Grundwissen Abitur Analysis

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundwissen Abitur Analysis"

Transkript

1 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen Eponenten? Welche Eigenschften besitzen sie? Beschreibe die Grphen 5 Juli 202 f() = n (n N) mit D = R heißt n-ten Potenzfunktion, der dzugehörige Grph G f heißt Prbel n-terordnung n gerde n ungerde W = R + W = R 0 G f prbelrtig, liegt im G f sesselrtig, liegt im I und II Qudrnten I und III Qudrnten G f ist -chsensmm G f pkt-smm zu (0 0) (± ), (0 0) G f (± ±), (0 0) G f Je größer n, desto kntiger der Grph 2 Ws sind Potenzfunktion mit negtiven gnzzhligen Eponenten? Welche Eigenschften besitzen sie? Beschreibe die Grphen f() = n = n (n N) mit D = R\{0} heißt n-ten Potenzfunktion mit negtivem gnzzhligem Eponenten, der dzughörige Grph G f heißt Hperbel n-ter Ordnung n gerde n ungerde W = R + W = R\{0} G f liegt im G f liegt im I und II Qudrnten I und III Qudrnten G f ist -chsensmm G f pkt-smm zu (0 0) (± ) G f (± ±) G f Je größer n, desto kntiger der Grph 3 Ws versteht mn bei einer gebrochen rtionlen Funktion unter einer Polstelle? Wie sieht ihr Grph n diesen Stellen us? Flls sich bei einer gebrochen rtionlen Funktion der Fktor ( c) im Nenner durch Kürzen nicht beseiten lässt, ht mn eine Polstelle bei = c Der Grph geht dort gegen ± Flls die Polstelle ungerdzhlige Ordnung ht, mit Vorzeichenwechsel, sonst ohne Vorzeichenwechsel Beispiel f() = ( 2) (+)( 2)( 3) 2 = : Pol Ordnung (VZW) = 3: Pol 2Ordnung (kein VZW) = 2: keine Polstelle sondern eine sog stetig hebbre Definitionlücke

2 4 In welchen Situtionen treten wgrechte und senkrechte Asmptoten bei gebrochen rtionlen Funktionen uf Wie knn mn sie bestimmen? Gib ein Beispiel für eine Funktion mit schräger Asmptote und begründe, wrum eine schräge Asmptote vorhnden ist Die Koeffizienten der höchsten -Potenz im Zähler und Nennen seien bzw b Art der Asmptote Tritt uf Best senkrecht n Polstelle c = c wgrecht, -Achse Z-Grd<N-Grd = 0 wgrecht, nicht -Achse Z-Grd=N-Grd = b f() = + f() = 3 2+ f() = = = 0 = 3 2 = 2 wgr: = 0 wgr: = 3 schräg: = senkr: = senkr: = weil lim 2 ± 2 = 0 5 Ws versteht mn unter () dem Differentilquotienten? (b) Welche zwei nderen Bezeichnungen ht der Differentilquotient noch? (c) Welche geometrische Bedeutung ht er? Sei f eine uf einem Intervll I definierte Funktion, dnn heißt f(+h) f() () der Grenzwert lim Differenzilquotient h 0 h von f n der Stelle (b) Er wird uch ls Ableitung f () oder lokle Änderungsrte von f n der Stelle bezeichnet (c) Der Differentilquotient gibt die Steigung der Tngente t durch den Punkte P( f()) n f() P( f()) f(+h) t +h 6() Wie luten die Ableitungsfunktionen der Potenzfunktionen? (b) Erkläre n einem Beispiel, wie mn die Gleichung und den Neigungswinkel der Tngente einer Funktion f() im Punkt P( p ) bestimmt () f() f () n n n (b) Beispiel: Tngente von f() = 3 in P(2 p ) p = f(2) = = 8; f () = 3 2 f (2) = 2 llg Gerdengleichung = m+t m = f (2) = 2; t = m m,p = = 6 = 2 6 tnα = f (2) = 2 α 85

3 7() Wie wird eine Funktion f() = c u() (c R) bgeleitet, wie die Summe zweier Funktionen? Beispiel (b) Ws versteht mn unter den höheren Ableitungen einer Funktion? Beispiel! (c) Ws versteht mn unter der Stmmfunktion einer Funktion? Beispiele! () f() = c u() wird bgeleitet indem mn u() bleitet und die Konstnte beibehält Die Ableitung der Summe zweier Funktionen ist die Summe der Ableitungen Beispiel: f() = f () = (b) Höhere Ableitungen von Funktionen sind die Ableitungen der Ableitungen der Funktion Beispiel: f() = f () = 72 f () = f (4) () = 72 f () = f (5) () = 0 (c) Eine Stmmfunktion F() von f ist die Funktion, deren Ableitung f ist Also F () = f() Beispiel: ZB ht f() = 4 die Stmmfunktionen F() = 2 2, F() = oder F() = Wie luten die Ableitungsregeln für () ds Produkt zweier Funktionen? (b) den Quotienten zweier Funktionen? (c) die Verkettung zweier Funktionen? Beispiele! () f() = u() v() f () = u ()v()+u()v () Beispiel: f() = 2 5 f () = = 7 6 (b) f() = u() v() f () = v()u () u()v () [v()] 2 Merke NAZ ZAN N 2 Beispiel: f() = 2 3 f () = (3 ) ( 3 ) 2 = 4 +2 ( 3 ) 2 (c) f() = u(v()) f () = u (v()) v () Merke Äußere bleiten, innere stehen lssen ml Innere bgeleitet Beispiel: f() = ( 3 4) f () = ( 3 4) () Gib eine hinreichende Vorussetzung n, so dss f streng monoton steigend bzw fllend in einem Bereich ist (b) Belege n einem Beispiel, dss die Vorussetzung us 9 nicht notwendig ist (c) Nenne eine Funktion, für die f () > 0, die ber nicht streng monoton steigt Wrum greift die hinreichende Vorussetzung von Frge 9 nicht? () Wenn in einem Intervll I für lle I gilt: f () > 0 bzw f () < 0, dnn ist sie streng monoton steigend bzw fllend (b) Für folgende beiden Funktionen gilt obige Vorussetzung nicht, sie sind ber trotzdem echt monoton: f : 3 ; D = R ist streng monoton steigend, ber es ist f (0) = 0 f : ;D = N ist streng monoton steigend, ber nicht differenzierbr, weil sie ihr Grph nur us einer Reihe einzelner Punkte besteht (c) f() = (D = R \ {0}); Hier ist zwr f () = 2 > 0, ber D ist kein Intervll, so dss die Funktion n der Definitionslücke einen Sprung mchen knn

4 0 Erkläre n einem Beispiel wie mn die Monotonieintervlle einer Funktion bestimmt und wie mn drus die Art der Wgrechtpunkte erhält zb f() = ( )2 ;D = R\{0} f () = 2 2 Vorzeichentbelle erstellen: 0 f () > 0 0 < 0 < 0 0 > 0 G f HOP DefL TIP Monotonieintervlle: { } G { f ist echt monoton steigend ] ; ] und [; [ uf fllend [ ;0[ und ]0;] Bemerkungen: Wenn vor und nch der Wgrechtstelle die gleiche Monotonie uftritt, ist n der Wgrechtstelle ein Terrssenpunkt Ds Vorzeichen von f erhält mn zb durch einsetzen geeigneter Werte in f } Erkläre wie mn ds Krümmungsverhlten einer Funktion bestimmt und wie mn drus die Wendepunkte erhält Ist f () > 0 bzw f () < 0, so heißt F f links- bzw rechtsgekrümmt Beispiel: f() = f () = = 2( )(+) Krümmungstbelle: Kritische Stellen bei f () = 0 f () > 0 0 < 0 0 > 0 G f lgk WP rgk WP lgk Krümmungsintervlle: { } G f ist links- gekrümmt uf rechts- { ] ; ] und [; [ [ ; ] Bemerkung:DsVorzeichen von f erhältmndurch einsetzen geeigneter Werte in f Die Wendepunkte sind die Stellen, n denen sich die Krümmungsrt ändert } 2 Sei f eine Funktion und D () Gib eine hinreichende Vorussetzung n, so dss ihr Grph G f n der Stelle einen Hoch- (Tief-) Punkt besitzt (b) Belege n drei unterschiedlichen Beispielen, dss die Vorussetzung us 2 nicht notwendig ist (c) Gib eine hinreichende Vorussetzung n, so dssihrgrphg f nderstelleeinenwende- (Terrssen-) Punkt besitzt () f { zweiml differenzierbr in, f () = 0 und f } { } () < 0 Hochpunkt f () > 0 Tiefpunkt (b) f() = mit D = [ 2;] besitzt den Tiefpunkt (0 0) sowie die Rndetrem ( 2 2) und ( ), ist dort ber nicht differenzierbr, lso knn dort uch die Ableitung nicht Null sein f() = 4 besitzt den Tiefpunkt (0 0), es ist ber f (0) = 0 (c) Ist f dreiml differenzierbr in und f () = 0 sowie f () 0, dnn besitzt f() bei einen Wendepunkt Gilt zusätzlich f () = 0, dnn ist dieser Wendepunkt sogr Terrssenpunkt

5 3 Wozu wird ds Newton-Verfhren verwendet, wie funktioniert es? Ds Newton-Verfhren liefert Näherungslösungen für Nullstellen von Funktionen Mn wählt dbei durch gezieltes Schätzen einen Strtwert der nhe bei einer Nullstelle liegt Mit Hilfe der Itertionsvorschrift n+ = n f(n) f ( n) (f ( n) 0) erhältmneine Folge, 2, 3,deren Grenzwerteine Nullstelle von f ist 4() Wie lng ist die Digonle eines Qudrtes mit der Seitenlänge? (b) Wie lng ist die Höhe eines gleichseitigen Dreiecks mit der Seitenlänge? (c) Welcher Zusmmenhng besteht zwischen dem Grdmß α und dem Bogenmß ϕ eines Winkels? (d) Wie groß sind sin, cos und tn und ds Bogenmß ϕ von 0, 30, 45, 60 und 90? () 2 (b) 3 2 (c) α 80 = ϕ π (d) α π π π π ϕ sin cos tn Welche Eigenschften besitzen die sin- und die cos-funktion? cos π 3 sin sin-funktion cos-funktion Nullstellen: kπ (k Z) Nullstellen: π +kπ (k Z) 2 sin( ) = sin() cos( ) = cos() (punktsm zum Ursprung) (chsensm zur -Achse) sin() = cos( π 2 ) cos() = sin(+ π 2 ) Periode 2π Wertemenge [ ; ]

6 6 Wie luten die Ableitungsfunktionen der Sinus- und der Kosinusfunktion-, der Potenzfunktionen mit rtionlem Eponenten? Sonderfälle! f() sin cos f () cos sin r r r Spezilfälle 2 (r = 2 ) (r = ) (r = 2) (r = 3) 4 7() In welchen Fällen besitzt eine Funktion eine Umkehrfunktion? (b) Erkläre n einem Beispiel, wie mn rechnerisch und grphisch von einer gegebenen Funktion die Umkehrfunktion bestimmt () Eine Funktion f ist umkehrbr, wenn es keine zwei -Wert gibt, die den gleichen -Wert besitzen, oder nschulich gesprochen, wenn jede Prllele zur -Achse den Grphen von f höchstens einml schneidet (b) Beispiel: f() = 2 ;D f = R + 0, W f = R + 0 rechnerisch: und in der Funktionsgleichung vertuschen und nch uflösen = 2 = ; D f = W f = R + 0 grphisch: Den Grphen G f von f n der Winkelhlbierenden des I und III Qudrnten spiegeln G f G f 8() Ws versteht mn und der ntürlichen Eponentilfunktion? (b) Welche Eigenschften besitzt sie? () Der Funktionsterm der ntürliche Eponentilfunktion heißt f() = e Dbei ist e 2,7828 die sog Euler sche Zhl (b) D = R, W = R + lim e = und e lim e = 0 e 0 ln = e > 0 ( R) Nullstellen: keine d Ableitung: d e = e Stmmfunktionen: e d = e +C Die e-funktion ist die Umkehrfunktion der ntürlichen Logrithmusfunktion

7 9() Welche Potenzrechenregeln gibt es? Anwendungsbeispiele! (b) Löse e = nch uf Anwendungsbeispiele (zb e = nch uflösen)! () Für, R gilt e e = e + e = e e e = e (e ) = e e ln = ( R + ) ln(e ) = ( R) (b) e = = ln ( R + ) 20() Wie ist die ntürliche Logrithmusfunktion definiert? (b) Welche Eigenschften ht sie? () Die ntürliche Logrithmusfunktion ln() ist die Umkehrfunktion der ntürlichen Eponentilfunktion (b) Grph ln e D = R +, W = R ln = 0, lne = lim ln = lim ln = > 0 d d ln = > 0 ln() = dt, D = R+ t 2() Welche Logrithmusrechenregeln gibt es? Anwendungsbeispiele! (b) Löseln = nchuf Anwendungsbeispiele (zb ln( ) = nch uflösen)! () Für lle, > 0 ist ln() = ln()+ln() und ln( ) = ln() ln() ln( r ) = r ln() (r R) lne r = r (r R) (b) ln = = e

8 22 Beschreibe n einem Beispiel, wie sich der Term einer Funktionen verändert, wenn mn den dzugehörigen Grph im Koordintensstem verschiebt oder verzerrt f() = e Streckung um Fktor 2 in -Richtung: Verschiebung um nch unten: Spiegelung n der -Achse: Streckung um Fktor 3 in -Richtung: Verschiebung um 2 nch links g() = 2e h() = 2e j() = 2e k() = 2e 3 l() = 2e Welche Schufgben lssen sich mit Eponentilfunktionen beschreiben? Welche Bedeutung hben die Prmeter? Beispiel! Prozentule Wchstums- und Zerfllsvorgänge, lso uch Zinseszins-Rechnungen Beispiel: Eine Popultion K wächst/schrumpft pro Jhr um p% Wie groß ist sie nch n Jhren? Für die Popultion K(n) nch n Jhren gilt dnn ( K(n) = K ± p ) n 00 ZB wächst die Weltbevölkerung von 6, 5 Mrd Menschen derzeit um,2% In 50 Jhren würden dnn K(50) = 6,5,02 50,8 Mrd Menschen uf der Erde leben 24 Beschreibe llgemein, welche Eigenschften bestimmte Integrle besitzen Anwendungsbeispiele! f()d = 0 c f()d = f()d+ f() d c k f()d = k f() d f()±g()d = f()d± g() d f()d = f() d b [ zb ist 2 3 ] b 2+d = 3 2 +

9 25() Ws versteht mn unter der Integrlfunktion einer Funktion f? Welche Eigenschften besitzen lle Integrlfunktionen? Wie knn mn ds mthemtisch formulieren? (b) Gib (mit Begründung) ein Beispiel für eine Stmmfunktion, die nicht ls Integrlfunktion drgestellt werden knn () Für jede Funktion f, die uf einem Intervll D stetig ist, heißt die Funktion F () := f(t)dt;, D Integrlfunktion von f mit dem Stützpunkt Der Stützpunkt ist stets Nullstelle von F, dh F () = 0 (b) F() = 2 + knn nicht ls Integrlfunktion drgestellt werden, weil sie kein Nullstelle ht 26 Wie lutet die Kernussge des HDI? Anwendungsbeispiele! F() = f(t)dt = F () = f() Leitet mn eine Integrlfunktion F b, so erhält mn die Integrntenfunktion f() Anwendungsbeispiel: Zeige, dss F() = sin Stmmfunktion von f() = sin+ cos ist und berechne dmit π 2 0 Lösung: π 2 0 sin+ cosd sin+ cosd = {HDI} = [ sin] π Ws versteht mn unter dem unbestimmten Integrl einer Funktion? Welcher Zusmmenhng besteht zwischen den Integrlfunktionen von f und den Stmmfunktionen von f? Nenne einige wichtige unbestimmte Integrle Die Menge ller Stmmfunktionen von f heißt unbestimmtes Integrl von f Integrlfunktion von f sind genu die Stmmfunktionen von f, die mindestens eine Nullstelle besitzen Beispiele für unbestimmte Integrle (in der üblichen Kurzschreibweise): d = +C; d = 2 2 +C n d = n+ n+ +C, n R\{ } n d = n +C, n R\{} n sind = cos+c; cosd = sin+c e d = e +C d = ln +C

10 28 Ws versteht mn unter positiver bzw negtiver Integrtionsrichtung? Welche Auswirkung ht die Umkehrung der Integrtionsrichtung uf den Wert eines bestimmten Integrls? Gib (flls möglich) jeweils ein Beispiel für folgende Situtionen: Integrtions- Integrnten- Wert des richtung funktion Integrls positiv negtiv negtiv 2 negtiv negtiv negtiv 3 negtiv 0 Die Integrtionsrichtung ist positiv bzw negtiv, wenn die obere Integrtionsgrenze größer bzw kleiner ls die untere Integrtionsgrenze ist Kehrt mn die Integrtionsrichtung um, so ändert der Wert des Integrls sein Vorzeichen ( f()d = b f()d) f() =, =,b = 2 2 geht nicht 3 f() =, =,b = (Flächenbilnz ist Null) 29 Beschreibe llgemein, wie mn den Flächeninhlt berechnen knn, der von einer Funktion und der -Achse eingeschlossen wird Welche Fälle können uftreten? Anwendungsbeispiele! b A A = f() d b A A = f() d c b A A 2 A 2 A = f() d = = c f()d c f() d = c f() d + c f() d 30 Beschreibe llgemein, wie mn den Flächeninhlt berechnen knn, der von zwei Funktionen eingeschlossen wird b G f G g A A = f()d g() d = [f() g()]d b c G f G g + A = c [f() g()]d+ c [g() f()]d = = c [f() g()]d + c [f() g()]d

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Integrale

Übungen mit dem Applet Grundfunktionen und ihre Integrale Grundfunktionen und ihre Integrle 1 Übungen mit dem Applet Grundfunktionen und ihre Integrle 1 Ziele des Applets... 2 2 Begriffe und ihre Drstellung mit dem Applet... 2 b 2.1 Bestimmtes Integrl I (b) =

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

Integralrechnung 29. f(x) dx = F (x) + C

Integralrechnung 29. f(x) dx = F (x) + C Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 0 Grundwissensktlog G8-Lehrplnstndrd Bsierend uf den Grundwissensktlogen des Rhöngymnsiums Bd Neustdt und des Kurt-Huber-Gymnsiums Gräfelfing J O H A N N E S - N E P O M U K - G

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt:

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt: Mthemtik LK M,. Kursrbeit Integrtion Lösung..3 Aufgbe :. Erkläre mit Hilfe der Definition des Integrls den Unterschied zwischen dem Integrl einer Funktion und dem Flächeninhlt der Fläche zwischen dem Grphen

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

für beliebige Mengen A, B, C

für beliebige Mengen A, B, C 1.1 Mengenlehre A A A B B A A B B C A C für elieige Mengen A, B, C (Reflexivität) (Symmetrie) (Trnsitivität) (1) (2) (3) A B = B A A B = B A (Kommuttivgesetze) (4) (A B) C = A (B C) (A B) C = A (B C) (Assozitivgesetze)

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Abbildung 1: Achilles und seine Schildkröte.

Abbildung 1: Achilles und seine Schildkröte. PROBEKLAUSUR II MATHEMATIK STUDIENGANG MB THEMA I: FOLGEN UND REIHEN (5 Minuten) Augbe 1 (Grenzwertig)**: Prdoon des ZENO: Achilles läut mit einer Schildkröte um die Wette. Weil Achilles zehnml so schnell

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Kapitel 6. Funktionen

Kapitel 6. Funktionen Kpitel 6 Funktionen Josef Leydold Mthemtik für VW WS 07/8 6 Funktionen / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von

Mehr

Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität

Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität Reelle Funktion Kpitel 6 Funktionen Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von R üblicherweise Intervlle) sind. Bei reellen Funktionen

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 4.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 4.1 . Dr. Jürgen Roth Fchbereich 6: Abteilung Didktik der Mthemtik Elemente der Algebr . Inhltsverzeichnis Elemente der Algebr & Argumenttionsgrundlgen, Gleichungen und Gleichungssysteme Qudrtische und Gleichungen

Mehr

360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K

360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K Grundwissen Mthemtik 10. Klsse Kreis Länge eines Kreisbogens b 360 r r r b Fläche eines Kreissektors 360 r r r Bogenmß Bogenmß des Winkels : Umrechnungsformel: b α Bogenmß r α Bogenmß π α 360 Grdmß Kugel

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 7 Unterlgen für die Lehrkrft Abiturprüfung 2010 Mthemtik, Leistungskurs 1 Aufgbenrt Anlysis 2 Aufgbenstellung siehe Prüfungsufgbe 3 Mterilgrundlge entfällt 4 Bezüge zu den Vorgben 2010 1 Inhltliche

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen Friedrich-Schiller-Universität Jen Institut für Physiklische Chemie BC 1.2 Mthemtik PD Dr. Thoms Bocklitz BC 1.2 Mthemtik Zusmmenfssung Kpitel III: Funktionen einer Veränderlichen 1 Konzept Funktionen

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin -

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin - Abschrift des Originlmterils vom Sächsischen Sttsministerium für Kultus Sächsisches Sttsministerium für Kultus Schuljhr 00/03 Geltungsbereich: - Allgemein bildendes Gymnsium - Abendgymnsium und Kolleg

Mehr

10 Integrationstechniken

10 Integrationstechniken Integrtionstechniken. Wichtige Stmmfunktionen α d = α + α+, d = log e d = e cos d = sin sin d = cos d = rcsin d = rctn + cosh d = sinh sinh d = cosh + d = sinh d = cosh α R, α. Linerität der Integrtion

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

R. Brinkmann Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1.

R. Brinkmann  Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1. R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösung linere Funktionen Teil IX en: A A A A Die Gerde g verläuft durch die Punkte P,5 und P,5. 5 Die Gerde h verläuft durch die Punkte P( 5,5 ) und P. Wie

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen

Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen www.mthe-ufgben.com Lösungen zum Pflichtteil (ohne GTR und Formelsmmlung) Gebrochenrtionle Funktionen Aufgbe : ) wgr. Asymptote: y, b) wgr. Asymptote: y 0 senkr. Asymptote: x - mit VZW senkr. Asymptote:

Mehr

Komplexe Integration

Komplexe Integration Komplexe Integrtion Michel Hrtwig 23. April 2004 Der Unterschied zwischen reeller und komplexer Integrtion Vorbemerkung: Aus Gründen der Anschulichkeit, hbe ich weitgehend uf eine exkte mthemtische Drstellung

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

9 Längen- Flächen- und Volumenmessung

9 Längen- Flächen- und Volumenmessung 9 Längen- Flächen- und Volumenmessung A Länge einer Kurve B Flächenmessung C Volumenerechnung 56 A. Länge einer Kurve ERKLÄRUNG 9.1. (Länge einer Kurve in Funktionsdrstellung.) Es sei f eine uf dem Intervll

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr