BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8"

Transkript

1 BMS Mthemtik T Abschlussprüfung_ Seite: / Nme: Abschlussprüfung Mthemtik technische BMS Teil Prüfungsduer Minuten Erlubte Hilfsmittel: Formelsmmlung ohne selbst gelöste Beispiele. Grfikfähiger Tschenrechner inkl. Hndbuch. Geometriewerkzeug. Klsse: Lösungen Die Lösungen werden nur bewertet, wenn der Lösungsweg klr ersichtlich und suber drgestellt ist. Alle Lösungen müssen, flls möglich, ekt ngegeben werden! Nicht mit Bleistift schreiben. Alle Aufgben müssen direkt uf ds Aufgbenbltt gelöst werden. Flls mehr Pltz benötigt wird verwenden Sie ein Zustzbltt. Alle Blätter müssen vollständig mit Nme und Klsse (Zustzblätter: Aufgbennummer) beschriftet sein. Jede Aufgbe us dem Prüfungsteil korrekt gelöst zählt Punkte. Jede Aufgbe us dem Prüfungsteil korrekt gelöst zählt 6 Punkte. Totl Punktzhl: 6 5 Punkte ergibt die Note 6. BBZ MthFchGr MthPrue_T_V_Loesung.doc

2 Aufgbe : BMS Mthemtik T Abschlussprüfung_ Seite: / Nme: Klsse: Lösungen Einem rechtwinkligen Dreieck mit der Seite c und dem Winkel β 5 ist ein Hlbkreis eingeschrieben. Der Mittelpunkt des Hlbkreises befindet sich uf der Seite c und der Hlbkreis berührt die beiden Seiten und b. ) Berechnen Sie den Rdius r des Hlbkreises. b sin ( β) sin( 5 ). 57 c b c * sin 5 *.57. Ł 59 AX tn ( β ') tn( 5 ). 7 Ł Gleichung Ι r AX b r Ł Gleichung ΙΙ Gleichung ΙΙ in Gleichung Ι einsetzen: b r b tn ( β ') tn( 5 ). 7 r r b r r b.7.7 Kehrwert.5 *b.7 r.5 * b.5 *.59.7 BBZ MthFchGr MthPrue_T_V_Loesung.doc

3 Aufgbe : BMS Mthemtik T Abschlussprüfung_ Seite: / Nme: Klsse: Lösungen b) π Gegeben ist die Funktion: f () * sin Bestimmen Sie den Wertebereich der gegebenen Funktion f(). W { y y } Bestimmen Sie die Periode. Berechnen Sie die Phsenverschiebung. T π π t ϕ c) Berechnen Sie die Lösungen der Gleichung im Intervll zwischen bis 6 lgebrisch. Der Lösungsweg muss ersichtlich sein.:.5p () () ± ( ) ; ± 7 ( ).9 Ł. und 5.7 ( ). Ł. und 5.7 WeiH BBZ MthFchGr MthPrue_T_V_Loesung.doc

4 BMS Mthemtik T Abschlussprüfung_ Seite: / Aufgbe : Nme: Klsse: Lösungen ) Bestimmen Sie die Funktionsgleichung g() der Gerden g mit Steigung.5, die durch den Punkt (/) geht. Berechnen Sie die Nullstelle der Gerden. g().5.5 N(-/) b) Bestimmen Sie den Scheitelpunkt der Prbel f() gegeben durch f ().5( ) 5 P Zeichnen Sie die Prbel ins Koordintensystem. f ().5( ) 5 S(/5) c) Berechnen Sie die Schnittpunkte der Gerden g() mit der Prbel f() lgebrisch (mit Lösungsweg). P P (-/.5) P (/).5P d) Bestimmen Sie die Funktionsgleichung einer Gerden h(), welche prllel zu g() liegt und eine Tngente n die Prbel bildet. h ( ). 5 q h() f () nur eine Lösung Diskriminnte h ( ) P MoeBe BBZ MthFchGr MthPrue_T_V_Loesung.doc

5 Aufgbe : BMS Mthemtik T Abschlussprüfung_ Seite: 5/ Nme: Klsse: Lösungen ) Ein Fhrrdhändler ergttert us einer Versteigerung eine bestimmte Anzhl gleicher Fhrräder, wofür er 9'6.9 SFr bezhlt. Er verkuft die Räder dnn für einen Preis von 99 SFr weiter. Den Reingewinn, den er dmit erzielt, entspricht dem Betrg, den er ursprünglich für 5 Fhrräder bezhlt ht. Wie viele Fhrräder ht der Händler erstnden? P Aufgbe b und c: b) Eine Firm erhält einen Grossuftrg zum Bedrucken von Zifferblätter. Dfür werden Arbeiterinnen mit gleichem Arbeitstempo eingesetzt, welche den Auftrg in 5 Monten erledigen würden. Wie viele Stunden hätte eine Arbeiterin lleine n diesem Auftrg? P ( Mont ht Arbeitstge zu Stunden). c) Nch einem Mont werden zusätzlich zwei neue Hilfskräfte eingesetzt, welche ber % gsmer rbeiten. Nch wie vielen Tgen knn ds letzte Zifferbltt geliefert werden? (Aufgerundet uf einen Tg) P ) Anzhl Fhrräder Gesmtumstz: SFr. 99 Ankuf: SFr '6.9 9'6.9 Preis Ankuf: Gewinn: 5 Gesmtumstz Ankuf Gewinn () () 6. flse 5 () Der Händler ht 5 Fhrräder erstnden. b) 5 5 h Eine Arbeiterin benötigt lleine h. () c) Die gsmeren somit :.6 h. Ein Fünftel der Arbeit ist bereits erledigt, somit: t 5 t t h 57. t 57. Tge t 5Tge () Auf einen Tg ufgerundet: 5 Tgen nch Einstellungen der Hilfskräfte oder 7 Tge nch dem Produktionsstrt. UrsM BBZ MthFchGr MthPrue_T_V_Loesung.doc

6 Aufgbe : BMS Mthemtik T Abschlussprüfung_ Seite: 6/ Nme: Klsse: Lösungen Nch dem Unfll im Kernkrftwerk Tschernobyl im Jhre 96 entwichen rdioktive Nuklide wie Jod (J) und Cäsium (CS) 7 in die Atmosphäre. Jod ht eine Hlbwertszeit von TJ Tgen und Cäsium 7 eine von TCS Jhren. Die Stoffe zerfllen im Verlufe der Zeit und ihre Msse m nimmt eponentiell in Funktion der Zeit t nch λt folgendem Gesetz b: m m e m: ursprüngliche Msse; λ: Zerfllskonstnte ) Berechnen Sie die Zerfllskonstnte λ in Abhängigkeit der Hlbwertszeit T (llgemein)..5p m λt λt m e.5 e (.5) λt (.5) (.5) λ λ T T T b) Am Unflltg werden von Jod und Cäsium 7 Proben von je einem Grmm genommen, m gr. Berechnen Sie die Msse m jeder Probe einml nch t Tgen und einml nch t 5 Jhren..5P t T m e t d: m I e. 5g t 5 : 565 m I e gr t d: 65 m Cs e g t 5 : 5 m Cs e. 77g c) Nch wie vielen Jhren ht ds rdioktive Cäsium 7 noch eine Msse von m.gr? P t t. e (.) (.) t t 99. BruP BBZ MthFchGr MthPrue_T_V_Loesung.doc

7 Nme: Klsse: Lösungen BMS Mthemtik T Abschlussprüfung_ Seite: 7/ BBZ MthFchGr MthPrue_T_V_Loesung.doc Aufgbe 5: Gegeben sind die Koordinten von vier Punkten im Rum: A ( - ; ; -); B ( - ; ; -); C (-; ; -) und D (/ - ; /; -). Berechnen Sie die gesuchten Grössen in Abhängigkeit des Prmeters. ) Berechnen Sie die Komponenten des Vektors. P s b) Berechnen Sie die Länge des Vektors..5P c) Berechnen Sie den Winkel zwischen den Vektoren und..5p 6 o α α d) Berechnen Sie den Abstnd (die kürzeste Entfernung) z des Punktes D zur Gerden durch die Punkte A und C. P β β sin sin z AC AC o β AC AC β z sin z BruP

8 Aufgbe 6: BMS Mthemtik T Abschlussprüfung_ Seite: / Nme: Gegeben ist eine gerde qudrtische Pyrmide CDS ( Spitze bei S) mit der Grundfläche CD 5cm und der Höhe h cm. Klsse: Lösungen ) Erstellen Sie eine korrekt beschriftete Skizze. b) Der Punkt P liegt uf der Knte CS, wobei gilt: CP cm. Berechnen Sie den Abstnd des Punktes P zur Spitze S. AC [ BC] 5 ( 5) ( 5) cm M Mittelpunkt der Digonlen AC CM 5cm.5p CM 5 CS MS 69 PS CS CP CS PS cm cm cm c) Berechnen Sie den Winkel ACS. P.5p,5P,5P MS tn γ γ 67, P CM 5 d) Berechnen Sie den Winkel ε CMP, wobei M der Digonlenschnittpunkt der Grundfläche ist. Kosinusstz: MP MC CP MC CP γ MP 5 Sinusstz: sin ε sin γ CP MP sin 67, sin ε,796 ε 5, ,,796cm,5P,5P,5P,5P BinCh BBZ MthFchGr MthPrue_T_V_Loesung.doc

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen. BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Sentsverwltung für Bildung, Wissenschft und Forschung Fch Nme, Vornme Klsse Abschlussprüfung n der Fchoberschule im Schuljhr / Mthemtik (A) Prüfungstg.. Prüfungszeit Zugelssene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

Kaufmännische Berufsmatura Kanton Uri

Kaufmännische Berufsmatura Kanton Uri 009 Prüfungsduer: Hilfsmittel: Bedingungen: 0 Minuten Netzunbhängiger nicht progrmmierbrer Tschenrechner Beigelegte Formelsmmlung Dokumentieren Sie den Lösungsweg suber Die Drstellung wird mit einem Punkt

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik Aufgbensmmlung der höheren Mthemtik von Vsili P. Minorski 5., ktulisierte Auflge Hnser München 2008 Verlg C.H. Beck im Internet: www.beck.de ISBN 978 3 446 466 Zu Inhltsverzeichnis schnell und portofrei

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Maturitätsprüfungen 2014 Mathematik schriftlich

Maturitätsprüfungen 2014 Mathematik schriftlich Mthemtik schriftlich Klssen: 4(A)W, 4GL, 4IM, 4IS, 4LZ, 4Sb, 4SW, 4Wb, 5KSW Bemerkungen: Die Prüfungsduer beträgt 4 Stunden. Beginnen Sie jede Aufgbe mit einem neuen Bltt! Hilfsmittel: Tschenrechner TI-Nspire

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Kaufmännische Berufsmatura Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze

Kaufmännische Berufsmatura Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze Kufmännische Berufsmtur 009 Serie : Lösungen Serie Serie - Lösungen Prüfungsduer: Mx. zhl: 50 Minuten 00 Bewertungshinweise:. Mehrfchlösungen sind nicht gestttet.. Als Resultte gelten nur eindeutig gekennzeichnete

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

7.3. Prüfungsaufgaben zu Ebenen

7.3. Prüfungsaufgaben zu Ebenen 7.. Prüfungsufgben zu Ebenen Aufgbe : Prmeterform () Gegeben sind die Gerden g und h mit g: x und h: x ) Zeigen Sie, dss g und h prllel, ber nicht identisch sind. b) Geben Sie eine Gleichung der Ebene

Mehr

Abschlussprüfung Mathematik

Abschlussprüfung Mathematik Abschlussprüfung 0 Mthemtik 5. Mi 0, Klssen F08 und F08b Nme: Klsse: Hinweise: Zur Lösung der Aufgben stehen drei volle Stunden zur Verfügung. Als Hilfsmittel sind ein nicht lgebrfähiger und nicht grphikfähiger

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2 Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen

Mehr

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3.

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3. I. Reelle Zhlen L9_0 Rtinle Zhlen: ; ;,8 ;, ; 9 7 L9_0 Irrtinle Zhlen: 7 ; + ; ; 8 8 8 L9_0 L9_0 L9_0 L9_0 8 + ist bereits vllständig vereinfcht! (Achtung: + +, vgl. Tschenrechner,, und,, ls +, ), : +

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

BMS 1 Aufnahmeprüfung Mathematik

BMS 1 Aufnahmeprüfung Mathematik BMS 1 Aufnhmeprüfung 01 Mthemtik Kufmännische Berufsmturitätsschulen Bern-Biel-Lngenthl-Thun Nme, Vornme. Note Experten Alle Aufgen sind direkt uf die Prüfungslätter zu lösen. Die Lösungswege müssen lückenlos

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Übungsteil: 1. Algebra

Übungsteil: 1. Algebra lgebr Übungsteil: lgebr Gleichungssysteme: estimmen Sie die Lösungsmenge folgender Gleichungssysteme: ) y + 7 = 5x x + y = 7 c) y = x 9 6x 0 = y b) y = 5x y = x d) x + 5y = 05 0,5y = x,5 e) 0(x + y) =

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21 BMT8 010 A Byerischer Mthemtik-Test für die Jhrgngsstufe 8 der Gymnsien Nme: Note: Klsse: Punkte: 1 Aufgbe 1 Berechne und gib ds Ergebnis in der Einheit t n. 5,4t 360kg b Berechne und gib ds Ergebnis in

Mehr

Lineare Abbildung des Einheitskreises

Lineare Abbildung des Einheitskreises Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

STRATEGIEPAPIER für Abschlussprüfungen

STRATEGIEPAPIER für Abschlussprüfungen .) Gleichungen: STRATEGIEPAPIER für Aschlussprüfungen.) normle Gleichungen : Auflösen nch (oder einer nderen Vrilen) Bestimmen der Lösungsmenge (L). Beispiel: + + / Zusmmenfssen + / + + / 9 / : { } L.)

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin: Hessisches Kultusministerium. Name der Schule

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin: Hessisches Kultusministerium. Name der Schule Abschlussrbeit Mthemtik Hupttermin: 30.05.005 Nme der Schule, Nme der Schülerin / des Schülers Klsse GESAMT NOTE 53 Punkte Ort, Dtum Korrigierende Lehrkrft Berbeitungshinweise Schreibe deinen Nmen uf lle

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK 24. Juni 2015 8:30 Uhr 11:00 Uhr Pltzziffer (ggf. Nme/Klsse): Die Benutzung von für den Gebruh n der Mittelshule zugelssenen Formelsmmlungen

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studienkolleg ei den Universitäten des Freisttes Bern Üungsufgen zur Vorereitung uf den Mthemtiktest . Polnomdivision:. Dividieren Sie! ) ( 6 + 8 ):( + ) = Lös.: = ) ( 9 7 0 + 8 + 9):(6 + +) = Lös.: =

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 006 Serie B Teil Fach: Teil Zeit: 45 Minuten Hilfsmittel: - Geometriewerkzeuge, kein Taschenrechner Vorschriften: - Der Lösungsvorgang muss vollständig ersichtlich sein. - Ungültiges ist

Mehr

Abschlussprüfung an Fachoberschulen / Zusatzprüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 2007/2008

Abschlussprüfung an Fachoberschulen / Zusatzprüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 2007/2008 Abschlussprüung n Fchoberschulen / Zustzprüung zum Erwerb der Fchhochschulreie in berulichen Bildungsgängen im Schuljhr 007/008 Hupttermin: Nch- bzw Wiederholtermin: 009008 Schulrten: Fch: Prüungsduer:

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

Von Winkelfunktionen zur Dreiecksgeometrie

Von Winkelfunktionen zur Dreiecksgeometrie Von Winkelfunktionen zur Dreiecksgeometrie Jens Wirth, Freiberg wirth@mth.tu-freiberg.de 1 Definition y Es sei P ein Punkt uf dem Einheitskreis, 10P = φ. Dnn besitzt 1 P P die Koordinten (cos(φ), sin(φ)).

Mehr

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion KOMPETENZHEFT ZUM INTEGRIEREN, II. Aufgbenstellungen Aufgbe.. Wir untersuchen den Flächeninhlt unter der lineren Funktion f(t) = t + im Intervll [; x]. Kurz: F (x) = x f(t) dt Erkläre elementr, insbesondere

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Prüfung - Technische Mechanik III

Prüfung - Technische Mechanik III Prüfung - Technische Mechnik III WS 11/12 16. Februr 2012 FB 13, Festkörpermechnik Prof. Dr.-Ing. F. Gruttmnn Nme: Mtr.-Nr.: Studiengng: Pltznummer Einverständniserklärung: Ich stimme hiermit zu, dss meine

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

Mathematik. . Du hast 60 Minuten Zeit.. Löse die Aufgaben direkt auf das Aufgabenblatt. Reicht derplatz bei einer Aufgabe nicht,

Mathematik. . Du hast 60 Minuten Zeit.. Löse die Aufgaben direkt auf das Aufgabenblatt. Reicht derplatz bei einer Aufgabe nicht, Zentrle Aufrrhmeprüfung 20T3 fur die Lnggymnsien des Kntons Zürich Mthemtik Nme Pnifungsnummer Vornme Schule Allgemeine Hinweise. Du hst 60 Minuten Zeit.. Löse die Aufgben direkt uf ds Aufgbenbltt. Reicht

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Pyramidenvolumen. 6 a2. 9 = a

Pyramidenvolumen. 6 a2. 9 = a Prmidenvolumen 1 Die Ecken einer dreiseitigen Prmide hben die Koordinten (0 0 0), ( 0 0), (0 0) und (0 0 ) mit > 0, H ist der Mittelpunkt der trecke [] lle Ergebnisse ls möglichst einfche Terme mit der

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

SBP Mathe Aufbaukurs 2. Winkelfunktionen im rechtwinkeligen Dreieck. Winkelfunktionen besonderer Winkel. Zusammenhänge der Winkelfunktionen

SBP Mathe Aufbaukurs 2. Winkelfunktionen im rechtwinkeligen Dreieck. Winkelfunktionen besonderer Winkel. Zusammenhänge der Winkelfunktionen SBP Mthe Aufbukurs # by Clifford Wolf # Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Grundwissen Jahrgangsstufe 9

Grundwissen Jahrgangsstufe 9 Grundwissen Jhrgngsstufe 9 GM 9. Qudrtwurzeln und die Menge der reellen Zhlen QUADRATWURZELN Unter der Qudrtwurzel us einer Zhl (kurz: Wurzel us, Schreibweise ) versteht mn diejenige nichtnegtive Zhl,

Mehr

Teil mit Taschenrechner (ohne CAS)

Teil mit Taschenrechner (ohne CAS) Sächsisches Sttsministerium ür Kultus Schuljhr 0/05 Schritliche Abschlussprüung n Fchoberschulen/ Zustzprüung zum Erwerb der Fchhochschulreie in berulichen Bildungsgängen Mthemtik nichttechnische Richtungen

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

1. Gegeben ist die Funktionenschar f : IR IR,

1. Gegeben ist die Funktionenschar f : IR IR, Schriftliche Abiturprüfung 005 Seite Fch: Mthemtik Prüfungsrt:./. Prüfungsfch 5 Stunden Hilfsmittel: Zugelssener Tschenrechner, zugelssene Formelsmmlung Die Aufgbenstellung umfsst 4 Seiten. Aufgbe. Gegeben

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Herleitung der Strasse für quadratische Räder

Herleitung der Strasse für quadratische Räder Herleitung der Strsse für qudrtische Räder P = P( P / y P ) sei der Berührungspunkt des Rdes mit der Strsse bzw mit der gesuchten Kurve P = P ( / y ) sei der Mittelpunkt der entsprechenden Qudrtseite des

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel:

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel: 16 7 8 9 4 5 6 1 2 3 1 2 13 14 15 5 6 1 2 3 4 b c A B 3 4 5 6 7 8 9 10 11 12 17 18 19 20 21 22 23 24 25 C 13 14 15 16 9 10 11 12 7 8 2 2 2 erste binomische Formel: ( + b) + 2b + b 2 2 2 zweite binomische

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Abschlussprüfungen 2009 Mathematik schriftlich

Abschlussprüfungen 2009 Mathematik schriftlich Fchmittelschule FMS Mthemtik schriftlich Klssen: F, Fb, Fc, Fd (Mh, Fr, Mo, Me) Prüfungsduer: h Erlubte Hilfsmittel: Tschenrechner, Fundmentum Jede Aufgbe gibt 10 Punkte. Aufgbe 1: Rum Der unten drgestellte

Mehr

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern WS 1/13, 16.0.013 1. Aufgbe: (TM I) ) A g 3 6 ( q() = q 0 9 G B 60 F = q 0 m

Mehr

Fachschaft Mathematik am Gymnasium Donauwörth

Fachschaft Mathematik am Gymnasium Donauwörth Algebr 7: Zusmmenfssen gleichrtiger Terne: ) 5x 7x 3 3x + 5x +8 b) 3u 9v [(3u 8w) (u + 9v)] c) Distributivgesetz: ) -0,4c (,5 3 c 0, c 3 ) b) 7u 5 3u (u 3) 5 (u 4u + ) Ausmultiplizieren von Klmmern: )

Mehr

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor

Mehr

R. Brinkmann Seite Brüche, Terme und lineare Funktionen zur Vorbereitung einer Klassenarbeit. b)

R. Brinkmann  Seite Brüche, Terme und lineare Funktionen zur Vorbereitung einer Klassenarbeit. b) R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösungen Linere Funktionen VBKA I Brüche, Terme und linere Funktionen zur Vorbereitung einer Klssenrbeit E E ) + = 8 0 0 ) 5 5 = 6 b) 7 9 = 8 7 56 b) 5 :

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Musterlösungen (ohne Gewähr) knm

Musterlösungen (ohne Gewähr) knm rühjhr 2009 Seite 1/17 rge 1 ( 1 Punkt) Gegeben ist eine Krft, die n einem Punkt P mit dem Ortsvektor r ngreift. Berechnen Sie den Momentenvektor M bezogen uf den Koordintenursprung des krtesischen Koordintensystems.

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Klsse 0. Schreibe folgende Terme ls Sinuswerte eines positiven spitzen Winkels: cos 4 b) sin 90 c) cos (-55 ) (Zwischenschritte ngeben!). Für welche Winkel ϕ mit 0 ϕ 60 gilt: (cosϕ b) sinϕ = )(cosϕ + )

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11 Lösungsbltt zur Testklusur Festkörperphysik WS/ Aufgbe : ) Wie groß sind die Energien der drei niedrigsten Zustände in einem zweidimensionlen und einem dreidimensionlen Kstenpotentil? (Kntenlängen jeweils

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Übungsheft Mittlerer Schulabschluss Mathematik

Übungsheft Mittlerer Schulabschluss Mathematik Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Lösungen Mathematik II

Lösungen Mathematik II Lösungen Mthemtik II Geometrie für Berufsmturitätsschulen,. Auflge Druckdtum: August I PLANIMETRIE Winkel Lösungen zu Üungen. ) 8 β α + γ ) ϕ 8 β. ) α 7 ) α 5 ; β c) α 5 d) α ; β. α. ε 78 5. ) α 58 ;

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Funktionen beschreiben mathematisch den Zusammenhang zwischen 2 Größen bzw. Mengen.

Funktionen beschreiben mathematisch den Zusammenhang zwischen 2 Größen bzw. Mengen. I. Funktionen Funktionen beschreiben mthemtisch den Zusmmenhng zwischen Größen bzw. Mengen. Allgemein: f() bhängige Vrible unbhängige Vrible Funktion: Gegeben seien die Mengen A und B. Ist jedem Element

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr