Übungsteil: 1. Algebra

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsteil: 1. Algebra"

Transkript

1

2 lgebr Übungsteil: lgebr Gleichungssysteme: estimmen Sie die Lösungsmenge folgender Gleichungssysteme: ) y + 7 = 5x x + y = 7 c) y = x 9 6x 0 = y b) y = 5x y = x d) x + 5y = 05 0,5y = x,5 e) 0(x + y) = 77 x y (5x ) + y = 0y + x f) (y ) 6(x ) = 0 5(y + ) 6(x + ) = 0 g) y 9 = x h) x = 7 y + y = 5 x 7 + y = x i) x + y + x 6 = x y 5y x = j) x + y = 5 y + = x 0 k) x y 5x y = y x = y l) y 5 x = 7 y + x = Qudrtische Gleichungen: ufgbe : estimmen Sie die Lösung der qudrtischen Gleichung, ohne die p,q-formel zu benutzen ) x = b) x = 50 c) d) x 9 = 0 e) x + 6 = 0 f) x = 8 x 6 = 0 g) 5x + x = 0 h) x x = 0 i) x + x = 0 ufgbe : estimmen Sie die Lösung der qudrtischen Gleichung ) x + x 5 = 0 b) x x = c) x x 0 = 0 d) (x + ) 9x = e) (x ) (x + 5) = f) x x + = g) 5x + (x )(x + ) = 0x h) (x + ) (x + 5) = (x + ) i) (x ) (x + )(x + ) = 6 Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten!

3 lgebr Übungsteil: lgebr ruchgleichungen: estimmen Sie die efinitionsmenge und die Lösungsmenge: ) x + x = b) 8 5x = x c) x x + = 5 x d) x+ 8 x = e) 6x g) 0x x 5 = x h) x x = f) x x+ + x+ = i) x x+ x(x+) x = x + x+ = x x (x+) j) x x+5 = 6 k) x(x+5) 6 x+6 = l) = 5(x ) 5+x m) 8 x 5 x+ 5 = x 5 n) 8 x x + x+9 x = Qudrtische und linere Funktionen: ufgbe : Geben Sie die Koordinten des Scheitelpunkts der Prbel n ) y = (x ) + b) y = (x + 5) + c) y = (x ) 7 d) y = x,5 e) y = (x +,5) f) y = (x + 0,5) + 0,5 ufgbe : Wndeln Sie in die Scheitelform um und bestimmen Sie die Scheitelkoordinten ) y = x + x + 5 b) y = x 8x + c) y = x + x 7 d) y = x + 5x,5 e) y = x + x + 8 f) y = x 0x + 5 g) y = x + 8x h) y = x 5x + i) y = x 5x + ufgbe : estimmen Sie die Schnittpunkte mit den Koordintenchsen ) y = x + x b) y = x x 8 c) y = x 9x 5 d) y = x 0x 7 e) y = 0x + 5x 0 f) y = 6x 5x + ufgbe : ie verschobene Normlprbel ht ihren Scheitel im Punkt S Geben Sie die Prbelgleichung in der Form y = x + px + q n: ) S( 5) b) S( ) c) S( 6 0) d) S(0 ) e) S( ) f) S( 5 ) Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten!

4 lgebr Übungsteil: lgebr ufgbe 5: ie verschobene Normlprbel geht durch die Punkte und Geben Sie jeweils die Prbelgleichung in der Form y = x + px + q n: ) ( ), ( 6) b) ( 8), ( 7) c) (0 5), (6 5) ufgbe 6: estimmen Sie die Koordinten der Schnittpunkte zwischen den beiden Prbeln bzw zwischen der Prbel und der Gerden: ) p : y = 5x 6x + und p : y = x + 8x 8 b) p : y = x + x und g: y = x c) p : y = x + x und p : y = x + 0x + d) p : y = x x + 0 und p : y = x + 0x 6 e) p : y = 6x + x und p : y = x + x + f) p : y = x 7 x + 5 und g: y = x + ufgbe 7: estimmen Sie mit den Vorgben die Funktionsgleichung der Gerden g: ) Steigung m =, der Punkt P( ) liegt uf g b) Steigung m =, der Punkt P( 5) liegt uf g c) Steigung m =,5, der Punkt P(0 5) liegt uf g d) Steigung m =, der Punkt P( ) liegt uf g e) ie Gerde g verläuft durch den Punkt Q( ) und ist prllel zur Gerden h: y = 5x f) ie Gerde g verläuft durch den Punkt ( 6 0) und ist prllel zur Gerden h: y = x + 5 ufgbe 8: estimmen Sie jeweils die Gleichung der Gerden, die durch die zwei ngegebenen Punkte läuft ) ( ), (0 ) b) R( ), S(5 ) c) P(5 0), Q(0 ) ufgbe 9: Zeichnen Sie die Schubilder folgender Funktionen: ) y = 5 x b) y = x + c) y = 7 x +,5 d) y = 0,75x +,5 Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten!

5 Stereometrie Übungsteil: Stereometrie Kegel und Zylinder: ufgbe : Ein Kegel ht die Mntelfläche M = 5 cm und die Mntellinie s =, cm erechnen Sie den Rdius und ds Volumen des Kegels Wie groß ist der Rdius einer Hlbkugel mit dem gleichen Volumen? h s ufgbe : Von einem Kegel sind beknnt: Kreisrdius r =,8 cm und Körperhöhe h = 6, cm erechnen Sie die Mntellinie s und die Oberfläche des Kegels r ufgbe : Eine kegelförmige Schultüte ht ds Volumen V = 5 Liter er Grundkreisrdius r beträgt 0 cm erechnen Sie die Höhe und die Mntellinie des Kegels ufgbe : Gegeben ist ein Kreiskegel mit der Mntellinie s = 8,5 cm ie Mntellinie ist um 8,0 gegen die Grundfläche geneigt erechnen Sie ds Volumen des Kegels ufgbe 5: er Umfng u der Grundfläche eines Kegels beträgt 5,8 cm ie Oberfläche ist O = 6 cm erechnen Sie die Mntellinie s und ds Volumen des Kegels ufgbe 6: Gegeben ist ein Kegel mit der Körperhöhe h = 6e ie Mntellinie s ist um 60 gegen die Grundfläche geneigt Zeigen Sie ohne Verwendung gerundeter Werte, dss die Mntelfläche mit der Formel M = π e berechnet werden knn ufgbe 7: Gegeben ist ein Kegel mit α = 68 und h = 5 cm Wie groß ist die Oberfläche einer volumengleichen Hlbkugel? h α ufgbe 8: Von einem Kegel sind beknnt: M = 5 cm (Mntelfläche) und r = 6 cm (Rdius der Grundfläche) Ein Zylinder mit gleicher Grundfläche ht ds gleiche Volumen wie der Kegel erechnen Sie die Höhe des Zylinders Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten!

6 Stereometrie Übungsteil: Stereometrie Qudrtische Pyrmide: ufgbe : Gegeben ist eine qudrtische Pyrmide mit der Mntelfläche M = 95,8 cm und der Seitenhöhe h s = 7,5 cm erechnen Sie die Grundknte und ds Volumen der Pyrmide h s h s ufgbe : Von einer qudrtischen Pyrmide sind beknnt: Grundknte =,8 cm und Seitenknte s = 5,9 cm erechnen Sie ds Volumen und die Oberfläche der Pyrmide ufgbe : Eine qudrtische Pyrmide ht ds Volumen V = 675 cm und die Grundknte = 8, cm erechnen Sie den Winkel ε zwischen der Pyrmidenhöhe h und einer Seitenknte s ufgbe : ie Seitenfläche einer qudrtischen Pyrmide ist ein gleichseitiges reieck mit der Seitenlänge s = 8,6 cm erechnen Sie die Körperhöhe, ds Volumen und die Oberfläche der Pyrmide ufgbe 5: ie Grundfläche G einer qudrtischen Pyrmide beträgt 6, cm ie igonle der Grundfläche schließt mit einer Seitenknte den Winkel α = 58,0 ein erechnen Sie die Oberfläche der Pyrmide ufgbe 6: Von einer qudrtischen Pyrmide sind beknnt: Grundknte = 6e und Seitenhöhe h s = 5e Zeigen Sie ohne Verwendung gerundeter Werte, dss ds Volumen der Pyrmide mit der Formel V = 8e berechnet werden knn ufgbe 7: er igonlschnitt einer qudrtischen Pyrmide ist ein gleichseitiges reieck mit der Seite s = 7,8 cm erechnen Sie die Körperhöhe h, die Grundknte und die Mntelfläche der Pyrmide ufgbe 8: 5,6 cm ie Skizze zeigt den chsenschnitt eines Würfels mit ufgesetzter Pyrmide erechnen Sie die Oberfläche und ds Volumen des zusmmengesetzten Körpers 7, cm Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten! 5

7 Mehrseitige Pyrmiden Übungsteil: Stereometrie Mehrseitige Pyrmiden: ufgbe : Von einer regelmäßigen fünfseitigen Pyrmide sind gegeben: Grundknte = 7,5 cm h s Mntelfläche M = 90 cm erechnen Sie die Höhe h s der Seitenfläche und den Winkel ε ε ufgbe : Von einer regelmäßigen fünfseitigen Pyrmide sind beknnt: Grundknte = 6,8 cm und Körperhöhe h =,5 cm erechnen Sie die Seitenknte s und die Höhe h s einer Seitenfläche ufgbe : Für eine mssive regelmäßige sechsseitige Pyrmide gilt: V = 90 cm und = 8,0 cm (Grundknte) Von der Pyrmide wird durch zwei senkrechte Schnitte ein rittel entfernt er Restkörper ht die gru mrkierte Grundfläche erechnen Sie die Oberfläche dieses Restkörpers ufgbe : Von einer regelmäßigen fünfseitigen Pyrmide sind gegeben: Höhe einer Seitenfläche h s = 9,8 cm ε = 7, (Winkel zwischen h s und der Grundfläche) h s erechnen Sie den Flächeninhlt der Grundfläche der Pyrmide ε ufgbe 5: Von einer regelmäßigen neunseitigen Pyrmide sind beknnt: Mntelfläche M = 60 cm und Grundknte = 7,8 cm erechnen Sie ds Volumen der Pyrmide ufgbe 6: Von einer regelmäßigen chtseitigen Pyrmide sind beknnt: Seitenknte s = 9, cm und Neigungswinkel der Seitenknte s zur Grundfläche ε = 56 erechnen Sie ds Volumen der Pyrmide ufgbe 7: Ein regelmäßiges Fünfeck ht die Seitenlänge =,8 cm Verlängert mn lle Fünfeckseiten, so entsteht ds Netz einer regelmäßigen Pyrmide erechnen Sie die Mntelfläche und ds Volumen der Pyrmide Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten! 6

8 Trigonometrie Übungsteil: Trigonometrie reiecke: ufgbe : Im rechtwinkligen reieck gilt: = 9, cm und =,5 er Punkt E hlbiert die Seite erechnen Sie die Länge der Seitenhlbierenden E sowie den Winkel α α E ufgbe : Im reieck ist beknnt: = 8, cm; γ = 6,7 und δ = 65, erechnen Sie die Länge der Strecke γ δ ufgbe : Im reieck ist gegeben: α =, ; = 5,7 ; = 8,9 cm erechnen Sie die Längen der Strecken und α ufgbe : Im reieck ist gegeben: = 6,7 cm und = 8, cm er Flächeninhlt des reiecks beträgt = 5,9 cm erechnen Sie die Winkel α, und γ γ α ufgbe 5: Gegeben sind: = 9,8 cm und α = α = 8,6 erechnen Sie die Länge der Strecke α α ufgbe 6: In der Figur sind gegeben: = 7, und = =,6 cm erechnen Sie den Umfng und den Flächeninhlt des reiecks α Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten! 7

9 Trigonometrie Übungsteil: Trigonometrie Vierecke: ufgbe : Vom Trpez sind beknnt: = 8, cm; = 7, und = erechnen Sie die Länge der Strecke bzw ufgbe : Im Viereck sind gegeben: =,5 cm; =,8 cm; γ = 79,5 erechnen Sie den Winkel δ und den Umfng des Vierecks δ γ ufgbe : Gegeben ist ds Viereck Es gilt: =,8 cm = 05, cm δ =,8 cm δ = 69,8 erechnen Sie den Winkel ufgbe : Gegeben ist ds Trpez Es gilt: = e δ = e + 6e = 60 δ = 5 Zeigen Sie ohne Verwendung gerundeter Werte, dss für den Flächeninhlt des Trpezes gilt: = 6e + 0e Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten! 8

10 Trigonometrie Übungsteil: Trigonometrie Vielecke: ufgbe : Vom Fünfeck E sind beknnt: = 58, cm E = 7,6 cm =,8 cm = 6,5 erechnen Sie die Längen der Strecken E und E ufgbe : em Rechteck E sind zwei rechtwinklige reiecke ngefügt Gegeben sind: = 7,5 cm =,8 cm = 9,5 ε = 5,7 E ε erechnen Sie den Umfng des Sechsecks EF F ufgbe : Gegeben ist ds Fünfeck E Es gilt: E = 7, cm E =,6 cm ε E = 6, ε = 0,5 erechnen Sie die Länge der Strecke ufgbe : uf ds gleichschenklige Trpez E ist ds recht- winklige reieck E ufgesetzt eknnt sind: =,8 cm = E =, cm ie Höhe des Trpezes ist h = 5, cm erechnen Sie den Flächeninhlt des Fünfecks E Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten! 9

11 Schrechnen Übungsteil: Schrechnen Zinseszins und Rtenspren: ufgbe : Fru Knuser zhlt Jhre lng eine jährliche Rte von 50 Euro uf einen Rtensprvertrg ein Zinsen werden mitverzinst ie Zinssätze sind: Jhr:,5 %, Jhr:,75 %, Jhr: % Wie hoch ist der Zinsstz im Jhr, wenn sie für ds Jhr 8,6 Euro Zinsen gutgeschrieben bekommt? ufgbe : Ein Kpitl wächst in fünf Jhren bei einem gleichbleibenden Zinsstz von,8 % uf 765 Euro n Zinsen werden mitverzinst Wie hoch wr ds Strtguthben? Um wie viel Prozent ht sich ds Strtguthben insgesmt erhöht? ufgbe : Ein Kpitl von 7500 Euro wird im Jhr mit,5 % verzinst m Ende des Jhres werden 85,50 Euro Zinsen gutgeschrieben Nch bluf von Jhren ist ds Strtkpitl uf 8950,6 Euro ngewchsen Zinsen werden mitverzinst erechnen Sie die Zinssätze für ds zweite und dritte Jhr ufgbe : Herr Müller ht ein Kpitl zu folgenden Zinssätzen ngelegt: Jhr:,8 %, Jhr:,0 %, Jhr:,5 %, Jhr:,75 % Nch bluf der vier Jhre erhält Herr Müller 5,89 Euro usbezhlt Wie hoch wr der nfngsbetrg? Wie viel Zinsen ht Herr Müller insgesmt bekommen? ufgbe 5: Herr Jäger schließt einen Rtensprvertrg zu folgenden Zinssätzen b: Jhr:,7 %, Jhr:,0 %, Jhr:,5 %, Jhr:,5 % Im Jhr erhält er 850 Euro Zinsen gutgeschrieben Wie hoch wr die jährlich eingezhlte Rte? ufgbe 6: Ein Kpitl bringt in Jhren insgesmt 50 Euro Zinsen ein ie Zinssätze wren: Jhr:,5 %, Jhr:,8 %, Jhr:,5 % Welches Kpitl hätte mn bei einem gleichbleibenden Zinsstz von % nlegen müssen, um genuso viel Zinsen zu erhlten? Ende der Musterseiten zum Übungsteil (ie Originl-tei umfsst Seiten) Mthemtik-Verlg, wwwmtheverlgcom Nur zur nsicht ownlod verboten! 0

Realschule 2012. Mathematik. www.matheverlag.com. Mathematik-Verlag

Realschule 2012. Mathematik. www.matheverlag.com. Mathematik-Verlag Relschule 01 Mthemtik wwwmtheverlgcom Mthemtik-Verlg Vorwort: Sehr geehrte Schülerinnen und Schüler, mit diesem Prüfungsheft können Sie sich gezielt und systemtisch uf die Relschulbschlussprüfung in Mthemtik

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel:

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel: 16 7 8 9 4 5 6 1 2 3 1 2 13 14 15 5 6 1 2 3 4 b c A B 3 4 5 6 7 8 9 10 11 12 17 18 19 20 21 22 23 24 25 C 13 14 15 16 9 10 11 12 7 8 2 2 2 erste binomische Formel: ( + b) + 2b + b 2 2 2 zweite binomische

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges DOWNLOAD Mrco Bettner/Erik Dinges Vertretungsstunden Mthemtik 32 10. Klsse: Mrco Bettner/Erik Dinges Bergedorfer Unterrichtsideen Downloduszug us dem Originltitel: Vertretungsstunden Mthemtik 9./10. Klsse

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Pyramidenvolumen. 6 a2. 9 = a

Pyramidenvolumen. 6 a2. 9 = a Prmidenvolumen 1 Die Ecken einer dreiseitigen Prmide hben die Koordinten (0 0 0), ( 0 0), (0 0) und (0 0 ) mit > 0, H ist der Mittelpunkt der trecke [] lle Ergebnisse ls möglichst einfche Terme mit der

Mehr

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

1. Algebra 1.1. Gleichungssysteme Quadratische Gleichungen Bruchgleichungen Quadratische und lineare Funktionen...

1. Algebra 1.1. Gleichungssysteme Quadratische Gleichungen Bruchgleichungen Quadratische und lineare Funktionen... Inhalt der Lösungen: Algebra Gleichungssysteme Quadratische Gleichungen 6 Bruchgleichungen 6 4 Quadratische und lineare Funktionen 8 Stereometrie Kegel und Zylinder Quadratische Pyramide 5 Mehrseitige

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Fachschaft Mathematik am Gymnasium Donauwörth

Fachschaft Mathematik am Gymnasium Donauwörth Algebr 7: Zusmmenfssen gleichrtiger Terne: ) 5x 7x 3 3x + 5x +8 b) 3u 9v [(3u 8w) (u + 9v)] c) Distributivgesetz: ) -0,4c (,5 3 c 0, c 3 ) b) 7u 5 3u (u 3) 5 (u 4u + ) Ausmultiplizieren von Klmmern: )

Mehr

Grundwissen Jahrgangsstufe 9

Grundwissen Jahrgangsstufe 9 Grundwissen Jhrgngsstufe 9 GM 9. Qudrtwurzeln und die Menge der reellen Zhlen QUADRATWURZELN Unter der Qudrtwurzel us einer Zhl (kurz: Wurzel us, Schreibweise ) versteht mn diejenige nichtnegtive Zhl,

Mehr

Übungsaufgaben zur Körperrechnung

Übungsaufgaben zur Körperrechnung www.mthe-ufgben.com Übungsufgben zur Körperrechnung Aufgbe 0 cm cm h/ ) Die nebenstehende vierseitige Pyrmide ht die ngegebenen Mße. Berechne drus die Mntelfläche und ds Volumen der Pyrmide. b) Die Pyrmide

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

MB1 LU 5 und 12 Geometrische Grundbegriffe

MB1 LU 5 und 12 Geometrische Grundbegriffe M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin Hessisches Kultusministerium. Name der Schule

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin Hessisches Kultusministerium. Name der Schule bschlussrbeit Mthemtik ildungsgng Huptschule Hupttermin 15.05.006 Nme der Schule _, Nme der Schülerin / des Schülers Klsse GESMT NOTE 59 Punkte Ort, Dtum Korrigierende Lehrkrft erbeitungshinweise bschlussrbeit

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin: Hessisches Kultusministerium. Name der Schule

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin: Hessisches Kultusministerium. Name der Schule Abschlussrbeit Mthemtik Hupttermin: 30.05.005 Nme der Schule, Nme der Schülerin / des Schülers Klsse GESAMT NOTE 53 Punkte Ort, Dtum Korrigierende Lehrkrft Berbeitungshinweise Schreibe deinen Nmen uf lle

Mehr

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas Berechnungen m Prism Einführung des Prisms: Schüler ringen verschiedene Verpckungen mit in den Unterricht Klssifizierung der Verpckungen in Prismen und ndere Körper Erreitung der Eigenschften eines Prisms:

Mehr

Berechnung der Länge einer Quadratseite a:

Berechnung der Länge einer Quadratseite a: 2006 Pflichtbereich erechnung der Länge einer Quadratseite a: Zur erechnung der Quadratseite a benötigt man die ilfslinie ür die Quadratseite a gilt dann: a = + 57 erechnung der Strecke : Im reieck kann

Mehr

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3.

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3. I. Reelle Zhlen L9_0 Rtinle Zhlen: ; ;,8 ;, ; 9 7 L9_0 Irrtinle Zhlen: 7 ; + ; ; 8 8 8 L9_0 L9_0 L9_0 L9_0 8 + ist bereits vllständig vereinfcht! (Achtung: + +, vgl. Tschenrechner,, und,, ls +, ), : +

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e.

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e. K. D Alcmo / J. Dy: Lerninhlte selbstständig errbeiten Mthemtik 0 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Alle Knten des Prisms sind lng. Unterteile den Streckenzug zunächst in die Einzelstrecken,

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Muster für den Schultest. Muster Nr. 1

Muster für den Schultest. Muster Nr. 1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. gnz klr: Mthemtik - Ds Ferienheft mit Erfolgsnzeiger 8 Rettungsring Berechnungen m Dreieck & Viereck Begriffe: Umfng und Flächeninhlt 1 Muss der Umfng (u) oder der Flächeninhlt (A) erechnet werden? Kreuze

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen

Mehr

Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe

Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe Institut für ngewndte und Eperimentelle Mechnik Technische Mechnik I ZÜ 3.1 ufgbe 3.1 Bestimmen Sie mit Hilfe der entsprechenden Guldin schen Regel die Höhe der Schwerpunkte von homogenen Blechstücken,

Mehr

Abschlussprüfung Mathematik

Abschlussprüfung Mathematik Abschlussprüfung 0 Mthemtik 5. Mi 0, Klssen F08 und F08b Nme: Klsse: Hinweise: Zur Lösung der Aufgben stehen drei volle Stunden zur Verfügung. Als Hilfsmittel sind ein nicht lgebrfähiger und nicht grphikfähiger

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Inhalt der Lösungen zur Prüfung 2005:

Inhalt der Lösungen zur Prüfung 2005: Inhalt der Lösungen zur Prüfung 005: Pflichtteil Wahlteil ufgabe W1 10 Wahlteil ufgabe W 14 Wahlteil ufgabe W3 18 Wahlteil ufgabe W4 3 Wichtige Hinweise zum opyright: Das Werk und seine Teile sind urheberrechtlich

Mehr

Grundwissen Mathematik 7II-III

Grundwissen Mathematik 7II-III Grundwissen themtik 7II-III ultipliktion und ivision in QI Rechenregeln c c c d : b d b d b d b c Vorzeichenregeln + + + + + + + : + + : + : + + : Potenzgesetze. Potenzgesetz n m n m + eispiel: 7 + Ü:

Mehr

Mathematik für Berufsfachschüler und Berufsaufbauschüler

Mathematik für Berufsfachschüler und Berufsaufbauschüler Michel Buhlmnn Mthemtik für Berufsfchschüler und Berufsufuschüler Dten- und Aufgenlätter zur Mthemtik Version Essen 05 Vorwort Diese Smmlung us Dten- und Aufgenlättern geht us einer jhrelngen Tätigkeit

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

Umfangswinkelsatz. 1. Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? Begründe deine Antwort anhand einer Skizze.

Umfangswinkelsatz. 1. Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? Begründe deine Antwort anhand einer Skizze. Umfangswinkelsatz 1 Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? egründe deine ntwort 5 anhand einer Skizze 108, Zusammenhang zwischen ittelpunkts- und Umfangwinkel 2 Gegeben ist die Strecke []

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8

BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8 BMS Mthemtik T Abschlussprüfung_ Seite: / Nme: Abschlussprüfung Mthemtik technische BMS Teil Prüfungsduer Minuten Erlubte Hilfsmittel: Formelsmmlung ohne selbst gelöste Beispiele. Grfikfähiger Tschenrechner

Mehr

Lösungen Matur

Lösungen Matur Wirtschftliches Mturitätsprofil Seite 1 von 7 Mturitätsprüfung 007 Lösungen Mtur 006-007 1. (5 P.) Lut Wikipedi betrug die Weltbevölkerung m 1.1.1987 fünf Millirden Menschen, m 1.1.000 wren es 6 Millirden.

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Kapitel 10: Körperberechnungen 10.1 Quader

Kapitel 10: Körperberechnungen 10.1 Quader BMS orkur Mthemtik Kpitel 0: Körperberechnungen 0. Quder. ) l b h 6 7 68 cm S l b b h l h (6 ) ( 7) (6 7) 88 cm l b h 555 5 5 cm (Würfel: k ) S l b b h l h (5 5) (5 5) (5 5) 50 cm (Würfel: S 6k ) c) l

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr)

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr) 10. Klasse der Haupt-/Mittelschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 011 (0. Juni 011 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des Mittleren Schulabschlusses

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

Lösungen zur Prüfung 2005: Pflichtbereich

Lösungen zur Prüfung 2005: Pflichtbereich 005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Parallelprojektion einer Ebene in eine andere Ebene: Motivation für die Abbildungsvorschrift von Achsenaffinitäten.

Parallelprojektion einer Ebene in eine andere Ebene: Motivation für die Abbildungsvorschrift von Achsenaffinitäten. rllelprojektion durch Sonne 1 rllelprojektion durch Sonne 2 Kpitel 4: ffine bbildungen rllelprojektion einer Ebene in eine ndere Ebene: Motivtion für die bbildungsvorschrift von chsenffinitäten. E 1 Figuren

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele 6. Lndeswettbewerb Mthemtik yern. Runde 00/04 ufgben und Lösungsbeispiele ufgbe 1 ie Seite [] eines reiecks wird über hinus bis zum Punkt so verlängert, dss = n gilt (n N n>1). ie Gerde durch und den Mittelpunkt

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Grundwissen am Ende der 9. Jahrgangsstufe. Wahlpflichtfächergruppe I

Grundwissen am Ende der 9. Jahrgangsstufe. Wahlpflichtfächergruppe I Grundwissen m Ende der 9. Jhrgngsstufe Whlpflichtfächergruppe I Ssteme linerer Gleichungen mit zwei Vriblen lösen Qudrtische Gleichungen: Lösungsformel, edeutung der Diskriminnte, Koordinten der Schnittpunkte

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

STRATEGIEPAPIER für Abschlussprüfungen

STRATEGIEPAPIER für Abschlussprüfungen .) Gleichungen: STRATEGIEPAPIER für Aschlussprüfungen.) normle Gleichungen : Auflösen nch (oder einer nderen Vrilen) Bestimmen der Lösungsmenge (L). Beispiel: + + / Zusmmenfssen + / + + / 9 / : { } L.)

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 204 athematik II usterlösung Prüfungsdauer: 50 inuten iese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studienkolleg ei den Universitäten des Freisttes Bern Üungsufgen zur Vorereitung uf den Mthemtiktest . Polnomdivision:. Dividieren Sie! ) ( 6 + 8 ):( + ) = Lös.: = ) ( 9 7 0 + 8 + 9):(6 + +) = Lös.: =

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0 Berechnen Sie die Länge!". Diese Pyramide hat das Volumen 70,1

Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0 Berechnen Sie die Länge!. Diese Pyramide hat das Volumen 70,1 Aufgabe W2b/2003 Die vier dunkel eingefärbten Teilflächen eines regelmäßigen Fünfecks mit der Seitenlänge 7,6 bilden den Mantel einer quadratischen Pyramide. Berechnen Sie das Volumen der Pyramide. Der

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

Zusammenfassung: Abstände, Winkel und Spiegelungen

Zusammenfassung: Abstände, Winkel und Spiegelungen Zusmmenfssung: Astände, Winkel und Spiegelungen Inhltsverzeichnis Astände 1 Winkel 5 Spiegelungen 7 Für Experten 1 Astände Astnd Punkt Punkt: Schreiweise: Den Astnd zweier Punkte A und B ezeichnet mn mit

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21 BMT8 010 A Byerischer Mthemtik-Test für die Jhrgngsstufe 8 der Gymnsien Nme: Note: Klsse: Punkte: 1 Aufgbe 1 Berechne und gib ds Ergebnis in der Einheit t n. 5,4t 360kg b Berechne und gib ds Ergebnis in

Mehr

Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Dieser Downlod

Mehr

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert ownlo Jens onr, Hry Seifert Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte Mterilien für s gnze Schuljhr ownlouszug us em Originltitel: Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d November 2006 Quadratische Funktionen

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d November 2006 Quadratische Funktionen .) Entscheide, ohne zu zeichnen, ob die Prbeln - eng/weit, - nch oben/nch unten geöffnet, - nch oben/nch unten verschoben sind. Als Vergleich soll die Normlprbel dienen. ) y = 3x b) y =,8x -7 c) y = -,5x

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Übungen zu Elemente der Schulgeometrie

Übungen zu Elemente der Schulgeometrie Übungen zu Elemente der Schulgeometrie k ( M, r ) { A AM r } Alterntive: k ( M, X ) Menge ller Punkte A, für die gilt: Entfernung von A und M soll konstnt r sein! AM AM d ( A, M ) [AM] [AM AM] AM Gerde

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus.

a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus. Mthemti 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 6. August 011 Zeit : 90 Minuten Nme :!!! Doumentieren Sie lle Ansätze und Zwischenrechnungen!!! 1. Linere Funtionen

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert) Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 4.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 4.1 . Dr. Jürgen Roth Fchbereich 6: Abteilung Didktik der Mthemtik Elemente der Algebr . Inhltsverzeichnis Elemente der Algebr & Argumenttionsgrundlgen, Gleichungen und Gleichungssysteme Qudrtische und Gleichungen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2 Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen

Mehr

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E1 Lösungen Aufgabe 1 3 P. Vereinfachen Sie so weit wie möglich: 4a 1 2a 5 5 b 2 5 4a 1 2a 4a 20ab

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Sentsverwltung für Bildung, Wissenschft und Forschung Fch Nme, Vornme Klsse Abschlussprüfung n der Fchoberschule im Schuljhr / Mthemtik (A) Prüfungstg.. Prüfungszeit Zugelssene Hilfsmittel Allgemeine Arbeitshinweise

Mehr