Formel: x = a + w A/ ud s = (B - ) - De Ergebsse werde als Säuledagramm dargestellt, das be eer Klasseauswertug Hstogramm geat wrd. I der Praxs werde gelegetlch auch uregelmäßge Klassewete verwedet, de a de Ergebsse ud Problemstellug agepasst sd. w A

5 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete 5 / 9 Klassehstogramm zum beschrebee Bespel: Auf der x-achse werde statt der relatve Klasseummer häufg de Klassemtte aufgetrage, auf der y-achse statt der absolute oft de relatve Häufgkete ( Prozet). Klasseetelug ach DIN: < 00 Werte: mdestes 0 Klasse Werte: mdestes 3 Klasse Werte: mdestes 6 Klasse Werte: mdestes 0 Klasse Be kotuerlche Merkmale beschrebt ee sogeate Dchtefukto de Wahrschelchket dafür, dass e Wert eem etsprechede Zahleberech legt. De wchtgste Dchtefukto st de wege hrer Form "Gaussche Glockekurve" geate Dchtefukto der Normalvertelug, ud zwar deshalb, wel ma be geüged großem Stchprobeumfag stets vo eer ormalvertelte Größe ausgehe ka. De Kurve mmt hr Maxmum für de Erwartugswert µ a, de Wedepukte, das sd de Pukte, dee de Krümmug hre Oreterug ädert, sd µ - σ ud µ + σ. De Wahrschelchket dafür, dass e Messwert zwsche zwe Zahle legt, wrd durch de Ihalt der 0.5 Fläche agegebe, de de Glockekurve zwsche dese Zahle auf der waagerechte Achse egetrage - mt deser Achse eschleßt. Mathematsch wrd deser Sachverhalt durch e Itegral ausgedrückt: 0 x µ σ b p(a X b) = δ( x) dx wobe δ (x; µσ, ) = e de Dchtefukto der a σ π Normalvertelug st. De auf der waagerechte Achse abgetragee Zahlewerte et ma de Quatle (der Normalvertelug). Legt be eem statstsche Expermet ee Normalvertelug vor, so lege 6,3% der Ergebsse m Itervall [µ - σ, µ + σ], 95,4% m Itervall [µ - σ, µ + σ] ud 99,7% m Itervall [µ - 3σ, µ + 3σ]. De glt äherugswese auch, we ma µ durch x ud σ durch s ersetzt. Werte außerhalb des Itervalls [µ - 6σ, µ + 6σ] bezechet ma als Ausreßer.

6 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete 6 / 9 Ka ma be eer statstsche Utersuchug vo eer bestmmte Vertelug ausgehe, da lasse sch sogeate Vertrauesbereche für vele statstsche Parameter agebe. Dazu legt ma vorab ee Irrtumswahrschelchket a fest, de agbt, mt welcher Wahrschelchket der betrachtete Parameter außerhalb des Vertrauesbereíches legt, γ = - α et ma de etsprechede Scherhetswahrschelchket. Für de arthmetsche Mttelwert ud de Stadardabwechug eer Stchprobe, be dere Auswertug vo eer Normalvertelug ausgegage werde ka, sd de Vertrauesbereche we folgt gegebe: De tm; α / s x t x t <µ< + ud s σ s ; α/ ; α/ χ α/;m χ α/;m ud χ α;m sd dabe de Quatle der t- bzw. c -Vertelug, zwe weterer kotuerlcher Verteluge, de tabellerter Form de meste Statstkbücher zu fde sd. I Excel ka ma de Quatle mt de Fuktoe TINV bzw. CHIINV bestmme. I de Formel st jewels der Stchprobeumfag, m = - gbt de Zahl der Frehetsgrade a. Bespel (Fortsetzug): Für das obge Bespel der Fehetskotrolle mt dem Mttelwert 0, ud der Statdardabwechug 0,76 ergebe sch be eer Irrtumswahrschelchket vo 5% de Vertrauesbereche [9,974 ; 0,6] für de Erwartugswert, wobe = 0 ud t 9;0,05 = 3,6 [0, ; 0,3] für de Stadardabwechug mt χ 0,05;9=,700 ud χ 0,975;9= 9,03. s Für Qualtätskotrolle werde machmal auch de Wete der Vertrauesbereche vorgegebe. Zur Errechug solcher Vorgabe st häufg e großer Stchprobeumfag ötg. De Bestmmug der Vertrauesbereche det zur Kotrolle, bespelswese ob se vorgegebee Sollwerte ethalte. Se lasse sch Prüfgröße für statstsche Tests umreche ud werde zur Bestmmug vo War-/Fehlergreze be Qualtätsregelkarte verwedet. Bslag habe wr ur Stchprobe für e Merkmal betrachtet. I der statstsche Awedug st es aber häufg wchtg, mehrere Merkmale auf hre Zusammehäge zu utersuche. Qualtatv gescheht des durch de Utersuchug der Kovaraz bzw. der Korrelato der Merkmale, quattatv wrd des durch Regressoskurve beschrebe.

7 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete 7 / 9 Sd be eer Stchprobe zwe Merkmale x ud y utersucht worde, so berechet ma de emprsche Kovaraz durch de Formel: s xy = (x x)(y y) = Ihr Wert legt zwsche - ud ud st daher cht sehr aussagekräftg, für de Praxs besser geeget st der emprsche Korrelatoskoeffzet r xy s = = (x x)(y y) xy ss x y (x x) (y y) der Werte zwsche ud ammt ud folgedermaße terpretert wrd: Ma et de Merkmale x ud y postv korrelert, we r xy ahe be legt, egatv korrelert, we r xy ahe be legt, ukorrelert, we r xy der Nähe vo 0 legt. r xy st e Maß für de Güte der Korrelato, ma sprcht auch vo der "Straffhet" des Zusammehags zwsche de Merkmale. Bespel Zusammehag zwsche Ktterwkel ud Scheuertüchtgket vo Zellwollgewebe A eer Rehe vo ktterecht ausgerüstete Zellwollgewebe war zur Bewertug der Ktterwkel ach DIN EN 33 ermttelt worde. Glechzetg erfolgte auf eem Rudscheuergerät ee Überprüfug der Scheuertüchtgket deser Gewebe, wobe de Azahl der Scheuertoure bs zum erste Auftrete eer Verletzug ermttelt wurde. Gewebe-r Ktterwkel x Zahl der Scheuertoure y x = 3.6 y = 44.4 r xy = De Merkmale sd egatv korrelert, d.h. je größer der Ktterwkel desto eher trtt e Gewebeschade auf.

8 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete / 9 Ist r xy =, so lege de Pukte (x,y ) auf eer Gerade mt postver Stegug, st r xy = -, so lege de Pukte (x,y ) auf eer Gerade mt egatver Stegug. Aderfalls st ma dara teressert, ob de Puktwolke etwa durch ee Gerade ageähert werde ka. Ma kostruert de Gerade y = ax + b so, dass de Summe der Abstadsquadrate (y ax - b) mmal wrd, de Gerade et ma de Regressosgerade, das Verfahre "Leare Regresso". Für de emprsche Regressoskoeffzete a glt: a = (x x)(y y) (x x) Der durch de Mttelwerte bestmmte Pukt ( x,y ) legt stets auf deser Gerade. Daher glt außerdem: b = y ax. Für das umsetge Bespel ergbt sch: y = -9,47 x + 669,5 Das Ergebs st wege der wege Messwerte allerdgs mt eer gewsse Vorscht zu betrachte ud sollte eer statstsche Aalyse (t-test mt Z- Trasformato ach Fsher) uterzoge werde Nebe der sogeate "Maßkorrelato" für ormalvertelte Stchprobe gbt es vertelugsfree Auswertugsverfahre, de sogeate "Ragkorrelato". Herbe werde de Stchprobe cht durch de Messwerte selbst, soder durch dere Rehefolge bewertet. Dese Ragfolge werde für de bede Merkmale Bezug zueader gesetzt ud daraus Ragkorrelatoskoeffzete berechet, mest ach Spearma oder Kedall. Ma ka de Ragkorrelato also auch auf ordalskalerte Merkmale awede. Der Spearmasche Ragkorrelatoskoeffzet ergbt sch be eem Stchprobeumfag = = s (u v) vo durch u {,...,} ud v {,...,} zu r 6 ( ) Auch r s legt zwsche - ud, wobe völlge Überestmmug de Räge ud - geau gegeläufge Ragfolge bedeutet.

9 Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: Sete 9 / 9 Bespel: Zwe Prüfer beurtele de Grff vo sebe Gewebeprobe durch folgede Ragfolge: Probe Prüfer(u ) Prüfer(v ) u - v (u - v ) r s = 6 = 0,57 Es legt offebar ee postve Korrelato vor. 7(49 )

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1 Vorlesugsuterlage Statstk ud Wahrschelchketstheore für Iformatker (Tel: Deskrptve Statstk) (WS 6/7) vorläufge Fassug Was st Statstk? Deskrptve Statstk (beschrebed, zusammefassed) Iduktve Statstk (vo Stchprobe

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8,

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8, Igrd A. Uhlema (015): Eführug de Statstk für Kommukatoswsseschaftler. Ole Ahag: Lösug der Übugsaufgabe Kaptel 5-8, Lösug der Übugsaufgabe Kaptel 5: Aufgabe 1: Geg.: Persoalserug ordal skalert, dskret Dauer

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Regressionsgerade, lineares Modell:

Regressionsgerade, lineares Modell: Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Eführug Durch de Regressosaalyse wrd versucht, de Art des Zusammehags

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig Eschlägge Begrffe zur Meßuscherhet /7 Eschlägge Begrffe zur Meßuscherhet Dr. Wolfgag Kessel, Brauschweg De Aufstellug folgt cht der re lexografsch-alphabetsche Aordug. Verwadte Begrffe sd velmehr zu Gruppe

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

4.3 Statistik des radioaktiven Zerfalls

4.3 Statistik des radioaktiven Zerfalls 4.3 Statstk des radoaktve Zerfalls Stchworte: Radoaktvtät, -, -, -Strahlug, Geger-Müller-Zählrohr, Statstk, Posso- ud Gauß-Vertelug, Stadardabwechug, Rehetszahl, statstsche Aalyse. Theoretsche Grudlage

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Test für Varaz Estchprobetest für de Varaz: Hat de Varaz ee bestmmte Wert, bzw. legt er eem bestmmte Berech? Etschedug basert auf dem Ergebs eer ezge Stchprobe. Zwestchprobetest für

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse Hochschule Müche Fakultät Wrtschaftsgeeurwese Dateaalyse Prof. Dr. Volker Abel Verso. Ihaltsverzechs Ihaltsverzechs. Auswertug ud Modellerug vo Zähldate.... Auswertug vo prozetuale Häufgkete.... Auswertug

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel.

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel. J SCHIRA, C MÜLLER / Statstk I / SS 005 Maßzahle 6 Maßzahle Arthmetsches Mttel Das für quattatve Merkmale am häufgste verwedete Lokalsatosmaß st das arthmetsche Mttel Defto: De Größe := = heßt arthmetsches

Mehr

II. Beschreibende Statistik

II. Beschreibende Statistik II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practcal Numercal Trag UKNum Statstk, Datemodellerug PD. Dr. C. Mordas Ma-Plack-Isttute für Astroome, Hedelberg Programm: ) Repetto elemetare Statstk 2) Regressosaalyse 3) Leare Regresso 4) Ncht-leare

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

Einführung in die beschreibende Statistik

Einführung in die beschreibende Statistik Eführug de beschrebede Statstk Alte Katosschule Aarau Fachschaft Mathematk erstellt vo Roger Sa, Roger Keller ud Marae Ste 05, Verso 6 Ihalt Eletug Grudbegrffe 3 3 Darstellug vo Date 6 4 Etelug Klasse

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Skript Teil 7: Polygonzug

Skript Teil 7: Polygonzug Prof. Dr. tech. Alfred Mschke Vorlesug zur Verastaltug Vermessugskude Skrpt Tel 7: Polgozug Der Begrff Polgo letet sch aus Pol = vel ud Go = Wkel ab ud bedeutet uregelmäßges Veleck. Das Polgoere det zum

Mehr

Regressions- und Korrelationsanalyse

Regressions- und Korrelationsanalyse Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme aus der deskrptve Statstk Regressos- ud Korrelatosaalyse Modellaufgabe Übuge Lösuge www.f-lere.de Was bedeutet Regressos-

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Deskrptve Statstk Formelsammlug Statstk. Edmesoale Häugketsverteluge Merkmal: X Datemege (Stchprobe) vom Umfag N: x, x 2,..., x geordete Stchprobe: x (), x (2),..., x () mt x () x (2)... x () Auspräguge

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Maßzahlen zur Beschreibung von Verteilungen

Maßzahlen zur Beschreibung von Verteilungen Programmcode: Lagemaße Maßzahle zur Beschrebug vo Verteluge > c(0,,5,6,3,0,-) > mea() [] > meda() [] > table() - 0 3 5 6 kee drekte Modusfukto 0 zwemal Uvarate Deskrpto ud Eplorato vo Date - Maßzahle zur

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk 1 für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Lageparameter Sete Glederug des Kurses: I II Allgemee Grudlage Statstsche Aalyse ees ezele Merkmals Aalyse/Beschrebug ees ezele Merkmals Zel: Verdchtug (Komprmerug) eer uüberschaubare Datemege Komprmerede

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

3.5 Einzelwerte (Datenreihen) Häufigkeitsverteilungen Häufigkeitsklassen

3.5 Einzelwerte (Datenreihen) Häufigkeitsverteilungen Häufigkeitsklassen Thema 3 Häufget Statst - Neff INHALT 3.5 Ezelwerte (Daterehe) Häufgetsverteluge Häufgetslasse Etsprechede Formel für x ud s - : Gewchtug mt h Klassemtte x* Hstogramme mt de Dchte f = Rechtechöhe: f = h

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Quantitative Geochemie mit Excel

Quantitative Geochemie mit Excel Kompaktkurs Quattatve Geocheme mt Excel Vom Meßwert zur petrogeetsche Modellerug geochemscher Date. ag: DAENAUFBEEIUNG Dateegabe ud Normerug Statstsche Kegröße Auswertug ees ICP-MS Datesatzes (Stöchometrsche

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Folien zur Vorlesung. Statistik für Prozesswissenschaften. (Teil 1: Beschreibende Statistik) U. Römisch

Folien zur Vorlesung. Statistik für Prozesswissenschaften. (Teil 1: Beschreibende Statistik) U. Römisch Fole zur Vorlesug Statstk für Prozesswsseschafte (Tel : Beschrebede Statstk) U. Römsch http://www.lmtc.tu-berl.de/agewadte_statstk_ud_cosultg Ihaltsverzechs EINLEITUNG. Was versteht ma uter Statstk, Bometre,

Mehr

1 n xi. = å. 1 k. i i

1 n xi. = å. 1 k. i i Thema 4 Wahrschelchet Statst - Neff INHALT 4.3 Kotgez => Ch -Uabhäggetstest (= Ch -Kotgeztest) wr beutze h = / als Näherug für de Wahrschelchete ab 4.6 De Asätze für de Maßzahle "Mttelwert" ud "Varaz"

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr