Vorwort. Hans-Jochen Bartsch. Kleine Formelsammlung Mathematik ISBN: Weitere Informationen oder Bestellungen unter

Größe: px
Ab Seite anzeigen:

Download "Vorwort. Hans-Jochen Bartsch. Kleine Formelsammlung Mathematik ISBN: Weitere Informationen oder Bestellungen unter"

Transkript

1 Vorwort Hns-Jochen Brtsch Kleine Formelsmmlung Mthemtik ISBN: Weitere Informtionen oder Bestellungen unter sowie im Buchhndel. Crl Hnser Verlg, München

2 Vorwort Die Kleine Formelsmmlung enthält die wichtigsten Formeln usgewählter Stoffgebiete der Mthemtik, die Studierende ingenieurwissenschftlicher Fchrichtungen n Hochschulen für Angewndte Wissenschften und Technischen Universitäten sowie Schülerinnen und Schüler in der Oberstufe der Gmnsien benötigen. Sie soll den Lernenden ein zuverlässiger Rtgeber bei der Bewältigung mthemtischer Probleme in llen technischen und uch ökonomischen Fächern sein, wobei uf Verfhren, die uf Spezilfächer zugeschnitten sind, verzichtet werden musste. Ds Buch knn und will kein Lehrbuch ersetzen. Es enthält keine Herleitungen und Beweise, sondern nur die Formeln selber, und dient dem Nchschlgen und der Auffrischung von bereitsfrüher einml erlerntem Wissen. Der Inhlt reicht von der Elementrmthemtik der Gebiete Arithmetik, Algebr und Geometrie bis zur Anlsis und Stochstik, d erfhrungsgemäß einerseits die Schulmthemtik immer wieder der Auffrischung bedrf, zum nderen die Methoden der Sttistik und Whrscheinlichkeitsrechnung bei der Bewältigung technischer und ökonomischer Probleme zunehmend von Bedeutung sind. Trotz des beschränkten Umfnges des Buches wurde Wert gelegt uf die vollständige Drstellung der Bedingungen für die Anwendung der Formeln. Die Bezeichnungen und Smbole entsprechen den gültigen DIN-Empfehlungen. In der 5. Auflge wurden beknnte Druckfehler verbessert. Für Hinweise, die der Verbesserung des Buches dienen, sind der Berbeiter und der Verlg stets dnkbr. München, im Herbst011 MichelSchs Berbeiter

3 Leseprobe Hns-Jochen Brtsch Kleine Formelsmmlung Mthemtik ISBN: Weitere Informtionen oder Bestellungen unter sowie im Buchhndel. Crl Hnser Verlg, München

4 .4 Vektoren 59 Vektor PP 1 in Koordintendrstellung PP z z 1 Koordinten eines Einheitsvektors 0 e e cos e cos e cos z Ortsvektor, Drstellung mit Richtungskosinus r r e cos e cos e cos z.4.3 Vektorlgebr Addition, Subtrktion, Summe, Differenz s b AC AB BC Grundbegriff im Vektorrum b b (Kommuttivgesetz) ( b) c ( b c) (Assozitivgesetz) d b b ( ) C In Komponentendrstellung z z 1 1 z1 z b b b b e e e z Zerlegung in gegebene Richtungen Ein Vektor s in der Ebene knn eindeutig in die Richtung von Vektoren b, der gleichen Ebene zerlegt werden, wenn diese nicht kolliner sind: s s1 s ne meb sb,, komplnr n und m us se n m eeb seb neeb m s b n. e b b + b m.e b A e b e B

5 60 Linere Algebr Orthogonle (Krft-)Zerlegung, F und s gegebene Größen F F s F v mit Fs s, F s v s F Fs s= Feses s Probe: F F 0 F s v s F s e F e s v s s Multipliktion eines Vektors mit einem Sklr (s, tir ) b sb b s s b sb b sb z z (Koordintendrstellung) s: s (Kommuttivgesetz) ( s t) s t (Distributivgesetz) s( b) s sb (Distributivgesetz) s( t) ( st) (Assozitivgesetz) 1 ( 1) 0 o so o Aus s o folgt s 0 oder o. Sklrprodukt (inneres Produkt) zweier Vektoren b 1 b1 n : b 1 1 b n nibi i1 n bn (ein Sklr) b b b cos (,) b 0 ( b, ) b Projektion von b uf : b b b e cos (, ) b 0genu dnn, wenn orthogonl b, d.h. b für b, ooder ooder b o Der Nullvektor o ist zu jedem Vektor orthogonl. Bemerkung: Ds Sklrprodukt ist nicht umkehrbr, d.h., us b und knn nicht uf b geschlossen werden.

6 .4 Vektoren 61 Regeln: b b (Kommuttivgesetz) ( b) c c b c (Distributivgesetz) ( s) b ( sb) s( b ) sir, 0 Es gilt: e i 1 e j 1 ez k 1 e e i j 0 e e jk 0 e e ki 0 Cuch-Schwrzsche Ungleichung b b Vektorprodukt (äußeres Produkt, Kreuzprodukt) im IR 3 c b b sin (, b) ( b) und ( b) b bc,, IR 3 bilden ein Rechtssstem. Speziell: o (kollinere Vektoren) c ist gleich der Fläche des us und b gebildeten Prllelogrmms. z b b b b b b c b e e e z z z z z Regeln: b ( b) (Alterntivgesetz, Anti-Kommuttivgesetz) s( b) ( s) b ( sb, ) sir (Assozitivgesetz) ( b) c c b c (Distributivgesetz) Es gilt: e e o e e o ez ez o e e e e e e e e e z z z b 90 z b b Sptprodukt (gemischtes Produkt), Rechtssstem (, bc, ) b c ( b) c b c ( bc) [ bc,, ] 0 z bz cz

7 Leseprobe Hns-Jochen Brtsch Kleine Formelsmmlung Mthemtik ISBN: Weitere Informtionen oder Bestellungen unter sowie im Buchhndel. Crl Hnser Verlg, München

8 116 4 Funktionen Potenzfunktionen Potenzfunktion mit positivem gnzzhligem Eponenten f() k kin, IR, D( f) IR Grph: Prbeln n-ten Grdes,Bilder: ungerde Potenzfunktionen = 7 (1;1) = 5 = 3 = = 3 = (1; 1) 1 = 1_ = ( 1; 1) Potenzfunktion mit negtivem gnzzhligem Eponenten 1 f() k : kin, D( f) IR *,W( f) IR * k Grph: Hperbel, Bild rechts Asmptoten: 0 (für ), 0 (Pol) Sonstige (elementre) Funktionen Betrgsfunktion (Bild nächste Seite) ( ) für f() für Signumfunktion (Bild nächste Seite) 1 für 0 f() sgn 0 für D( f) IR D( f) IR W( f) IR 0 für W( f) 101 ; ;

9 4.4 Rtionle reelle Funktionen 117 = ] Integerfunktion (gnzzhliger Anteil von ) f: int : sgn D( f) IR,W( f ) Z :größte gnze Zhl kleiner oder gleich,ds n Z mit n n1 :kleinste gnze Zhl größer oder gleich,ds n Z mit n1 n Restfunktion (gebrochener Anteil von ) frc: int Rechteckimpulsfunktion 1für 05, rect (): 0für 05, =sgn 1 ( ( ) 1 ( ] =int [ 1 ) Dreiecksimpulsfunktion 1 für tri ( ): 1 0 für 1 [ ) ) 4 Einheitssprungfunktion, Heviside-Funktion, Thet-Funktion 0für ( ) H( ) ( ): 1 für () () Setzt mn ( 0) 1,gilt: () 1 sgn () ( ) 1 Deltfunktion, Dirc-Impulsfunktion, Stoßfunktion, Distribution 0 für ( ) für 1 1 für 1 ( ) d 0 sonst ( ) ordnet einer stetigen Funktion f()ihren Wert bei zu: 1 f()( ) d f( ) flls 1 Es gilt: ( ) ( ) (gerde) f()( ) f( )( )

10 118 4 Funktionen 4.5 Nichtrtionle Funktionen Wurzelfunktion (nichtrtionl und lgebrisch), vgl p q q p f() :, 0,kq, IN *, p Z, p kq Ungerder Wurzeleponent: n1 für 0 f() n1 für 0 = = +3 = _ p_ q >1 0< p _ q <1 p_ q <0 1 = _ 4 = _ Bemerkung: Nchfolgende Funktionen sind nichtlgebrisch Eponentilfunktion f() IR >0, 1, D( f) IR,W( f) IR >0 Asmptote -Achse, keine Nullstellen keine Etrem, keine Wendepunkte e-funktion (Sonderfll e, es.s. 3) e ep Mit e ln knn us der e-funktion gewonnen werden. Ntürliches (orgnisches) Wchstum nt () 0 e n kt n 0 (G 0 )Grundmenge, Anfngsbestnd =e k IR Wchstumsintensität, t Vrible, meist Zeit =10 =4 =e >1 =

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik Aufgbensmmlung der höheren Mthemtik von Vsili P. Minorski 5., ktulisierte Auflge Hnser München 2008 Verlg C.H. Beck im Internet: www.beck.de ISBN 978 3 446 466 Zu Inhltsverzeichnis schnell und portofrei

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner Abiturvorbereitung Mthemtik Linere Algebr / Anlytische Geometrie Copyright 2013 Rlph Werner 1 Linere Gleichungssysteme Ein lineres Gleichungssystem (LGS) besteht us einer Anzhl linerer Gleichungen. (m,n)-lgs

Mehr

Grundlagen der Algebra

Grundlagen der Algebra PH Bern, Vorbereitungskurs MATHEMATIK Vorkenntnisse 0 Grundlgen der Algebr Einleitung Auf den nchfolgenden Seiten werden grundlegende Begriffe und Ttschen der Algebr erläutert: Zhlenmengen, Rechenopertionen,

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenurg/Ostfrieslnd/Wilhelmshven Fch. Technik, At. Elektrotechnik u. Informtik Prof. Dr. J. Wiee www.et-inf.fho-emden.de/~wiee Mthemtik, Teil B Inhlt:.) Grundegriffe der Mengenlehre.) Mtrizen, Determinnten

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Kapitel 6. Funktionen

Kapitel 6. Funktionen Kpitel 6 Funktionen Josef Leydold Mthemtik für VW WS 07/8 6 Funktionen / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von

Mehr

Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität

Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität Reelle Funktion Kpitel 6 Funktionen Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von R üblicherweise Intervlle) sind. Bei reellen Funktionen

Mehr

Vektoren. Karin Haenelt

Vektoren. Karin Haenelt Vektoren Grundbegriffe für ds Informtion Retrievl Krin Henelt 13.10.2013 Anltische Geometrie und Linere Algebr Geometrie: Konstruktionsverfhren mit Zirkel und Linel Anltische Geometrie: Umsetzung geometrischer

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

Mathematik C. VEKTOREN UND PUNKTE IM KOORDINATENSYSTEM C1. KOORDINATENSYSTEM

Mathematik C. VEKTOREN UND PUNKTE IM KOORDINATENSYSTEM C1. KOORDINATENSYSTEM C. VEKTOREN UND PUNKTE IM KOORDINATENSYSTEM C. KOORDINATENSYSTEM Definition. Ein orthonormiertes Rechtssystem, yz - Ebene kurz Koordintensystem, besteht us einem festen Punkt O, dem Ursprung, und drei

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben.

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben. ALGEBRA GRUNDRECHENARTEN MULTIPLIZIEREN Grundlgen der Mthemtik Lösen Sie die nchfolgenden grundlegenden Aufgben. Beweisen Sie durch Ausrechnung, dss b ) b ist! ( Wichtige mthemtische Regeln: 0 = 0 = 0

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

1.2 Eigenschaften der reellen Zahlen

1.2 Eigenschaften der reellen Zahlen 12 Kpitel 1 Mthemtisches Hndwerkszeug 12 Eigenschften der reellen Zhlen Alle Rechenregeln der Grundrechenrten der reellen Zhlen lssen sich uf einige wenige Rechengesetze zurückführen, die in der folgenden

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Einführung in die Vektor- und Matrizenrechnung. Vektoren

Einführung in die Vektor- und Matrizenrechnung. Vektoren Einführung in die Vektor- und Mtrizenrechnung Vektoren Sklr und Vektor Größen, deren Werte durch reelle Zhlen usgedrückt werden können, heißen Sklre. Beispiele: Msse, Ldung, Tempertur, etc. Größen, die

Mehr

II Vektorrechnung. 1 Grundbegriffe. 1.1 Vektoren und Skalare. 1.2 Spezielle Vektoren

II Vektorrechnung. 1 Grundbegriffe. 1.1 Vektoren und Skalare. 1.2 Spezielle Vektoren 46 II Vektorrechnung Grundegriffe. Vektoren und Sklre Vektoren sind gerichtete Größen, die durch eine Mßzhl und eine Richtung vollständig eschrieen und in symolischer Form durch einen Pfeil drgestellt

Mehr

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x...

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x... LINEARE GLEICHUNGSSYSTEME () x x x... x b n n () x x x... x b n n () x x x... x b n n.............. (m) x x x... x b m m m mn n m Inhltsverzeichnis Kpitel Inhlt Seite Bestimmung von Funktionstermen Ds

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

2 Vektoren in der Mechanik

2 Vektoren in der Mechanik 11 2 Vektoren in der Mechnik Viele Größen der Mechnik, in der Sttik insbesondere Krft und Moment, hben die Eigenschft von Vektoren im dreidimensionlen Rum. Die Mechnik nutt dher die Methoden und Rechenregeln

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

SBP Mathe Aufbaukurs 2. Winkelfunktionen im rechtwinkeligen Dreieck. Winkelfunktionen besonderer Winkel. Zusammenhänge der Winkelfunktionen

SBP Mathe Aufbaukurs 2. Winkelfunktionen im rechtwinkeligen Dreieck. Winkelfunktionen besonderer Winkel. Zusammenhänge der Winkelfunktionen SBP Mthe Aufbukurs # by Clifford Wolf # Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof Dr H Brenner Osnbrück SS 2017 Grundkurs Mthemtik II Vorlesung 33 Die Zhlenräume Die Addition von zwei Pfeilen und b, ein typisches Beispiel für Vektoren Es sei K ein Körper und n N Dnn ist die Produktmenge

Mehr

FK03 Mathematik I: Übungsblatt 1; Lösungen

FK03 Mathematik I: Übungsblatt 1; Lösungen FK03 Mthemtik I: Übungsbltt 1; Lösungen Verständnisfrgen: 1. Woher stmmen die Objekte in einer Menge? Die Objekte einer Menge entstmmen unserer Anschuung und unserem Denken. 2. Welche Drstellungen von

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

für beliebige Mengen A, B, C

für beliebige Mengen A, B, C 1.1 Mengenlehre A A A B B A A B B C A C für elieige Mengen A, B, C (Reflexivität) (Symmetrie) (Trnsitivität) (1) (2) (3) A B = B A A B = B A (Kommuttivgesetze) (4) (A B) C = A (B C) (A B) C = A (B C) (Assozitivgesetze)

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2006 Aufgbenstellungen A1 und A2 (Whl für Prüflinge) Mthemtik für Prüflinge Aufgbenstellungen A3 (siehe Extrbltt) (wird durch

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Lerninhalte Fakten-Regeln-Beispiele Quelle. -fache

Lerninhalte Fakten-Regeln-Beispiele Quelle. -fache Friedrich-Alender-Gymnsium Grundwissen Mthemtik. Jhrgngsstufe Lerninhlte Fkten-Regeln-Beispiele Quelle Proportionlität Gehört bei einer Zuordnung zum r-fchen der einen Größe ds r-fche der nderen Größe,

Mehr

6.1. Matrizenrechnung

6.1. Matrizenrechnung 6 Mtrizenrechnung 6 Mtrizen und Vektoren Definition Eine Tbelle in der Drstellung A (m,n) n n m m mn heißt m,n-mtrix ( n ) ( ) mit den Zeilenvektoren ( m m mn ) und den Sltenvektoren m, m,, n n mn Mtrizen

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 4.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 4.1 . Dr. Jürgen Roth Fchbereich 6: Abteilung Didktik der Mthemtik Elemente der Algebr . Inhltsverzeichnis Elemente der Algebr & Argumenttionsgrundlgen, Gleichungen und Gleichungssysteme Qudrtische und Gleichungen

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Einheit 5: Vektoren, Geraden, Ebenen

Einheit 5: Vektoren, Geraden, Ebenen iturkurs Einheit 5: Vektoren, Gerden, Eenen Michel Göthel 12. pril 2017 1 Vektoren Vektoren sind Pfeilklssen mit gleicher Länge und gleicher Richtung. Jeder Vektor wird durch einen Repräsentnten eindeutig

Mehr

1 Differentialrechnung

1 Differentialrechnung 1 Differentilrechnung 1.1 Ableitungen und Ableitungsregeln Nützliche Ableitungen 1. ( ) 1 = 1 x x 2 = x 2 2. Trigonometrische Funktionen: ( x) = 1 2 x [sin(x)] = cos(x) [cos(x)] = sin(x) 3. f(x) = e x

Mehr

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen Inhlte Brückenkurs Mthemtik Fchhochschule Hnnover SS 00 Dipl.-Mth. Corneli Reiterger. Grundlgen. Summenzeichen, Produktzeichen. Fkultät, Binomilkoeffizient. Potenzen, Wurzeln, Logrithmen. Elementre Funktionen

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2 Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen

Mehr

Abitur 2018 Mathematik Geometrie VI

Abitur 2018 Mathematik Geometrie VI Seite http://www.biturloesung.de/ Seite Abitur 8 Mthemtik Geometrie VI Die Punkte A( ), B( ) und C( ) liegen in der Ebene E. Teilufgbe Teil A (4 BE) Die Abbildung zeigt modellhft wesentliche Elemente einer

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

Münchner Volkshochschule. Planung. Tag 04

Münchner Volkshochschule. Planung. Tag 04 Plnung Tg 04 Prof.Dr. Nils Mhnke Mthemtischer Vorkurs Folie: 8 Logrithmen Die Eponentilgleichung = b;, b R + knn forml für durch den Logrithmus zur Bsis gelöst werden. b ( b) Numerus Bsis Argument Der

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Training Abschlussprüfung Mathematik. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Training Abschlussprüfung Mathematik. Das komplette Material finden Sie hier: Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Trining Abschlussprüfung Mthemtik Ds komplette Mteril finden Sie hier: School-Scout.de Bergedorfer Unterrichtsideen Mrco Bettner, Michel

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I

Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I Michel Buhlmnn Mthemtik-Aufgbenool > Normlrbeln, sezielle llgemeine Prbeln I Einleitung: Normlrbeln sind qudrtische Funktionen von der Form: y = + + q (Normlform), y = ( d) + c (Scheitelform), y = (- )(-

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Mündliche Prüfung LK. Fragen zur differentialrechnung

Mündliche Prüfung LK. Fragen zur differentialrechnung Mündliche Prüfung LK Diese Seite enthält Frgen zu : Differentilrechnung Integrlrechnung Exponentil und Logrithmusfunktionen Linere Alger Prozessmtrizen Frgen zur differentilrechnung Ws sind Nullstellen?

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Zusammenfassung: Abstände, Winkel und Spiegelungen

Zusammenfassung: Abstände, Winkel und Spiegelungen Zusmmenfssung: Astände, Winkel und Spiegelungen Inhltsverzeichnis Astände 1 Winkel 5 Spiegelungen 7 Für Experten 1 Astände Astnd Punkt Punkt: Schreiweise: Den Astnd zweier Punkte A und B ezeichnet mn mit

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen

Mehr

Zeichen und Abkürzungen. Weitere Zeichen und Abkürzungen. Relationen zwischen Zahlen bzw. Größen. Zeichen / Abkürzungen für spezielle Mengen

Zeichen und Abkürzungen. Weitere Zeichen und Abkürzungen. Relationen zwischen Zahlen bzw. Größen. Zeichen / Abkürzungen für spezielle Mengen Zeichen und Abkürzungen Zeichen / Abkürzungen für spezielle Mengen N Menge der ntürlichen Zhlen (einschließlich Null) N* Menge der ntürlichen Zhlen usschließlich Null Z Menge der gnzen Zhlen Q Menge der

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 0 Grundwissensktlog G8-Lehrplnstndrd Bsierend uf den Grundwissensktlogen des Rhöngymnsiums Bd Neustdt und des Kurt-Huber-Gymnsiums Gräfelfing J O H A N N E S - N E P O M U K - G

Mehr

20 1 Zahlen und Vektoren. d = d( 0, E) = u n. E = { x R 3 : x n = d }

20 1 Zahlen und Vektoren. d = d( 0, E) = u n. E = { x R 3 : x n = d } 0 1 Zhlen und Vektoren St 1.4.6 (i) Seien L = u + R v, u, v R 3 und v 0. Dnn gilt d( x 0, L) = ( u x 0) v, x 0 R 3. v (ii) Seien E = u + R v + R w, u, v, w R 3 und v w 0, und n ein Einheitsnormlenvektor

Mehr

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales Vektorrehnung in der Eene Beweis des St des Thles Beispiel 3 St des Thles Mn eweise den St des Thles: Jeder Peripheriewinkel üer einem Kreisdurhmesser AB ist ein rehter Winkel. C 1 C C 3 Beweis: A M B

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung

Mehr

Fachschaft Mathematik am Gymnasium Donauwörth

Fachschaft Mathematik am Gymnasium Donauwörth Algebr 7: Zusmmenfssen gleichrtiger Terne: ) 5x 7x 3 3x + 5x +8 b) 3u 9v [(3u 8w) (u + 9v)] c) Distributivgesetz: ) -0,4c (,5 3 c 0, c 3 ) b) 7u 5 3u (u 3) 5 (u 4u + ) Ausmultiplizieren von Klmmern: )

Mehr

Übungen zu Mathematik 1 mit Musterlösungen Blatt 15

Übungen zu Mathematik 1 mit Musterlösungen Blatt 15 Heilbronn, den 868 Prof Dr V Sthl SS 8 Übungen zu Mthemtik mit Musterlösungen Bltt 5 Aufgbe Berechnen Sie die sklre Multipliktion ( ) 3 Stellen Sie diese Opertion grfisch durch Pfeile in einem zweidimensionlen

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zhlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

65 Lineare Algebra 2 (SS 2009)

65 Lineare Algebra 2 (SS 2009) 65 Linere Algebr 2 (SS 2009) 67 Einschub: Explizit Implizit Vorbemerkung Wir betrchten die Ebene R 2, den dreidimensionlen Rum R 3, oder llgemeiner den R n Wenn wir geometrische Objekte in der Ebene, wie

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr