Physikalisches Praktikum Drehschwinger

Größe: px
Ab Seite anzeigen:

Download "Physikalisches Praktikum Drehschwinger"

Transkript

1 Physk-Labor Fachberech Elektrotechnk und Informatk Fachberech Mechatronk und Maschnenbau Physkalsches Praktkum M3 Drehschwnger Versuchszel Für verschedene Körper, de als Drehschwnger ausgelegt snd, sollen de Massenträghetsmomente bezüglch der Drehachse aus den Perodendauern bestmmt werden. In enem Fall wrd das expermentelle Ergebns mt ener theoretschen Berechnung verglchen. Weterhn soll der STEIERsche Satz expermentell nachgewesen werden. De Geräte snd: Drllachse, Kresschebe mt Bohrungen, rotatonssymmetrscher Körper, Kraftmesser, Tafelwaage, Maßstab, Messscheber, Stoppuhr. Lteratur Tpler Physk Gerthsen Physk Höflng Physk, Band II, Tel Hallday/Resnck Physk Walcher Praktkum der Physk Grundlagen. Begrffe und Größen (werden als bekannt vorausgesetzt) Starrer Körper, Wnkelgeschwndgket, Wnkelbeschleungung, Kraft, Wrkungslne, Arbet, Energe, Drehmoment, Massenträghetsmoment, Schwerpunkt, antparallel, Vektor, Vektorprodukt.. Rotatonsenerge Dreht sch en starrer Körper um rgendene Körperachse A, so bestzt er bezüglch deser Achse de Rotatonsenerge () W dϕ = mt ω = = ϕ dt ROT Aω = A ( ϕ)

2 Hern st ω = ϕ der Betrag der Wnkelgeschwndgket und A das Massenträghetsmoment des Körpers bezüglch der Achse A. 3. Massenträghetsmoment Anhand der nebenstehenden Skzze lässt sch Glechung () lecht für ene Schebe (zwedmensonaler Körper) herleten: Δm De Schebe se aus Massepunkten mt den Massen Δm, Δm,..., Δm zusammengesetzt. Δm r Se möge um de Achse A mt der konstanten Wnkelgeschwndgket ω roteren. Dann bewegt r sch der -te Massenpunkt mt der Masse Δm auf ener Kresbahn vom Radus r um A mt Δm r der konstanten Bahngeschwndgket v. Dabe bestzt er de knetsche Energe A () W = m v oder mt v = r ω (3) W = m r ω De Summe der Bewegungsenergen aller roterenden Massepunkte ergbt de Rotatonsenerge der sch um A drehenden Schebe: (4) W ROT = Σ m r Σ W = Σ m r ω = ω = = = (5) A = Σ m r = nennt man das Massenträghetsmoment (kurz MTM) des Körpers bezüglch der Drehachse A. Betrachtet man nfntesmale Massenpunkte (Δm ), erhält man bem Grenzübergang statt der Glechung (5) allgemener m (6) = r dm mt r = r(m) A De Größe des MTM hängt davon ab, we sch de Masse (das st: Träghet und Schwere) enes Körpers relatv zur Drehachse vertelt. Darum bestzt en starrer Körper mt der Masse m um verschedene Körperachsen auch unterschedlche Massenträghetsmomente. De Angabe enes MTM hat also nur dann enen Snn, wenn es ener Drehachse (Körperachse) zugeordnet wrd.

3 4. STEIERscher Satz Drehachsen, de durch den Schwerpunkt enes Körpers verlaufen, nennt man Schwerpunktachsen. Ist das Massenträghetsmoment S enes Körpers bezüglch ener Schwerpunktachse S bekannt, lässt sch sen MTM bezüglch jeder belebgen zur Schwerpunktachse parallel verlaufenden Achse X angeben: (7) X = S + m b STEIERscher Satz Hern bedeutet X das MTM des Körpers bezüglch der Achse X, S das MTM bezüglch der Schwerpunktachse S, m de Masse des Körpers und b der Abstand der zuenander parallelen Achsen X und S. 5. Drehmoment Zwe glech große antparallele Kräfte F und F, deren Wrkungslnen ncht zusammenfallen, nennt man en Kräftepaar. Greft an enem starren Körper en Kräftepaar an, erfährt der Körper ene beschleungte Drehbewegung. Ist r der Ortsvektor, der vom Angrffspunkt der Kraft F zum Angrffspunkt der Kraft F west, wrd das Vektorprodukt der beden Vektoren r und F das Drehmoment M des Kräftepaares genannt. Man schrebt F (8) M = r F r Das Drehmoment M st also en Vektor, der senkrecht auf der Drehebene (Ebene, de von den Vektoren F F und F aufgespannt wrd) steht, und der n dejenge Rchtung zegt, n de sch ene Rechtsschraube bewegt, wenn man se so dreht, dass man auf dem kürzesten Weg aus der Rchtung von r n de Rchtung von F gelangt. In der Abbldung zegt M senkrecht n de Paperebene nach unten! Wrd durch den Angrffspunkt der Kraft F senkrecht zur Drehebene ene Drehachse gesteckt, dann genügt zur Ausübung des Drehmomentes M schenbar das Wrken der Kraft m Abstand r von A. In Wrklchket wrkt jedoch auch her en Kräftepaar ( F, F ), da de Kraft F von der Drehachse A gelefert wrd. Ganz allgemen sagt man: das Kräftepaar ( F, F ) übt am Körper das Drehmoment M aus, wodurch der Körper beschleungt rotert. Der Betrag der Wnkelbeschleungung α hängt ab vom Betrag des Drehmomentes M und vom Massenträghetsmoment. De Rchtungen von α und M snd glech. Damt glt für de Vektoren (9) M = α und für de Beträge M = α = ω = ϕ 3

4 6. Wnkelrchtgröße Ist en Körper um ene festgelegte Achse drehbar en engespannter Draht, ene Spralfeder und an ene Glechgewchtslage gebunden, braucht man en Drehmoment vom Betrag M, damt man den Körper um den Wnkel ϕ aus sener Glechgewchtslage herausdrehen kann. Expermentell fndet man n gewssen Grenzen: () M ~ ϕ aus deser Proportonaltät wrd () M = D ϕ wenn man D als ene Apparatekonstante enführt, de m wesentlchen de elastschen Egenschaften des Drahtes oder der Spralfeder (Federhärte) kennzechnet. () D = M nennt man daher de Wnkelrchtgröße, ϕ das Rchtmoment oder Drektonsmoment des Drahtes bzw. der Spralfeder. 7. Dreharbet Bem Herausdrehen des Körpers aus sener Glechgewchtslage um den Wnkel ϕ wrd de Arbet (3) W = M ϕ verrchtet, wenn M = const. also unabhängg von ϕ st. Im Allgemenen st jedoch M = M ( ϕ ), also rgendene Funkton von ϕ. En Bespel herfür st unter 6. genannt. In desem Fall wrd de Arbet ϕ (4) W = M( ϕ) dϕ ϕ bem Drehen des Körpers um de Wnkelauslenkung ϕ = ϕ ϕ verrchtet. Dese Arbet blebt als potentelle Energe solange m System, we de Wnkelauslenkung erhalten blebt. 8. Drehschwnger Das unter 6. beschrebene System wrd dann zum Drehschwnger, wenn man den aus der Glechgewchtslage ausgelenkte Körper fregbt. Dann übt der Draht auf den Körper en rückstellendes Drehmoment M aus, das den glechen Betrag jedoch de entgegengesetzte Rchtung we M hat ( M = M ). M versucht den Körper weder n sene Glechgewchtslage zu drehen. Wegen sener Träghet (festgelegt durch das MTM bezüglch der Drehachse) schwngt der Körper jedoch über de Glechgewchtslage hnaus. Bem Fehlen jeglcher Rebung (Idealfall!) gewnnt der Körper deselbe maxmale 4

5 Auslenkung ϕˆ auch auf der anderen Sete der Glechgewchtslage, we er se zuvor auf der enen Sete hatte. Das Spel begnnt von neuem, der Körper schwngt perodsch und ungedämpft. Herbe fndet ständg ene Umformung von potenteller n knetsche Energe statt und umgekehrt. Da sch der Auslenkungswnkel ϕ als Funkton der Zet t ändert, ändern sch auch de Momentanwerte der potentellen und knetschen Energe zetlch, de bede Funktonen von ϕ und damt auch von t snd (sehe de Glechungen (4) und () ). Unter Vernachlässgung der Rebung blebt jedoch de Summe aus potenteller und knetscher Energe m System zetlch konstant, so dass nach dem Energeerhaltungssatz (5) W ( ϕ (t)) + W ( ϕ(t)) const glt. Heraus wrd Pot Kn = ϕ (6) M( ϕ) dϕ + ( ϕ ) = const wenn (4) und () berückschtgt werden. Setzt man her Glechung () M = D ϕ en und löst das Integral, so erhält man (7) D ϕ + ( ϕ ) = const mt ϕ = ϕ(t) und ω = ϕ = ϕ(t ) Dfferenzert man (7) nach der Zet, ergbt sch (8) D ϕ ϕ + ϕ ϕ = und nach Dvson durch ϕ (9) D ϕ + ϕ = Des st ene homogene Dfferentalglechung.Ordnung vom Typ () ϕ + ω ϕ mt = ω = D We man durch Ensetzen prüfen kann, st () ϕ t) = ϕˆ sn( ω t + ) de Lösung der Glechung (). ( ϕ Dese Glechung () nennt man Schwngungsglechung. Se gbt den Wnkelausschlag ϕ als Funkton der Zet t an. ϕˆ st de Ampltude, d.h. der maxmal möglche Wnkelausschlag. ϕ st der Phasennullwnkel. () π ω = π f = = T D st de Egenfrequenz. Se hängt von den Systemgrößen und D ab. 5

6 T (3) = D ergbt sch aus (). 4π Wenn man de Wnkelrchtgröße D der Spralfeder kennt und de Perodendauer T enes Drehschwngers msst, kann man aus (3) das Massenträghetsmoment des Schwngers bestmmen. Herbe wrd allerdngs von ener Dämpfung (Rebung) während der Messung abgesehen (sehe (5)). Dese Annahme führt m Realfall natürlch zu Fehlern. Aufgabe. Ermtteln Se de Wnkelrchtgröße D der Drllachsenfeder mehrmals und berechnen Se de Fehler D und δ D (s. Enführung n de Fehlerrechnung).. Messen Se de Perodendauer T, mt der en auf der Drllachse monterter rotatonssymmetrscher Körper (Holz- bzw. Styroporschebe) schwngt. Bestmmen Se sen Massenträghetsmoment bezüglch sener Drehachse, de her ene Schwerpunktsachse st, nach Glechung (3). 3. Prüfen Se den STEIERschen Satz und bestmmen Se aus Ihren Messwerten S das MTM bezüglch der Schwerpunktachse und de Masse der Metallschebe. Durchführung und Auswertung. Zur Messung von D wrd de Kresschebe (Metall) auf der Drllachse befestgt. Im Abstand cm vom Mttelpunkt wrd n der entsprechenden Bohrung en Stft festgeschraubt, an dem der Kraftmesser angesetzt werden kann. un msst man jewels dremal de Kraft, de zur Verstellung der Schebe um de Wnkel ϕ = π/, π, 3π/ aus der Glechgewchtslage notwendg st. Dabe muss darauf geachtet werden, dass der Kraftmesser mmer senkrecht zum Radusvektor, also tangental zum Kresbogen steht (warum?). Aus den Messwerten für den Wnkel und de Kraft st jewels D nach Gl. () zu berechnen. Aus den berechneten neun D- Werten st schleßlch der Mttelwert von D und der absolute Fehler εd zu bestmmen.. Messen Se für den rotatonssymmetrschen Körper t = T, d.h. de Zet für Schwngungen, be ener Anfangsauslenkung von ϕˆ 9. Der Fehler T wrd abgeschätzt. De Messung wrd -mal durchgeführt. De Anfangsauslenkung von ϕˆ 9 st en Erfahrungswert. Der Wnkel sollte so groß sen, dass möglchst vele Schwngungen zustande kommen, er sollte jedoch ncht so groß sen, dass de erste Schwngung bs zur Ausgangslage überschlägt, da des de Messung verfälschen würde. Be der Auswertung wrd nach Glechung (3) bestmmt und und δ nach dem Fehlerfortpflanzungsgesetz berechnet. 3. Für dese Messungen wrd weder de Metallschebe verwendet. Für de Bestmmung des Massenträghetsmomentes nach Glechung (7) wrd de Masse und der Radus der Schebe benötgt. Zusätzlch wrd aus der Schwngungsdauer ( t = 5 T ) bestmmt. Dazu wrd de Schebe zunächst n hrem Mttelpunkt auf der Drllachse befestgt, dann nachenander exzentrsch n weteren 4 Bohrungen. Deren Abstände b vom Mttelpunkt 6

7 werden gemessen. Zur Darstellung der Lösung wrd ene Tabelle angefertgt mt den jewelgen b, b, T und T Werten, sowe den daraus berechneten Werten (Gl. (3)) und den aus Masse und Radus nach dem STEIERsche Satz berechneten Werten (Gl (7)). Auf ene Fehlerrechnung wrd herbe verzchtet. Abschleßend wrd de aus den Messwerten nach Gl. (3) bestmmte Funkton = (b ) graphsch dargestellt. Wenn der STEIERsche Satz stmmt, muss des ene Gerade ergeben (warum?), aus deren Achsenabschntt das Massenträghetsmoment bezüglch der Schwerpunktsachse und aus deren Stegung de Masse der Schebe bestmmt werden können. Fragen (zur Versuchsvorberetung). Was versteht man unter Masse?. Ist de Wnkelgeschwndgket en Vektor? 3. Warum bestzt en Körper um verschedene Drehachsen unterschedlche Massenträghetsmomente? 7

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physk-Labor Fachberech Elektrotechnk und Inforatk Fachberech Mechatronk und Maschnenbau Physkalsches Praktku M5 II. EWTOsche Axo Versuchszel Aus Messungen an ener ollenfahrbahn soll de Gültgket des II.EWTOschen

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechank 3.6. In desem Grundversuch zur Mechank werden dre verschedene Arten von Pendeln untersucht. Das Reversonspendel, das Torsonspendel und gekoppelte Pendel. A. Das Reversonspendel

Mehr

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr

Mehr

Trägheitsmoment und Drehschwingung. Die kinetische Energie des Massepunktes ist (4)

Trägheitsmoment und Drehschwingung. Die kinetische Energie des Massepunktes ist (4) M5 Phskalsches Praktkum Träghetsmoment und Drehschwngung Das Träghetsmoment unterschedlcher starrer Körper soll nach der Schwngungsmethode gemessen werden. De Ergebnsse snd mt den aus Geometre und Masse

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Versuch 03. Sommersemester Daniel Scholz. Gruppe: 13

Versuch 03. Sommersemester Daniel Scholz. Gruppe: 13 Physkalsches Praktkum für das Hauptfach Physk Versuch 03 Das Träghetsmoment Sommersemester 2005 Name: Danel Scholz Mtarbeter: Hauke Rohmeyer EMal: physk@mehr-davon.de Gruppe: 13 Assstent: Sarah Köster

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferenkurs Theoretsche Physk: Mechank Sommer 2017 Vorlesung 2 (mt freundlcher Genehmgung von Merln Mtscheck und Verena Walbrecht) Technsche Unverstät München 1 Fakultät für Physk Inhaltsverzechns 1 Systeme

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Symbol Grösse Einheit. Gravitationskonstante Naturkonstante. Abstand zwischen den Massenmittelpunkten. Federverlängerung m.

Symbol Grösse Einheit. Gravitationskonstante Naturkonstante. Abstand zwischen den Massenmittelpunkten. Federverlängerung m. Kräfte Das ravtatonsgesetz m m r ewchtskraft m g Symbol rösse nhet ravtatonskraft ravtatonskonstante aturkonstante m, m Masse kg r Abstand zwschen den Massenmttelpunkten m kg m Zwschen zwe Körpern wrkt

Mehr

Eine Kompassnadel, die sich nur um eine vertikale Achse drehen kann, richtet sich entlang der Horizontalkomponente des Erdmagnetfeldes B E,

Eine Kompassnadel, die sich nur um eine vertikale Achse drehen kann, richtet sich entlang der Horizontalkomponente des Erdmagnetfeldes B E, IYPT 009 Problem Nr..: Coupled compasses Place a compass on a table. Place a smlar compass next to the frst one and shake t gently to make the needle start oscllatng. The orgnal compass' needle wll start

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Frequenzverhalten passiver Netzwerke: Tiefpass, Hochpass und Bandpass

Frequenzverhalten passiver Netzwerke: Tiefpass, Hochpass und Bandpass Gruppe Maxmlan Kauert Hendrk Heßelmann 8.06.00 Frequenzverhalten passver Netzwerke: Tefpass, Hochpass und Bandpass Inhalt Enletung. Tef- und Hochpass. Der Bandpass 3. Zetkonstanten von Hoch- und Tefpass

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

p : Impuls in Ns v : Geschwindigkeit in m/s

p : Impuls in Ns v : Geschwindigkeit in m/s -I.C9-4 Impuls 4. Impuls und Kraftstoß 4.. Impuls De Bewegung enes Körpers wrd bespelswese durch de Geschwndgket beschreben. Um de Bewegung enes Körpers zu ändern braucht man ene Kraft (Abb.). Dese führt

Mehr

Kraft, Masse, Trägheit

Kraft, Masse, Trägheit Kraft, Masse, Träghet U enen Körper n Bewegung zu setzen, also zu beschleungen, uss an an h zehen. De Ursache der Beschleungung nennt an Kraft. Kraft und Beschleungung snd enander proportonal: F a Wr können

Mehr

6. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 17. November 2009

6. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 17. November 2009 6. Übungsblatt zur VL Enführung n de Klasssche Mechank und Wärmelehre Modul P1a, 1. FS BPh 17. November 2009 Aufgabe 6.1: Schlepplft In enem Wntersportgebet soll en neuer Schlepplft für Schfahrer gebaut

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

1.4 Dynamik, Newton sche Axiome ( Postulate) der klassischen (Punkt)Mechanik

1.4 Dynamik, Newton sche Axiome ( Postulate) der klassischen (Punkt)Mechanik Woche.doc, 1/.1.14 1.4 Dynamk, Newton sche Aome ( Postulate) der klassschen (Punkt)Mechank Ausgangspunkt: De Knematk sagt nchts über de Ursache der Bewegung von Körpern n Raum und Zet. In der Dynamk wrd

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

B. Das nebenstehende Blockdiagramm zeigt einen Energieumwandler. Gegeben sind die STROMSTÄRKEN der jeweiligen Energieträger

B. Das nebenstehende Blockdiagramm zeigt einen Energieumwandler. Gegeben sind die STROMSTÄRKEN der jeweiligen Energieträger PHYSIK Bespel für ene schrftlche Prüfung Allgemene Aufgaben A. Geben Se de allgemenen Zusammenhänge zwschen der Energe, der Energestromstärke, der Energestromdchte und der vom Energestrom durchströmten

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physk A/B A WS SS 07 03/4 Inhalt der Vorlesung A. nführung Methode der Physk Physkalsche Größen Überscht über de vorgesehenen Theenbereche. Telchen A. nzelne Telchen Beschrebung von Telchenbewegung

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Insttut für Technologe Insttut für Theore der Kondenserten Matere Klasssche Theoretsche Physk II Theore B Sommersemester 016 Prof. Dr. Alexander Mrln Musterlösung: Blatt 7. PD Dr. Igor Gorny,

Mehr

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Modellbildung Mechatronischer Systeme (MMS)

Modellbildung Mechatronischer Systeme (MMS) Modellbldung Mechatronscher Systeme (MMS) rof. Dr.-Ing. habl. Jörg Grabow Fachgebet Mechatronk www.fh-jena.de Vorlesungsnhalt 1. Enführung und Grundbegrffe 2. Mechatronsche Bauelemente 3. hyskalsche elsysteme

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES

Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES 1 Enletung Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES Zel der Messung: Das Träghetsmoment des Rotors enes Elektromotors und das daraus resulterende de Motorwelle bremsende drehzahlabhängge

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Refelxion und Transmission. KGH Seismische Explorationsverfahren Teil 4 - Slide 1

Refelxion und Transmission. KGH Seismische Explorationsverfahren Teil 4 - Slide 1 Sesmsche Wellen Refelxon und Transmsson KGH Sesmsche Exploratonserfahren Tel 4 - Slde Raytracng Raytracng Ermttlung des Laufweges enes Wellenstrahls be gegebener Geschwndgketsstruktur de rognose des Laufweges

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

c) schwierige freiwillige Zusatzaufgabe (ohne Bonuspunkte): Leiten Sie die allgemeinen iterativen Formeln für S, D, D R und V her.

c) schwierige freiwillige Zusatzaufgabe (ohne Bonuspunkte): Leiten Sie die allgemeinen iterativen Formeln für S, D, D R und V her. Rechnerarchtetur Lösungsvorschlag. Bonusübung oerseester Fachgebet Rechnerarchtetur Prof. R. Hoffann Patrc Edger. Aufgabe: Maße für Barrel-hfter 7 + 7 Punte Gegeben st en Barrel hfter t n= Prozessoren

Mehr

Experimentalphysik 1. Vorlesung 1

Experimentalphysik 1. Vorlesung 1 Technsche Unverstät München Fakultät für Physk Ferenkurs Expermentalphysk 1 WS 2016/17 Vorlesung 1 Ronja Berg (ronja.berg@tum.de) Katharna Sche (katharna.sche@tum.de) Inhaltsverzechns 1 Klasssche Mechank

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen.

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen. - 14.1 - Antrebstechnk Der technsche Stand der Antrebstechnk ener Volkswrtschaft läßt sch an hrem Exportantel am Gesamtexportvolumen aller Industreländer messen. Mt 27,7 % des gesamten Weltexportvolumens

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9 WS 2016/17 Prof. Dr. Horst Peters 06.12.2016, Sete 1 von 9 Lehrveranstaltung Statstk m Modul Quanttatve Methoden des Studengangs Internatonal Management (Korrelaton, Regresson) 1. Überprüfen Se durch Bestmmung

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

5.3.3 Relaxationsverfahren: das SOR-Verfahren

5.3.3 Relaxationsverfahren: das SOR-Verfahren 53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr