Grundwissen Abitur Analysis

Größe: px
Ab Seite anzeigen:

Download "Grundwissen Abitur Analysis"

Transkript

1 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen Eponenten? Welche Eigenschften besitzen sie? Beschreibe die Grphen 5 Juli 202 f() = n (n N) mit D = R heißt n-ten Potenzfunktion, der dzugehörige Grph G f heißt Prbel n-terordnung n gerde n ungerde W = R + W = R 0 G f prbelrtig, liegt im G f sesselrtig, liegt im I und II Qudrnten I und III Qudrnten G f ist -chsensmm G f pkt-smm zu (0 0) (± ), (0 0) G f (± ±), (0 0) G f Je größer n, desto kntiger der Grph 2 Ws sind Potenzfunktion mit negtiven gnzzhligen Eponenten? Welche Eigenschften besitzen sie? Beschreibe die Grphen f() = n = n (n N) mit D = R\{0} heißt n-ten Potenzfunktion mit negtivem gnzzhligem Eponenten, der dzughörige Grph G f heißt Hperbel n-ter Ordnung n gerde n ungerde W = R + W = R\{0} G f liegt im G f liegt im I und II Qudrnten I und III Qudrnten G f ist -chsensmm G f pkt-smm zu (0 0) (± ) G f (± ±) G f Je größer n, desto kntiger der Grph 3 Ws versteht mn bei einer gebrochen rtionlen Funktion unter einer Polstelle? Wie sieht ihr Grph n diesen Stellen us? Flls sich bei einer gebrochen rtionlen Funktion der Fktor ( c) im Nenner durch Kürzen nicht beseiten lässt, ht mn eine Polstelle bei = c Der Grph geht dort gegen ± Flls die Polstelle ungerdzhlige Ordnung ht, mit Vorzeichenwechsel, sonst ohne Vorzeichenwechsel Beispiel f() = ( 2) (+)( 2)( 3) 2 = : Pol Ordnung (VZW) = 3: Pol 2Ordnung (kein VZW) = 2: keine Polstelle sondern eine sog stetig hebbre Definitionlücke

2 4 In welchen Situtionen treten wgrechte und senkrechte Asmptoten bei gebrochen rtionlen Funktionen uf Wie knn mn sie bestimmen? Gib ein Beispiel für eine Funktion mit schräger Asmptote und begründe, wrum eine schräge Asmptote vorhnden ist Die Koeffizienten der höchsten -Potenz im Zähler und Nennen seien bzw b Art der Asmptote Tritt uf Best senkrecht n Polstelle c = c wgrecht, -Achse Z-Grd<N-Grd = 0 wgrecht, nicht -Achse Z-Grd=N-Grd = b f() = + f() = 3 2+ f() = = = 0 = 3 2 = 2 wgr: = 0 wgr: = 3 schräg: = senkr: = senkr: = weil lim 2 ± 2 = 0 5 Ws versteht mn unter () dem Differentilquotienten? (b) Welche zwei nderen Bezeichnungen ht der Differentilquotient noch? (c) Welche geometrische Bedeutung ht er? Sei f eine uf einem Intervll I definierte Funktion, dnn heißt f(+h) f() () der Grenzwert lim Differenzilquotient h 0 h von f n der Stelle (b) Er wird uch ls Ableitung f () oder lokle Änderungsrte von f n der Stelle bezeichnet (c) Der Differentilquotient gibt die Steigung der Tngente t durch den Punkte P( f()) n f() P( f()) f(+h) t +h 6() Wie luten die Ableitungsfunktionen der Potenzfunktionen? (b) Erkläre n einem Beispiel, wie mn die Gleichung und den Neigungswinkel der Tngente einer Funktion f() im Punkt P( p ) bestimmt () f() f () n n n (b) Beispiel: Tngente von f() = 3 in P(2 p ) p = f(2) = = 8; f () = 3 2 f (2) = 2 llg Gerdengleichung = m+t m = f (2) = 2; t = m m,p = = 6 = 2 6 tnα = f (2) = 2 α 85

3 7() Wie wird eine Funktion f() = c u() (c R) bgeleitet, wie die Summe zweier Funktionen? Beispiel (b) Ws versteht mn unter den höheren Ableitungen einer Funktion? Beispiel! (c) Ws versteht mn unter der Stmmfunktion einer Funktion? Beispiele! () f() = c u() wird bgeleitet indem mn u() bleitet und die Konstnte beibehält Die Ableitung der Summe zweier Funktionen ist die Summe der Ableitungen Beispiel: f() = f () = (b) Höhere Ableitungen von Funktionen sind die Ableitungen der Ableitungen der Funktion Beispiel: f() = f () = 72 f () = f (4) () = 72 f () = f (5) () = 0 (c) Eine Stmmfunktion F() von f ist die Funktion, deren Ableitung f ist Also F () = f() Beispiel: ZB ht f() = 4 die Stmmfunktionen F() = 2 2, F() = oder F() = Wie luten die Ableitungsregeln für () ds Produkt zweier Funktionen? (b) den Quotienten zweier Funktionen? (c) die Verkettung zweier Funktionen? Beispiele! () f() = u() v() f () = u ()v()+u()v () Beispiel: f() = 2 5 f () = = 7 6 (b) f() = u() v() f () = v()u () u()v () [v()] 2 Merke NAZ ZAN N 2 Beispiel: f() = 2 3 f () = (3 ) ( 3 ) 2 = 4 +2 ( 3 ) 2 (c) f() = u(v()) f () = u (v()) v () Merke Äußere bleiten, innere stehen lssen ml Innere bgeleitet Beispiel: f() = ( 3 4) f () = ( 3 4) () Gib eine hinreichende Vorussetzung n, so dss f streng monoton steigend bzw fllend in einem Bereich ist (b) Belege n einem Beispiel, dss die Vorussetzung us 9 nicht notwendig ist (c) Nenne eine Funktion, für die f () > 0, die ber nicht streng monoton steigt Wrum greift die hinreichende Vorussetzung von Frge 9 nicht? () Wenn in einem Intervll I für lle I gilt: f () > 0 bzw f () < 0, dnn ist sie streng monoton steigend bzw fllend (b) Für folgende beiden Funktionen gilt obige Vorussetzung nicht, sie sind ber trotzdem echt monoton: f : 3 ; D = R ist streng monoton steigend, ber es ist f (0) = 0 f : ;D = N ist streng monoton steigend, ber nicht differenzierbr, weil sie ihr Grph nur us einer Reihe einzelner Punkte besteht (c) f() = (D = R \ {0}); Hier ist zwr f () = 2 > 0, ber D ist kein Intervll, so dss die Funktion n der Definitionslücke einen Sprung mchen knn

4 0 Erkläre n einem Beispiel wie mn die Monotonieintervlle einer Funktion bestimmt und wie mn drus die Art der Wgrechtpunkte erhält zb f() = ( )2 ;D = R\{0} f () = 2 2 Vorzeichentbelle erstellen: 0 f () > 0 0 < 0 < 0 0 > 0 G f HOP DefL TIP Monotonieintervlle: { } G { f ist echt monoton steigend ] ; ] und [; [ uf fllend [ ;0[ und ]0;] Bemerkungen: Wenn vor und nch der Wgrechtstelle die gleiche Monotonie uftritt, ist n der Wgrechtstelle ein Terrssenpunkt Ds Vorzeichen von f erhält mn zb durch einsetzen geeigneter Werte in f } Erkläre wie mn ds Krümmungsverhlten einer Funktion bestimmt und wie mn drus die Wendepunkte erhält Ist f () > 0 bzw f () < 0, so heißt F f links- bzw rechtsgekrümmt Beispiel: f() = f () = = 2( )(+) Krümmungstbelle: Kritische Stellen bei f () = 0 f () > 0 0 < 0 0 > 0 G f lgk WP rgk WP lgk Krümmungsintervlle: { } G f ist links- gekrümmt uf rechts- { ] ; ] und [; [ [ ; ] Bemerkung:DsVorzeichen von f erhältmndurch einsetzen geeigneter Werte in f Die Wendepunkte sind die Stellen, n denen sich die Krümmungsrt ändert } 2 Sei f eine Funktion und D () Gib eine hinreichende Vorussetzung n, so dss ihr Grph G f n der Stelle einen Hoch- (Tief-) Punkt besitzt (b) Belege n drei unterschiedlichen Beispielen, dss die Vorussetzung us 2 nicht notwendig ist (c) Gib eine hinreichende Vorussetzung n, so dssihrgrphg f nderstelleeinenwende- (Terrssen-) Punkt besitzt () f { zweiml differenzierbr in, f () = 0 und f } { } () < 0 Hochpunkt f () > 0 Tiefpunkt (b) f() = mit D = [ 2;] besitzt den Tiefpunkt (0 0) sowie die Rndetrem ( 2 2) und ( ), ist dort ber nicht differenzierbr, lso knn dort uch die Ableitung nicht Null sein f() = 4 besitzt den Tiefpunkt (0 0), es ist ber f (0) = 0 (c) Ist f dreiml differenzierbr in und f () = 0 sowie f () 0, dnn besitzt f() bei einen Wendepunkt Gilt zusätzlich f () = 0, dnn ist dieser Wendepunkt sogr Terrssenpunkt

5 3 Wozu wird ds Newton-Verfhren verwendet, wie funktioniert es? Ds Newton-Verfhren liefert Näherungslösungen für Nullstellen von Funktionen Mn wählt dbei durch gezieltes Schätzen einen Strtwert der nhe bei einer Nullstelle liegt Mit Hilfe der Itertionsvorschrift n+ = n f(n) f ( n) (f ( n) 0) erhältmneine Folge, 2, 3,deren Grenzwerteine Nullstelle von f ist 4() Wie lng ist die Digonle eines Qudrtes mit der Seitenlänge? (b) Wie lng ist die Höhe eines gleichseitigen Dreiecks mit der Seitenlänge? (c) Welcher Zusmmenhng besteht zwischen dem Grdmß α und dem Bogenmß ϕ eines Winkels? (d) Wie groß sind sin, cos und tn und ds Bogenmß ϕ von 0, 30, 45, 60 und 90? () 2 (b) 3 2 (c) α 80 = ϕ π (d) α π π π π ϕ sin cos tn Welche Eigenschften besitzen die sin- und die cos-funktion? cos π 3 sin sin-funktion cos-funktion Nullstellen: kπ (k Z) Nullstellen: π +kπ (k Z) 2 sin( ) = sin() cos( ) = cos() (punktsm zum Ursprung) (chsensm zur -Achse) sin() = cos( π 2 ) cos() = sin(+ π 2 ) Periode 2π Wertemenge [ ; ]

6 6 Wie luten die Ableitungsfunktionen der Sinus- und der Kosinusfunktion-, der Potenzfunktionen mit rtionlem Eponenten? Sonderfälle! f() sin cos f () cos sin r r r Spezilfälle 2 (r = 2 ) (r = ) (r = 2) (r = 3) 4 7() In welchen Fällen besitzt eine Funktion eine Umkehrfunktion? (b) Erkläre n einem Beispiel, wie mn rechnerisch und grphisch von einer gegebenen Funktion die Umkehrfunktion bestimmt () Eine Funktion f ist umkehrbr, wenn es keine zwei -Wert gibt, die den gleichen -Wert besitzen, oder nschulich gesprochen, wenn jede Prllele zur -Achse den Grphen von f höchstens einml schneidet (b) Beispiel: f() = 2 ;D f = R + 0, W f = R + 0 rechnerisch: und in der Funktionsgleichung vertuschen und nch uflösen = 2 = ; D f = W f = R + 0 grphisch: Den Grphen G f von f n der Winkelhlbierenden des I und III Qudrnten spiegeln G f G f 8() Ws versteht mn und der ntürlichen Eponentilfunktion? (b) Welche Eigenschften besitzt sie? () Der Funktionsterm der ntürliche Eponentilfunktion heißt f() = e Dbei ist e 2,7828 die sog Euler sche Zhl (b) D = R, W = R + lim e = und e lim e = 0 e 0 ln = e > 0 ( R) Nullstellen: keine d Ableitung: d e = e Stmmfunktionen: e d = e +C Die e-funktion ist die Umkehrfunktion der ntürlichen Logrithmusfunktion

7 9() Welche Potenzrechenregeln gibt es? Anwendungsbeispiele! (b) Löse e = nch uf Anwendungsbeispiele (zb e = nch uflösen)! () Für, R gilt e e = e + e = e e e = e (e ) = e e ln = ( R + ) ln(e ) = ( R) (b) e = = ln ( R + ) 20() Wie ist die ntürliche Logrithmusfunktion definiert? (b) Welche Eigenschften ht sie? () Die ntürliche Logrithmusfunktion ln() ist die Umkehrfunktion der ntürlichen Eponentilfunktion (b) Grph ln e D = R +, W = R ln = 0, lne = lim ln = lim ln = > 0 d d ln = > 0 ln() = dt, D = R+ t 2() Welche Logrithmusrechenregeln gibt es? Anwendungsbeispiele! (b) Löseln = nchuf Anwendungsbeispiele (zb ln( ) = nch uflösen)! () Für lle, > 0 ist ln() = ln()+ln() und ln( ) = ln() ln() ln( r ) = r ln() (r R) lne r = r (r R) (b) ln = = e

8 22 Beschreibe n einem Beispiel, wie sich der Term einer Funktionen verändert, wenn mn den dzugehörigen Grph im Koordintensstem verschiebt oder verzerrt f() = e Streckung um Fktor 2 in -Richtung: Verschiebung um nch unten: Spiegelung n der -Achse: Streckung um Fktor 3 in -Richtung: Verschiebung um 2 nch links g() = 2e h() = 2e j() = 2e k() = 2e 3 l() = 2e Welche Schufgben lssen sich mit Eponentilfunktionen beschreiben? Welche Bedeutung hben die Prmeter? Beispiel! Prozentule Wchstums- und Zerfllsvorgänge, lso uch Zinseszins-Rechnungen Beispiel: Eine Popultion K wächst/schrumpft pro Jhr um p% Wie groß ist sie nch n Jhren? Für die Popultion K(n) nch n Jhren gilt dnn ( K(n) = K ± p ) n 00 ZB wächst die Weltbevölkerung von 6, 5 Mrd Menschen derzeit um,2% In 50 Jhren würden dnn K(50) = 6,5,02 50,8 Mrd Menschen uf der Erde leben 24 Beschreibe llgemein, welche Eigenschften bestimmte Integrle besitzen Anwendungsbeispiele! f()d = 0 c f()d = f()d+ f() d c k f()d = k f() d f()±g()d = f()d± g() d f()d = f() d b [ zb ist 2 3 ] b 2+d = 3 2 +

9 25() Ws versteht mn unter der Integrlfunktion einer Funktion f? Welche Eigenschften besitzen lle Integrlfunktionen? Wie knn mn ds mthemtisch formulieren? (b) Gib (mit Begründung) ein Beispiel für eine Stmmfunktion, die nicht ls Integrlfunktion drgestellt werden knn () Für jede Funktion f, die uf einem Intervll D stetig ist, heißt die Funktion F () := f(t)dt;, D Integrlfunktion von f mit dem Stützpunkt Der Stützpunkt ist stets Nullstelle von F, dh F () = 0 (b) F() = 2 + knn nicht ls Integrlfunktion drgestellt werden, weil sie kein Nullstelle ht 26 Wie lutet die Kernussge des HDI? Anwendungsbeispiele! F() = f(t)dt = F () = f() Leitet mn eine Integrlfunktion F b, so erhält mn die Integrntenfunktion f() Anwendungsbeispiel: Zeige, dss F() = sin Stmmfunktion von f() = sin+ cos ist und berechne dmit π 2 0 Lösung: π 2 0 sin+ cosd sin+ cosd = {HDI} = [ sin] π Ws versteht mn unter dem unbestimmten Integrl einer Funktion? Welcher Zusmmenhng besteht zwischen den Integrlfunktionen von f und den Stmmfunktionen von f? Nenne einige wichtige unbestimmte Integrle Die Menge ller Stmmfunktionen von f heißt unbestimmtes Integrl von f Integrlfunktion von f sind genu die Stmmfunktionen von f, die mindestens eine Nullstelle besitzen Beispiele für unbestimmte Integrle (in der üblichen Kurzschreibweise): d = +C; d = 2 2 +C n d = n+ n+ +C, n R\{ } n d = n +C, n R\{} n sind = cos+c; cosd = sin+c e d = e +C d = ln +C

10 28 Ws versteht mn unter positiver bzw negtiver Integrtionsrichtung? Welche Auswirkung ht die Umkehrung der Integrtionsrichtung uf den Wert eines bestimmten Integrls? Gib (flls möglich) jeweils ein Beispiel für folgende Situtionen: Integrtions- Integrnten- Wert des richtung funktion Integrls positiv negtiv negtiv 2 negtiv negtiv negtiv 3 negtiv 0 Die Integrtionsrichtung ist positiv bzw negtiv, wenn die obere Integrtionsgrenze größer bzw kleiner ls die untere Integrtionsgrenze ist Kehrt mn die Integrtionsrichtung um, so ändert der Wert des Integrls sein Vorzeichen ( f()d = b f()d) f() =, =,b = 2 2 geht nicht 3 f() =, =,b = (Flächenbilnz ist Null) 29 Beschreibe llgemein, wie mn den Flächeninhlt berechnen knn, der von einer Funktion und der -Achse eingeschlossen wird Welche Fälle können uftreten? Anwendungsbeispiele! b A A = f() d b A A = f() d c b A A 2 A 2 A = f() d = = c f()d c f() d = c f() d + c f() d 30 Beschreibe llgemein, wie mn den Flächeninhlt berechnen knn, der von zwei Funktionen eingeschlossen wird b G f G g A A = f()d g() d = [f() g()]d b c G f G g + A = c [f() g()]d+ c [g() f()]d = = c [f() g()]d + c [f() g()]d

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3

+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3 Hilfsmittelfreier Teil. Beispielufgbe 1 zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x 3 + x x. Die zeigt den Grphen der Funktion f. (1) Berechnen Sie lle Nullstellen der Funktion

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

Unbestimmte Integrale. Üben. Unbestimmte Integrale. Lösung. Berechne: Klasse. Schwierigkeit. Nr. math. Thema. Art. Klasse. math. Thema.

Unbestimmte Integrale. Üben. Unbestimmte Integrale. Lösung. Berechne: Klasse. Schwierigkeit. Nr. math. Thema. Art. Klasse. math. Thema. f) e) cos sin sin) (cos d) ) ( ) ( Berechne: f) e) sin) (cos d) ) ( ) ( Bestimme diejenige Stmmfunktion von f, deren Grph durch P verläuft! f : ; P( /) f : P(/ ) f : cos P( / ) d) f : P(/ ). Eine beliebige

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1. Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

1 Differentialrechnung

1 Differentialrechnung 1 Differentilrechnung 1.1 Ableitungen und Ableitungsregeln Nützliche Ableitungen 1. ( ) 1 = 1 x x 2 = x 2 2. Trigonometrische Funktionen: ( x) = 1 2 x [sin(x)] = cos(x) [cos(x)] = sin(x) 3. f(x) = e x

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Integrale

Übungen mit dem Applet Grundfunktionen und ihre Integrale Grundfunktionen und ihre Integrle 1 Übungen mit dem Applet Grundfunktionen und ihre Integrle 1 Ziele des Applets... 2 2 Begriffe und ihre Drstellung mit dem Applet... 2 b 2.1 Bestimmtes Integrl I (b) =

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS GS 0.06.207 - m7_3t-_lsg_cas_gs.pdf Abiturprüfung 207 - Mthemtik 3 Technik A I - Lösung mit CAS Teilufgbe Gegeben sind die Funktionen f mit f ( ) Definitionsmenge D f IR. mit IR \ {0} und der e Teilufgbe.

Mehr

Integralrechnung 29. f(x) dx = F (x) + C

Integralrechnung 29. f(x) dx = F (x) + C Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Wir lassen die Funktionen grafisch darstellen: plotfunc2d(dq_f_a(h),dq_f_b(h),dq_f_c(h),h=-1..1)

Wir lassen die Funktionen grafisch darstellen: plotfunc2d(dq_f_a(h),dq_f_b(h),dq_f_c(h),h=-1..1) Lösungen zum Wochenpln Ableitungen f := -> *^; g := -> -^; k := -> sqrt(); - Wir können den Differenzenquotienten n den Stellen,b,c uch ls Funktion von h definieren dq_f_ := h->(f(+h)-f())/h; dq_f_b :=

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 0 Grundwissensktlog G8-Lehrplnstndrd Bsierend uf den Grundwissensktlogen des Rhöngymnsiums Bd Neustdt und des Kurt-Huber-Gymnsiums Gräfelfing J O H A N N E S - N E P O M U K - G

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Ortskurven besonderer Punkte

Ortskurven besonderer Punkte Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt:

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt: Mthemtik LK M,. Kursrbeit Integrtion Lösung..3 Aufgbe :. Erkläre mit Hilfe der Definition des Integrls den Unterschied zwischen dem Integrl einer Funktion und dem Flächeninhlt der Fläche zwischen dem Grphen

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

für beliebige Mengen A, B, C

für beliebige Mengen A, B, C 1.1 Mengenlehre A A A B B A A B B C A C für elieige Mengen A, B, C (Reflexivität) (Symmetrie) (Trnsitivität) (1) (2) (3) A B = B A A B = B A (Kommuttivgesetze) (4) (A B) C = A (B C) (A B) C = A (B C) (Assozitivgesetze)

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Abbildung 1: Achilles und seine Schildkröte.

Abbildung 1: Achilles und seine Schildkröte. PROBEKLAUSUR II MATHEMATIK STUDIENGANG MB THEMA I: FOLGEN UND REIHEN (5 Minuten) Augbe 1 (Grenzwertig)**: Prdoon des ZENO: Achilles läut mit einer Schildkröte um die Wette. Weil Achilles zehnml so schnell

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr