Elementarreaktionen: die meisten Reaktionen verlaufen nicht gemäss der Reaktionsgleichung sondern in Einzelschritten Elementarschritte

Größe: px
Ab Seite anzeigen:

Download "Elementarreaktionen: die meisten Reaktionen verlaufen nicht gemäss der Reaktionsgleichung sondern in Einzelschritten Elementarschritte"

Transkript

1 6. Kineti 6.2 Theorie der Retionsineti Elementrretionen: die meisten Retionen verlufen nicht gemäss der Retionsgleichung sondern in Einzelschritten Elementrschritte Beispiel: H Br2 HBr Br ein H und ein Br 2 Teilchen regieren miteinnder die Moleulrität einer Retion ist die Zhl der Teilchen die ollidieren müssen, dmit die Retion stttfinden nn unimoleulre Retionen: Retion eines Teilchens ohne Retionsprtner (z.b. Isomierisierung von cyclo-c 3 H 6 zu CH 3 CH=CH 2 ) ei einer imoleulren Retion stossen zwei Teilchen zusmmen und regieren (z.b. Isomierisierung von cyclo-c 3 H 6 zu CH 3 CH=CH 2 ) die Retionsordnung ist eine empirische Grösse us einem experimentell estimmten Retionsgesetz; die Moleulrität ezieht sich uf eine Elementrretion ds Geschwindigeitsgesetz einer Elementrretion folgt us der Retionsgleichung d[a] d[a] A P [A] oder A B P [A] [B] PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 32

2 6. Kineti 6.2 Theorie der Retionsineti Elementrretionen: imoleulre Elementrretionen Retionen zweiter Ordnung, d Retionsgeschwindigeit proportionl zur Zhl der Kollisionen zw. den eiden Retionsprtnern ist Beispiel: v [CH3I] [CH3CH 2O ] Retionen us einem einzigen imoleulren Schritt sind immer zweiter Ordnung, er Retionen zweiter Ordnung önnen nch einem sehr viel omplexeren Mechnismus lufen postulierter Retionsmechnismus muss durch detillierte inetische Messungen und durch Bestimmung ller Neen- und Zwischenprodute ewiesen werden PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 321

3 6. Kineti 6.2 Theorie der Retionsineti ufeinnderfolgende Elementrretionen Bildung von Zwischenproduten, z.b. 235 U 23.5 min 239 Np 2.35 d 239 Pu Bestimmung der Konzentrtion üer die Zeit? A B C für Elementrretionen gilt dnn: d[a] d[b] d[c] [A] sowie [A] [B] sowie [B] wenn zu Beginn nur A vorliegt mit [A] : [ A] [A] exp t (s. S. 38) eingesetzt in [B]-Geschwindigeitsgesetz: Lgrnge Methode der Vrition der Konstnten Tfelnschrie: Herleitung d[b] PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 322 [B] [A] e [A] t e t [B] e t

4 6. Kineti 6.2 Theorie der Retionsineti ufeinnderfolgende Elementrretionen mit den Lösungen: [ A] [A] exp t A und B C [B] [A] e t e t d für die Anfngsedingung ei t= gil: [A] = [A] sowie [B] (t=) = & [C] (t=) = [ A] [B] [C] [A] [ C] [A] [A] [B] ominiert mit [A] (t) & [B] (t) : [C] 1 e e t t [A] zw. [C] 1 t e t e [A] (P.W. Atins,Physilische Chemie (VCH)) PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 323

5 6. Kineti 6.2 Theorie der Retionsineti Folgeretion A B C [C] [A] 1 e t e t =1.s -1 =.1s -1 =.1s -1 =1.s -1 (für [A] =1mol/L) Näherungen: Tfelnschrie: Herleitung >> [C] (G. Wedler, Lehruch der Physilischen Chemie, Wiley-VCH (24)) << t [A] 1 e t [C] [A] 1 e B C geschwindigeitsestimmend PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 324 A C geschw.-est.

6 6. Kineti 6.2 Theorie der Retionsineti retive Zwischenprodute: Qusisttionritätsedingung A B C =1.s -1 =.1s -1 =.1s -1 =1.s -1 (für [A] =1mol/L) (G. Wedler, Lehruch der Physilischen Chemie, Wiley-VCH (24)) für retives Zwischenprodut B: - [B]<<[A] d[b] - d[b]/ = lein im Vgl. zu d[a,c]/ nchdem [B] Mximum erreicht wurde Bodenstein sche Qusisttionritätsedingung für retives Zwischenprodut B erlut vereinfchte Behndlung omplexer Geschwindigeitsgleichungen PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 325

7 6. Kineti 6.2 Theorie der Retionsineti retive Zwischenprodute: Qusisttionritätsedingung A B C Beispiel: B ist retives Zwischenprodut, d.h. >> d[b] [A] [B] [A] d[c] [B] eingesetzt in: [B] Integrtion: d[c] [C] [A] e PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 326 [A] t [A] e t t d [C] (t=) = [C] [A] 1 e gleiches Resultt wie die Näherung der exten Lösung für >> (s. S. 324)

8 6. Kineti 6.2 Theorie der Retionsineti llgemeine Qusisttionritätsedingung: Annhme dss die Konzentrtion von Zwischenproduten lein ist/leit uch dnn gilt: d[zwischenprodute] Qusisttionritätsedingung (P.W. Atins, Physilische Chemie (VCH)) Anwendung: Betrchtung omplexer Retionsläufe unter der Annhme dss d[zwischenprodute]/ und Vergleich mit experimentell estimmten Geschw.-Gesetzen PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 327

9 6. Kineti 6.2 Theorie der Retionsineti llgemeine Qusisttionritätsedingung: Beispiel: 2 N2O5(g) 4 NO2(g) O2(g) ; experimentelles G-Gesetz: Annhme folgender Teilretionen: N 2 O 5 NO 2 + NO 3 + NO 2 + NO 3 NO + N 2 O 5 d[zwischenprodute]/ c NO 2 + O 2 + NO 3NO 2 2N2O5(g) 4NO2(g) O2(g) v [N2O5] qusisttionäre Bedingungen für lle Zwischenprodute: dno [NO2] [NO3] c [NO] [N2O5] dno [N2O5] [NO2] [NO3] [NO2] [NO3] 3 Nettoverruchsgeschw.: Eliminierung von [NO] & [NO 3 ]: dn2o5 [N2O5] [NO2] [NO3] c [NO] [N2O5] dn O 2 v A [N2O5] v [N O ] PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 328 A

10 6. Kineti 6.2 Theorie der Retionsineti vorgelgerte Gleichgewichte: A + B Bildung von Zwischenprodut C und dessen Zerfll in Eduten A,B sehr viel schneller ls Retion des Zwischenproduts zu Produt P ( >> c ) A, B und C sind im GG: d[p] [C] K [A] [B] [C] [A] [B] dies nn uch geschrieen werden ls: PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 329 K C d[p] woei: P [A] [B] K Geschwindigeitsgesetz dieses vorgelgerten Gleichgewichts ht die Form einer Retion zweiter Ordnung mit zusmmengesetzter Geschwindigeitsonstnte

11 6. Kineti 6.2 Theorie der Retionsineti Retion 3. Ordnung: Whrscheinlicheit einer trimoleulren Retion ist gering Beispiel: nn folgende Retion scheinr dritter Ordnung nders erlärt werden? Beochtung: Retionsgeschwindigeit nimmt mit der Tempertur! 2 NO(g) O2(g) 2 NO2(g) ; experimentelles G-Gesetz: v [NO] 2 [O2] Hypothese: vorgelgertes GG mit nchfolgender imoleulrer Retion 2NO N 2 O 2, woei [N2O2] 2 [NO] K und H θ R (exotherm) N 2 O 2 + O 2 d[no ] 2NO 2, woei 2 2 [N2O2] [O2] Komintion der GG-Bedingung und der NO 2 Bildungsrte: d[no ] 2 2 K [NO] [O θ d ln K H d R 2 dt RT 2 ] RG nn mit der Tempertur nehmen negtive pprente Ativierungsenergie! PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 33

12 6. Kineti 6.2 Theorie der Retionsineti Michelis Menten Mechnismus: E + S ES P + E Lösungsnstz: - [ES] vi Qusittionrität - [E] = [E] + [ES] - [S] ist c. onstnt, d.h. [E] << [S] Konzentrtion des Enzym-Sustrt Komplexes: [ES] [E] [S] [S] Produtildungsgeschwindigeit: d[p] [E] [S] [E] [S] K M [S] [S] [S] [E] [S] (P.W. Atins,Physilische Chemie (VCH)) Tfelnschrie: Herleitung Michelis-Menten Konstnte K M PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 331

13 6. Kineti 6.2 Theorie der Retionsineti Michelis Menten Mechnismus: E + S ES P + E d[p] K [S] [E] M [S], woei K M Grenzfälle: d[p] [E] ) [S]>> K M Mximlgeschwindigeit: Enzym ist gesättigt mit S, so dss P-Bildungsrte nur von der ES-Zerfllsrte hängt mximle Wechselzhl d[p] K ) [S]<< K M [E] [S] erste Ordnung zgl. [S] und [E] M Enzym Sustrt Wechselzhl Ktlse H 2 O 2 4 s -1 Acetylcholinesterse Acetylcholin 14 s -1 -Lctmse Benzylpenicillin 2 s -1 RecA-Protein (eine ATPse) ATP.4 s -1 (s. Sript v. Dr. Ogrodni: Kpitel 19.2) PC1 (SS212) 22 Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript pge: 332

6. Kinetik. 6.2 Theorie der Reaktionskinetik. Michaelis Menten Mechanismus: k a k. (s. Skript v. Dr. Ogrodnik: Kapitel 19.2)

6. Kinetik. 6.2 Theorie der Reaktionskinetik. Michaelis Menten Mechanismus: k a k. (s. Skript v. Dr. Ogrodnik: Kapitel 19.2) 6. Kineti 6. Theorie der Retionsineti Michelis Menten Mechnismus: E + S ES + E (s. Sript v. Dr. Ogrodni: Kpitel 19.) C1 (SS01) Folien in Zusmmenreit mit Juli Kunze in Anlehnung n Alexnder Ogrodnis Sript

Mehr

Die Geschwindigkeit chemischer Reaktionen

Die Geschwindigkeit chemischer Reaktionen Die Geschwinigeit chemischer Retionen Empirische Retionsineti Die Retionsgeschwinigeit (Definition er Geschwinigeit, geschwinigeitsgesetze, Geschwinigeitsonstnten, Retionsornung, ie Bestimmung es Geschwinigeits

Mehr

Reaktionskinetik. Theorie der Reaktionskinetik

Reaktionskinetik. Theorie der Reaktionskinetik Retionsineti Theorie der Retionsineti Durh ein theoretishes Verständis der Retionsineti önnen inetishe Dten us einem Experiment mit einem postulierter Retionsmehnismus verglihen werden Die tivierungsenergie

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

t ) - auch Zerfallsrate genannt - ist

t ) - auch Zerfallsrate genannt - ist Differentilgleichungen - Ausgewählte Proleme us der Phsik Beisiel: Rdioktiver Zerfll Eine gnze Reihe hsiklischer Erscheinungen lässt sich unter dem Stichwort Zerfll ngeregter Zustände einordnen. Ein Beisiel

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

6.3.1 Das Modell freier Elektronen

6.3.1 Das Modell freier Elektronen 6.3. DIE SCHRÖDINGER GLEICHUNG 3 6.3. Ds Modell freier Elektronen Ein Elektron mit der Msse m befindet sich im potentilfreien Rum. Die Wellenfunktion Ψ des Elektrons ist eine Lösung der Schrödinger-Gleichung

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr

13. Quadratische Reste

13. Quadratische Reste ChrNelius: Zhlentheorie (SS 007) 3 Qudrtische Reste Wir ehndeln jetzt ei den Potenzresten den Sezilfll m und führen die folgende Begriffsildung ein: (3) DEF: Seien n und teilerfremd heißt qudrtischer Rest

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

lineare Ventile bevorzugt für reine Mischtemperaturregelstrecken Beispiel: Wärmeübergabe in Fernwärmeanwendungen

lineare Ventile bevorzugt für reine Mischtemperaturregelstrecken Beispiel: Wärmeübergabe in Fernwärmeanwendungen Durchgngsentile ls Stell- und Regelentile. Linere entile linere entile beorzugt für reine Mischtemperturregelstrecen Beispiel: Wärmeübergbe in Fernwärmenwendungen direte Wärmeübergbe ohne Wärmeübertrger

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Für eine allgemeine chemische Reaktion mit der stöchiometrischen Gleichung. aa + bb cc + dd

Für eine allgemeine chemische Reaktion mit der stöchiometrischen Gleichung. aa + bb cc + dd 5. Reationsineti 96 5. Reationsineti 5. Die Geschwindigeit chemischer Reationen Die Umsatzgeschwindigeit ω ist definiert als: dλ ω = [mol s - ] mit λ = Umsatzvariable (Gleichung 86) Für eine allgemeine

Mehr

Ausgleichsfunktionen / Interpolation / Approximation

Ausgleichsfunktionen / Interpolation / Approximation HTL Slfelden Ausgleichsfuntionen Seite von 5 Wilfried Rohm, HTL Slfelden Zur Beispielsüersicht Ausgleichsfuntionen / nterpoltion / Approximtion Führen Sie zunächst eine Begriffslärung der oigen Begriffe

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Analysis I. Vorlesung 3

Analysis I. Vorlesung 3 Prof. Dr. H. Brenner Osnrüc WS 2013/2014 Anlysis I Vorlesung 3 Körper Wir werden nun die Eigenschften der reellen Zhlen esprechen. Grundlegende Eigenschften von mthemtischen Struuren werden ls Axiome ezeichnet.

Mehr

Massendichte und Massenzunahme des Weltalls

Massendichte und Massenzunahme des Weltalls rtin Bock Diefflen, 700 ssendichte und ssenzunhme des Weltlls Ich will den Nmen meinen Brüdern verkünden, inmitten der emeinde dich preisen Die ihr den Herrn fürchtet, preist ihn, ihr lle vom Stmm Jkobs,

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Kapitel 2 Variationsrechnung

Kapitel 2 Variationsrechnung Kpitel 2 Vritionsrechnung Die Vritionsrechnung wurde entwickelt, um Frgen zu lösen, bei denen extremle Kurven gesucht sind. Hier einige typische Frgen dieser Art: Welches ist die kürzeste Verbindung zwischen

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

Einige elementargeometrische Sätze über Dreiecke

Einige elementargeometrische Sätze über Dreiecke Seite I Einige elementrgeometrische Sätze üer Dreiecke Durch drei nicht uf einer Gerden gelegene (d.h. nicht-kollinere) Punkte A, B, C in der euklidischen Eene ein Dreieck ABC mit Seiten,, c und (Innen-)Winkeln,,

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz Seminr zum norgnish-hemishen Prktikum I Quntittive Anlyse Prof. Dr. M. Sheer Ptrik Shwrz itertur A. F. Hollemn, E. Wierg, ehruh der Anorgnishen Chemie, de Gruyter Verlg, Berlin, New York (Ahtung, neue

Mehr

Kapitel 1. Anschauliche Vektorrechnung

Kapitel 1. Anschauliche Vektorrechnung Kpitel 1 nschuliche Vektorrechnung 1 2 Kpitel I: nschuliche Vektorrechnung Montg, 13. Oktoer 03 Einordnung Dieses erste Kpitel ht motivierenden Chrkter. Es führt n die geometrische nschuung nknüpfend die

Mehr

PC II Kinetik M. Quack HS 2007

PC II Kinetik M. Quack HS 2007 PC II Kinetik M. Quck HS 7 Musterlösung zur Übung. Z. B. Frgen zur Debye-Hückel-Theorie: Ws sind die physiklischen Grundlgen der Herleitung dieser Theorie? Die Wechselwirkungen zwischen den Ionen wird

Mehr

2. Funktionen in der Ökonomie

2. Funktionen in der Ökonomie FHW, ZSEBY, ANALYSIS - - Funktionen in der Ökonomie Beispiele: qudrtische Funktionen, Eponentilfunktion Qudrtische Funktionen Einfchste qudrtische Funktion: y = Allgemeine qudrtische Funktion: y = + b

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 12

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 12 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 29 Ferur 2012

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle S2-Adsorptionsisothermen_UWW rstelldtum 28.3.214 7:41: Üungen in physiklischer Chemie für Studierende der Umweltwissenschften Versuch Nr.: S2 Version 214 Kurzezeichnung: Adsorptionsisotherme estimmung

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick uf die letzte Vorlesung 1. Ljpunov-Funktion 2. Rndwertprobleme 3. Lösbrkeit und Eindeutigkeit Ausblick uf die heutige Vorlesung 1. Vritionsrechnung 2. Brchistochrone 3. Euler-Lgrnge Gleichung

Mehr

Ideale Gasgleichung, Gaskonstante und Zustandsgleichung

Ideale Gasgleichung, Gaskonstante und Zustandsgleichung Idele Gsgleichung, Gskonstnte und Zustndsgleichung Ds idele Gsgesetz lutet P P 0 0 0 Wählen wir P 0 = 1 tm, 0 = 73,15 K dnn ht 1 Mol eines Gses ein olumen 0 =,414 l. Dieser Zusmmenhng geht uf die Entdecker

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

III. Optimale Portfolioselektion

III. Optimale Portfolioselektion III. Optimle Portfolioselektion Schon bei der Bewertung meriknischer Optionen hben wir gesehen, dss Optimierungsprobleme in der Finnzmthemtik eine wichtige Rolle spielen. Ein weiteres Optimierungsproblem

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen Algorithmus von Dijkstr: 1. Es sei S ie Menge er enteckten Knoten. Invrinte: Merke optimle Lösung für S: Für lle v S sei [v] = δ(s,v) ie Länge es kürzesten Weges von s nch v 3. Zu Beginn: S={s} un [s]=

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1)

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1) Mthemtik für die Physik II, Sommersemester 28 Lösungen zu Serie 5 2) Berechnen Sie die uneigentlichen Riemn-Integrle ln d und d +. Für jedes < < gilt ln t dt = t ln t t = ln und nch I. 2.Lemm 4 und I..Stz

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Theoretische Physik IV - Blatt 3

Theoretische Physik IV - Blatt 3 Theoretische Physi IV - Bltt 3 Christopher Bronner, Frn Essenberger FU Berlin 4.November 006 Aufgbe 5 Energieeigenfuntionen Uns ist folgendes Potentil gegeben, wobei V 0 > 0 sei: V (x) V 0 bei x [, ] V

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3 Bruchrechnung W. Kippels 6. Dezemer 08 Inhltsverzeichnis Vorwort Einleitung Die Bruchrechenregeln. Addition gleichnmiger Brüche........................ Addition ungleichnmiger Brüche.......................

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

Kapitel 1 : Mathematische Grundlagen und Stöchiometrie

Kapitel 1 : Mathematische Grundlagen und Stöchiometrie pitel : Mthemtische Grundlgen und Stöchiometrie Elementre Rechenumformungen. Dreistzrechnung : Immer dnn, wenn zwei Meßgrößen zueinnder proportionl bzw. indirekt proportionl (d.h. die eine proportionl

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Zerfallsgesetze. zeitliche Beschreibung radioaktiver Zerfälle

Zerfallsgesetze. zeitliche Beschreibung radioaktiver Zerfälle Zerfllsgesetze zeitliche Beschreiung rdioktiver Zerfälle Der Zerfll rdioktiver Isotope knn durch die kernphysiklische Größe Aktivität eschrieen werden. Die Aktivität git n, wie viele Kerne eines rdioktiven

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung 0. Motivtion und Einordnung 1. Endliche Automten 2. Formle Sprchen 3. Berechnungstheorie 4. Komplexitätstheorie 1.1. 1.2. Minimierungslgorithmus 1.3. Grenzen endlicher Automten 1/1, S. 1 2017

Mehr

a b a) b) Fig. 1 Unterschiedliche Orientierung In beiden Fällen setzt sich das Übergangsstück aus zwei Kreisbögen mit einem Übergangspunkt

a b a) b) Fig. 1 Unterschiedliche Orientierung In beiden Fällen setzt sich das Übergangsstück aus zwei Kreisbögen mit einem Übergangspunkt Rolfdieter Frnk / Hns Wlser Korögen wie kriegen wir die Kurve? Kurzfssung: Es geht drum, wie wir zwischen zwei Gerden die Kurve kriegen. Präziser: Zwei orientierte Gerden sollen durch Kreisögen gltt und

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 4

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 4 Jens Träger Sommersemester 006 15.05.006 1. Aufgbe Als totles Differentil bezeichnet mn ds Differentil einer Funktion mehrerer Vriblen nch llen ihren Vriblen. Dbei wird für jede Vrible die prtielle Ableitung

Mehr

13-1 Funktionen

13-1 Funktionen 3- Funktionen 3 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten eine stetige Funktion f : I R und ds zugehörige Integrl f() d (dies ist

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Wie wirkt sich eine reiserhöhung für Gut uf die konsumierte Menge n us: Bzw.: d (,, ) h (,, V ) 2 V 0,5 0,5 Für die Unkompensierte Nchfrgefunktion gilt:

Mehr

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git

Mehr

4.2 Kopplungsanalyse und Genkartierung

4.2 Kopplungsanalyse und Genkartierung 350 Sttistische Genetik T..1 Risikoerechnung ei einer Zwei-Kinder-Konstelltion für eine utosoml rezessive Erkrnkung. Konstelltion erechnung Risiko eide Kinder gesund 3/ (gesund) 3/ (gesund) 9/16 eide Kinder

Mehr

2. Modellierung biologischer Regelkreise

2. Modellierung biologischer Regelkreise 2. Modellierung biologischer Regelkreise Beispiele: STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE ROENTGENTECHNIK Die Beschreibung der Trnskription von Genen Lipidstoffwechsel und Lipirnsport Wärmehushlt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr