B Phänomenologische Wärmelehre Thermodynamik Statistische Mechanik

Größe: px
Ab Seite anzeigen:

Download "B Phänomenologische Wärmelehre Thermodynamik Statistische Mechanik"

Transkript

1 B Phäomeologische Wärmelehre Thermodyamik Statistische Mechaik 1. Wärme ud Temperatur 1.1. Grudbegriffe 1.2. Thermisches Gleichgewicht ullter Hauptsatz der Wärmelehre 1.3. Wärmeausdehug ud Temperaturmessug 1.4. Freiheitsgrade, Gleichverteilugssatz 1.5. Wärmekapazität ud spezifische Wärme 2. Kietische Gastheorie Hauptsatz der Wärmelehre 4. Zustadsäderuge thermodyamische Prozesse 4.1. Isochore Prozesse (V = cost.) 4.2. Isobare Prozesse (p = cost.) 4.3. Isotherme Prozesse (T = cost.) 4.4. Adiabatische Prozesse (Q = cost.) 4.5. Isethalpische Prozesse (H = cost.) - Gas-Verflüssigug Joule-Thomso-Effekt 5. Die Verfügbarkeit der Eergie 2. Hauptsatz der Thermodyamik - Kreisprozesse 5.1. Wärmekraftmaschie ud 2. Hauptsatz der Thermodyamik 5.2. Kältemaschie (Wärmepumpe), Kraftwärmemaschie ud 2. Hauptsatz 5.3. Der Carot-Prozess, Stirligmotor 5.4. Etropie ud der II. Hauptsatz der Wärmelehre Statistische Deutug der Etropie

2

3 5.4. Etropie ud der II. HS der Wärmelehre Statistische Deutug der Etropie Vorlesugsexperimet(e): - Kugelstoß reversibel, also elastisch & irreversibel, plastisch - Mische vo gelber ud blauer zu grüer Flüssigkeit icht alle Prozesse, die dem Eergiesatz geüge (I. HS), fide auch wirklich statt. Wie Prozesse ablaufe, ka mit der Zustadsgröße Etropie beschriebe werde. Wir betrachte ei Volume mit 4 Gasteilche ud utersuche, ob ud wie viele sich i der like ud rechte Hälfte aufhalte. Wir aalysiere die Mikrozustäde des Systems:

4 Die Abbildug zeigt die Mikrozustäde eies Systems, bestehed aus zwei gleichberechtigte Hälfte sowie vier makroskopisch uuterscheidbare Gasteilche, weil die kleie ud ur i Gedake aufgedruckte ummer vo auße icht sichtbar ist. Makrozustad: (relative Häufigkeit h = P = / ges ) relative Häufigkeit = Wahrscheilichkeit des Makrozustades 1 16 = 6,25 % 4 16 = 25 % 6 16 = 37,5 % 4 16 = 25 % 1 16 = 6,25 % W Ei bestimmter Makrozustad, de wir als makroskopisch beobachte köe (z. B. durch Druckmessug liks ud rechts) wird durch verschiedee Mikrozustäde realisiert. Im Beispiel habe wir 5 Makrozustäde ud 16 gleichberechtigte Mikrozustäde ( ges ). Die eizele, idividuelle Gasteilche köe wir icht uterscheide. Die Azahl (relative Häufigkeit) der gleichwertige Mikrozustäde / Realisieruge eies zugehörige Makrozustades bestimmt die Wahrscheilichkeit für desse Auftrete P = / ges. Mit P Wahrscheilichkeit für das Auftrete eies Makrozustades ud W statistisches Gewicht bzw. Azahl der Realisierugsmöglichkeite eies Makrozustades ist S k lw S k l P (33) B B die Etropie dieses Makrozustades. Beide Formulieruge sid äquivalet, gleichsetze darf ma sie jedoch icht, weil die Zahlewerte uterschiedlich sid, obwohl sie deselbe Sachverhalt ausdrücke. Zu bereche ist eigetlich der Erwartugswert des Logarithmusterms. S kb l P kb l( ) kb l kb l ges ; kb l ges cost. ges Bemerkug / Amerkug: Gleichug (33) wird i allgemeier Form wie folgt geschriebe (Etropie als Erwartugswert): Mit 1/ i S k p l p B i i i 1 i ist ei Mikrozustad; p i sid die Wahrscheilichkeite der Mikrozustäde ierhalb des Makrozustades; ges ist die Gesamtzahl aller Mikrozustäde, also ei ormierugsfaktor p p aufgrud der Gleichwertigkeit ud 1/ i i i i 1 i 1 W p gilt: p l p l p p l p 1 l(1/ W ) l1 lw lw. We sich ei System i eiem weiger wahrscheiliche Zustad befidet, strebt es daach, eie Zustad größerer Wahrscheilichkeit azuehme. (Viele Wege führe zum Gleichgewicht, es führe mehr Wege vo uwahrscheilichere zu wahrscheilichere Zustäde als umgekehrt.)

5 Im Sie eier Fluktuatio (kurzzeitiges Abweiche vom wahrscheilichere Zustad) köe uwahrscheilichere Zustäde auftrete. Bei Systeme ormaler Größe sid diese Schwakugserscheiuge sehr gerig. Bemerkug / Amerkug: Die Etropie der (statistische) Thermodyamik ist vergleichbar mit der Shao-Gleichug für die Iformatio. Mit zuehmeder Ordug (Abahme der Etropie) wächst die Gewissheit ud umgekehrt. Teilcheazahl Gesamtzahl der Mikrozustäde Wahrscheilichkeit P für Grezzustad = 16 1 / 16 = 6 % = / 1024 = 0,1 % ca ca ca ca (2 10 ) 23 ca Wir betrachte die Etropiezuahme beim Übergag vo eiem Grezzustad (= geordeter Zustad) zum gleichverteilte (= ugeordete) Zustad. Vorlesugsexperimet: Computer-Simulatio Ehrefest-Modell Geordeter Zustad (1) gleichverteilter Zustad (2) W 1 Iformativ:! 1! 0! W 2! 2 / 2 / 2 ( )! ( )! ( ) ( ) Mit Hilfe der Stirlig-Formel für sehr große p 1 = 1 / = 1 / 1 = 1 p2 1/ 2 2 P1 1/ 2 2 P Ede der Zwischeiformatio S1 kb lw1 kb l1 0 S2 kb lw2 kb l 2 kb l 2 Etropieäderug bei diesem Übergag: W S S S k W W k k B (l 2 l 1) B l( ) B l 2 W1 Bemerkug / Amerkug / Kommetar / Hiweis: Am eifachste verstädlich ist die direkte Berechug der Eizeletropie Si (i = 1, 2) über die Azahl der Realisierugsmöglichkeite W i der beide Makrozustäde. Ma köte sich also die zweite ud dritte Zeile der Bilduterschrift komplett spare. immt ma stattdesse die Wahrscheilichkeite für

6 die Realisierug dieser Makrozustäde P i, wechselt das Edergebis sei Vorzeiche. Das hätte für de Fall 1 zur Kosequez, dass ma egative Etropie zulässt. I der Festkörperphysik legt ma aber i Übereistimmug mit dem dritte Hauptsatz der Thermodyamik ach erst fest, dass die Etropie eies ideale Kristalls, also perfekter Ordug, am absolute ullpukt de Wert ull hat. Demzufolge müsse alle adere Etropie positiv sei. Für die Mischugsetropie als Differez ist die ullpuktwahl belaglos. Die Zeile 2 ud 3 der Bilduterschrift werde im Falle 2 für kleie falsch. Ei System versucht stets, i Zustäde höherer Wahrscheilichkeit (größere Uordug) überzugehe. Ei System versucht, de Zustad maximaler Etropie eizuehme. Dies sid zwei völlig gleichwertige Formulieruge.

Betrachtung von wahrscheinlichen und unwahrscheinlichen Zuständen eines Systems. Beide Zustände haben die gleiche Innere Energie (ideales Gas).

Betrachtung von wahrscheinlichen und unwahrscheinlichen Zuständen eines Systems. Beide Zustände haben die gleiche Innere Energie (ideales Gas). Etropie etrachtug vo wahrscheiliche ud uwahrscheiliche Zustäde eies Systems. A eispiel: Gas Vakuum Gas eide Zustäde habe die gleiche Iere Eergie (ideales Gas). Übergag vo ach A ist keie Verletzug des Eergiesatzes.

Mehr

Thermodynamik von Legierungen

Thermodynamik von Legierungen Thermodyamik vo Legieruge Ei System verädert sich solage, bis es das thermodyamische Gleichgewicht erreicht hat, wobei die Eistellug des Gleichgewichtes kietisch möglich sei muß. Das thermodyamische Gleichgewicht

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 3 (Abgabe Di 22. Mai 2012 in Vorlesung)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 3 (Abgabe Di 22. Mai 2012 in Vorlesung) TU Müche Physik Departmet, T33 http://www.wsi.tum.de/t33 Teachig Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck Übug i Thermodyamik ud Statistik 4B Blatt 3 Abgabe Di. Mai i Vorlesug. Mikrokaoische

Mehr

Erster Hauptsatz der Thermodynamik. : Innere Energie

Erster Hauptsatz der Thermodynamik. : Innere Energie Erster Hautsatz der hermodyamik U : Iere Eergie U + Beisiel: Ball Iere Eergie: hermische Bewegugseergie der Gasteilche. Nicht die kietische Eergie, die der Ball besitzt we er sich als Gazes bewegt ud icht

Mehr

Allgemeine Chemie Definition: Energie: Tätigkeit, Wärme zu erzeugen oder Arbeit zu verrichten.

Allgemeine Chemie Definition: Energie: Tätigkeit, Wärme zu erzeugen oder Arbeit zu verrichten. Allgemeie Chemie 25.11.22 Thermochemie Defiitio: Eergie: Tätigkeit, Wärme zu erzeuge oder Arbeit zu verrichte. Kietische Eergie : E K ½ m v² Potetielle Eergie: EPot gespeicherte Eergie Beispiel: kg EK

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 01. Aufgabe 1:

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 01. Aufgabe 1: Istitut für Thermodyamik Prof. Dr. rer. at. M. Pfitzer Thermodyamik II - Lösug 0 Aufgabe : Ei zweistrahliges Verkehrsflugzeug fliegt mit eier Geschwidigkeit c 250 m/s i großer Höhe. Der Druck ud die Temperatur

Mehr

sich alle extensiven Größen des Bereiches in gleichem Maß. Beispiele sind Volumen, Masse, Energie und Entropie.

sich alle extensiven Größen des Bereiches in gleichem Maß. Beispiele sind Volumen, Masse, Energie und Entropie. 62 hermodyamik sich alle extesive Größe des Bereiches i gleichem Maß. Beisiele sid olume, Masse, Eergie ud Etroie. Zustadsgröße Eie Zustadsgröße oder Zustadsfuktio Y ist eie hysikalische Größe, die ur

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 8

Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 8 Übug zur Vorlesug PC I Chemische Thermodyamik B.Sc. Blatt 8 1. Bereche Sie die Äderug des Schmelzpukts vo Bezol pro Atmosphäre Druckäderug. Der Normalpukt vo Bezol ist 5,5 C, die Dichte vo flüssigem Bezol

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Eigenschaften von Texten

Eigenschaften von Texten Worthäufigkeite Eigeschafte vo Texte Eiige Wörter sid sehr gebräuchlich. 2 der häufigste Wörter (z.b. the, of ) köe ca. 0 % der Wortvorkomme ausmache. Die meiste Wörter sid sehr selte. Die Hälfte der Wörter

Mehr

Boltzmanns Hypothese der gleichen a-priori Wahrscheinlichkeit: das mikrokanonische Ensemble

Boltzmanns Hypothese der gleichen a-priori Wahrscheinlichkeit: das mikrokanonische Ensemble zetrale Aufgabe der statistische Mechaik: estimmug vo 57 ρ oltzmas ypothese der gleiche a-priori Wahrscheilichkeit: das mikrokaoische semble isoliertes ystem: ystem ist gege die Umgebug abgeschirmt vorgegebee

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE Defiitio ach DIN4004 Als Zuverlässigkeit ( reliability ) gilt die Fähigkeit eier Betrachtugseiheit ierhalb vorgegebeer Greze dejeige durch de Awedugszweck bedigte Aforderuge zu geüge, die a das Verhalte

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Kapitel 11 DIE NORMAL-VERTEILUNG

Kapitel 11 DIE NORMAL-VERTEILUNG Kapitel DIE NORMAL-VERTEILUNG Fassug vom 7. Februar 006 Prof. Dr. C. Porteier Mathematik für Humabiologe ud Biologe 49 . De itio der Normal-Verteilug. De itio der Normal-Verteilug Bisher habe wir ur diskret

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Physikalisches Anfaengerpraktikum. Beugung und Brechung

Physikalisches Anfaengerpraktikum. Beugung und Brechung Physikalisches Afaegerpraktikum Beugug ud Brechug Ausarbeitug vo Marcel Egelhardt & David Weisgerber (Gruppe 37) Mittwoch, 3. Februar 005 I Utersuchuge am Prismespektroskop 1. Versuch zur Bestimmug des

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2 .9 Subtraktio 7.9 Subtraktio Allgemei Bezeichuge: Miued Subtrahed = Differez Die Subtraktio zweier Zahle wird stelleweise ausgeführt. Dabei ka es vorkomme, dass eie größere Zahl vo eier kleiere Zahl subtrahiert

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II Strukturelle Modelle i der Bildverarbeitug Markovsche Kette II D. Schlesiger TUD/INF/KI/IS Statioäre Verteilug Verborgee Markovsche Kette (HMM) Erkeug stochastisches Automate D. Schlesiger SMBV: Markovsche

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

2.3 Kontingenztafeln und Chi-Quadrat-Test

2.3 Kontingenztafeln und Chi-Quadrat-Test 2.3 Kotigeztafel ud Chi-Quadrat-Test Die Voraussetzuge a die Date i diesem Kapitel sid dieselbe, wie im voragegagee Kapitel, ur dass die Stichprobe hier aus Realisieruge vo kategorielle Zufallsvariable

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Kapitel 9: Geometrische Summe und ein Mischmodell

Kapitel 9: Geometrische Summe und ein Mischmodell Kapitel 9: Geometrische Summe ud ei Mischmodell Dr. Dakwart Vogel Ui Esse WS 2009/10 1 Die Summeformel der geometrische Reihe + 1 2 1 q 1 + q+ q +... + q =, 0, q> 0, 1 1 q Bemerkuge 1. Mit Hilfe des -Zeiches

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Quantenmechanik I. Musterlösung 12.

Quantenmechanik I. Musterlösung 12. Quatemechaik I. Musterlösug 1. Herbst 011 Prof. Reato Reer Übug 1. Ster-Gerlach (19). Ei Strahl aus ugeladee Teilche mit Spi s = 1 läuft etlag der x-achse ud durchquert ei i z-richtug stark ihomogees Magetfeld.

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Gesetze der großen Zahlen

Gesetze der großen Zahlen Gesetze der große Zahle Ato Klimovsky Grezwertsätze für die Summe der ZV. Schwaches Gesetz der große Zahle. Kovergez i Wahrscheilichkeit (Stochastische Kovergez). Starkes Gesetz der große Zahle. Fast sichere

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr