3) Neoklassische Wachstumstheorie, empirische Fakten und konventionelle Armutserklärungen

Größe: px
Ab Seite anzeigen:

Download "3) Neoklassische Wachstumstheorie, empirische Fakten und konventionelle Armutserklärungen"

Transkript

1 3 Neolassische Wachsumsheorie, empirische Fae ud oveioelle rmuserläruge 3. Das Solow-Modell eolassische Wachsumsheorie eraahme: vollommee ourrez; eie Verzerruge > fuioierede Marwirschaf eolassische Produiosfuio geschlossee Volswirschaf Güeragebo Es gebe eie Produiosfuio Y F, Y Oupu i der Öoomie; aggregieres apial; rbeisvolume rbeissude pro Jahr mal Beschäfige Bevölerug; die Bevölerug zahl der rbeisräfe wachse mi der Rae 2 bzw. bzw. Des weiere wird ageomme, dass F. die CRS- Eigeschaf ha: 3 zy F z, z z Wir seze z ud erhale für 3 Y 4 F, Y Wir defiiere y ; ; f F, chug! is der apialsoc pro opf ud is der aggregiere apialsoc eier Volswirschaf.

2 Da öe wir das Pro-opf-Eiomme urz schreibe als: 5 y f Wir mache folgede ahme über die Produiosfuio: 6 f > 0 7 f < 0 Gesez vom ab abehmede Grezerrag 8 f 0 0 Möglichei zur Uäigei; Nowedigei jedes Produiosfaors 9 f 0 > ud lim f ' 0 Iada- Bediguge Graphisch sieh eie solche Produiosfuio wie folg aus: - Güerachfrage: 0 y c i Eiommesideiä i geschloßeer Volswirschaf c Pro-opf-osum; i Pro-opf-Ivesiio ahme über die osumfuio c s y ; 0<s< s osae Sparquoe Da is ach 0 ud ud schließlich 5 2 i y c y s y sy sf 2

3 3 osum, Ivesiio ud Eiomme öe eifach i eiem Diagramm abgerage werde: - apialaumulaio Veräderug des apialsocs eier Öoomie Ivesiioe bschreibuge ahme über apialaumulaio: 3 I δ I aggregiere Bruoivesiio; δ bschreibugsrae Für de eizele rbeier gil da 4 I δ bzw. 5 i δ Es gil aber 6

4 4 bzw. ach Umsellug: 6 We 6 i 5 eigesez wird, erhäl ma: 7 i δ bzw. i δ sf δ uer Zuhilfeahme vo 2. Graphische Darsellug Der Pu * is defiier als: * * sf δ lso ach 7 gil da: 0 * * * sf δ

5 > Der apialsoc veräder sich ich mehr: die Bruoivesiioe dece gerade die bschreibuge. > I * sid alle Veräderugsprozesse über die Zei zum bschluss geomme. > lagfrisiges Gleichgewich seady sae Gleichgewich Ma beache, daß es ur eie eizige Wer *>0 gebe a ud dieser auch immer exisiere muß uer de gemache ahme Fixpu-Theorem. passugsprozesse Fall : < * Da gil ach der Graphi: 8 sf δ > 0 ud dami > 0 Dami seig der apialsoc a, wa immer er uerhalb des seady-sae Gleichgewichs lieg. Iuiio: Bei iedrigem apialsoc is die relaive Erragsrae eier Erhöhug des apialsocs aufgrud des Gesezes des abehmede Grezerrags relaiv hoch. Der hohe Zuwachs a Eiomme durch eie Ivesiioseihei i der Vorperiode führ aber zu hohem zusäzlichem Sparaufomme bei osaer Sparquoe. Dem sehe proporioale bschreibugsrae ud die apialaufweduge zur ussaug der ider gegeüber. Dami omm es zu eiem Zuwachs des apialsocs pro opf bei iedrigem fagsiveau ud hohem Grezerrag. Fall 2: > * Da gil ach der Graphi: sf δ < 0 ud dami < 0 Der apialsoc si, we er oberhalb des seady-sae Gleichgewichs lieg. Dami is der seady-sae apialsoc ei sabiles s.s. Gleichgewich. Zu * orrespodier das Pro-opf-Eiomme y*f*. Iuiio: Bei hohem apialsoc is die relaive Erragsrae eier Erhöhug des apialsocs aufgrud des Gesezes des abehmede Grezerrags relaiv iedrig bzw. edier sogar gege ull. Der iedrige Zuwachs a Eiomme durch eie Ivesiioseihei i der Vorperiode führ aber zu iedrigem zusäzlichem Sparaufomme bei osaer Sparquoe. Dem sehe proporioale bschreibugsrae ud die apialaufweduge zur ussaug der ider gegeüber. Dami omm es zu eiem bschmelze des apialsocs pro opf bei hohem fagsiveau ud iedrigem Grezerrag. 5

6 Schlußfolgeruge: lle sruurgleiche Läder Läder mi gleicher Sparquoe, gleichem Bevölerugswachsum ud gleicher Produiosechologie habe lagfrisig das gleiche Pro-opf-Eiomme uabhägig davo, wie hoch ihr fagsapialsoc / -eiomme is. We alle Läder sruurgleich sid ud das Solow Modell gil, da gib es ei Uerewiclugsproblem, weil ei Lad i seiem Uerewiclugszusad verharr. Empirische Evidez Das Modell soll u empirisch esbar gemach werde. Ers wird die Produiosfuio präzisier: α 9 f ; 0 < α < CRS-Eigeschaf ahme Cobb-Douglas Produiosfuio Da wird die Wachsumsrae des Pro-opf-Eiommes g defiier als y y 20 g l y l y α l α l y Ma beache, dass 7 mi Hilfe vo 9 umgeform werde a zu 2 sf δ s α δ ud dies i 20 eigesez werde a, was α 22 g α l[ s δ ] α l l g ergib. α Die erse bleiug g wird wie folg gebilde: α αs δ 23 g α α s δ 6

7 αs α α δ s α α [ s δ ] δ α s α α < 0, wobei 2 beim leze Gleichheiszeiche verwede wurde. Die Ugleichug folg, weil 0 < α < ach CRS- ahme 9 gil ud 0. > Weil y f ach 5 ud f.>0, muß auch gele: dg /dy <0. Schlußfolgerug: Das Pro-opf-Eiommeswachsum is umso höher, je iedriger das fagseiomme bzw. der fagsapialsoc pro opf is. Das Pro-opf-Eiomme wächs ur, we der apialsoc pro opf seig. ber eie zusäzliche Eihei apial ha eie höhere Errag bei iedrigem apialsoc bzw. Eiomme pro opf. Dies führ dazu, daß die Wachsumsrae des Eiommes höher sid, je iedriger das Eiomme is. Dies a graphisch veraschaulich werde: 7

8 Wachsumsrae i der Realiä: Graphi aus Ray 2000, S. 8: Ergebis: Es gib zumides eie Gruppe vo sehr arme Läder, die ich scheller wächs, obwohl sie ärmer sid. Diese Läder scheie gemäß der Defiiio vo Hemmer 999 i eiem Ewiclugssad zu verharre, der uer ihre Möglicheie lieg ud sid daher als Ewiclugsläder zu lassifiziere. Diese Gruppe vo Läder is ich durch das Solow-Modell das Sadard- Modell der Wachsumsheorie - erlärbar, we es eie sruurelle Uerschiede zwische de Läder gib. Gib es sruurelle Uerschiede zwische EL ud IL? Da wäre das Solow-Modell weier allgemeigülig, aber die sruurelle Uerschiede müße erlär werde! Uerschiede i der Sparquoe: Nehme wir a, die Sparquoe berage i eiem Lad ŝ ud im adere Lad ŝˆ, mi sˆ > sˆ : 8

9 Das Lad mi der höhere Sparquoe ivesier mehr bei jedem pro-opf- Eiomme ud erreich deshalb eie höhere seady-sae-apialsoc ud * dami y ˆ * > y ˆ. Läder mi iedrigerer Sparquoe bleibe dauerhaf ärmer! Graphi: Maiw 994, S.87 9

10 Ergebis: EL habe iedrigere Ivesiios-/Sparquoe, was ierhalb des Solow- Modells ei dauerhaf iedrigeres Eiomme der EL erläre a. aber warum is die Ivesiios/Sparquoe iedriger? Uerschiede i der Bevölerugswachsumsrae: Wir berache zwei Läder mi uerschiedliche Bevölerugswachsumsrae ˆ i eiem, ˆ im adere Lad ud ˆ < ˆ. Ergebis: Je höher die Bevölerugswachsumsrae, umso mehr müsse die Eler spare, um ihre zusäzliche ider mi apial aussae zu öe, bevor der Pro- opf-apialbesad zuimm. Bei gegebeer Sparquoe ud jedem Eiommesiveau pro opf bleib da weiger übrig, um i Neoivesiioe zu fließe. lso wird isgesam weiger apial pro opf aumulier ud das Lad mi höherem Bevölerugswachsum bleib lagfrisig ärmer. 0

11 Empirische Evidez Graphi Maiw, 994, S.98 Ergebis: EL habe hohe Bevölerugswachsumsrae, was ebefalls erläre a, warum EL dauerhaf ei iedrigeres pro-opf Eiomme habe als Idusrieläder. Warum aber habe EL hohe Bevölerugswachsumsrae?

12 Zusammefassug: Sadard-Wachsumsheorie is ur ompaibel mi de Fae für EL, weil es ruurelle Uerschiede gib i Sparquoe, Bevölerugswachsum ud Techologie. Sadard Wachsumsheorie beawore ich, warum EL sich vo IL bezüglich dieser sruurelle Charaerisia uerscheide. Die Diszipli Ewiclugsheorie a sich geau durch die Suche ach solche Erläruge für Uerschiede i sruurelle Charaerisia begrüde. sruurelle Charaerisia müsse edogeisier werde! 2

3.2) Die Spar-Armutsfalle 3.2.1) Das Grundmodell

3.2) Die Spar-Armutsfalle 3.2.1) Das Grundmodell 3.2 Die Spar-Armusfalle 3.2.1 Das Grudmodell We EL eifach eie iedrigere Sparquoe wähle ud deshalb ärmer bleibe, lieg ei Ewiclugsladproblem vor. => Aber spare EL freiwillig weiger? Arme Mesche öe ers spare,

Mehr

26 Eigenschaften der Eigenwerte, Eigenvektoren und Eigenräume

26 Eigenschaften der Eigenwerte, Eigenvektoren und Eigenräume Lieare Algebra II SS 211 - Prof Dr Mafred Leiz Kapiel VIII: Das Eigewerproblem 26: Eigeschafe der Eigewere, K 26 Eigeschafe der Eigewere, Eigeveore ud Eigeräume A Eigeschafe der Eigewere B Eigeschafe der

Mehr

Geckos gehören zur Familie der Schuppenkriechtiere. Sie bevölkern seit etwa 50 Millionen Jahren die Erde und haben sich im Laufe ihrer Entwicklung

Geckos gehören zur Familie der Schuppenkriechtiere. Sie bevölkern seit etwa 50 Millionen Jahren die Erde und haben sich im Laufe ihrer Entwicklung Gymasie, Gesamschule, Berufliche Gymasie Behörde für Schule ud Berufsbildug Haupermi Lehrermaerialie zum Leisugskurs Mahemaik II.2 Geckos LA/AG 2 Geckos gehöre zur Familie der Schuppekriechiere. Sie bevölker

Mehr

Abschlussklausur zur Vorlesung Wirtschaftswachstum. 4. August Was versteht man unter dem Harrod-Paradoxon, und wie ist es zu erklären?

Abschlussklausur zur Vorlesung Wirtschaftswachstum. 4. August Was versteht man unter dem Harrod-Paradoxon, und wie ist es zu erklären? Prof. Dr. Oliver Landmann SS 2009 bschlusslausur zur Vorlesun Wirschafswachsum 4. uus 2009 ufabe 1 (10%) Was verseh man uner dem Harrod-Paradoxon, und wie is es zu erlären? ufabe 2 (15%) Nennen Sie drei

Mehr

Musterlösung Serie 10

Musterlösung Serie 10 Prof. D. Salamo Aalysis I MATH, PHYS, CHAB HS 04 Muserlösug Serie 0. a Wir bereche mi der biomische Formel e cos ix + e ix x = = =0 =0 e ix e i x = =0 e i x Da = gil, öe wir i der leze Summe die Terme

Mehr

Was benötigen wir dafür?

Was benötigen wir dafür? Wahrcheilicheirechug Die Laufzei vo radomiiere zufallgeeuere lgorihme häg vo gewie zufällige reigie ab eiiel Quicor. Um die Laufzeie dieer lgorihme ueruche zu öe, udiere wir im Folgede zufällige reigie

Mehr

1 Elementare Zahlentheorie. 0. Grundbegriffe

1 Elementare Zahlentheorie. 0. Grundbegriffe Elemeare Zahleheorie 0 Grudbegriffe Mi Z bezeiche wir de Rig der gaze Zahle Is x eie reelle Zahl, so sei x die größe gaze Zahl, die kleier oder gleich x is Beache: x is diejeige gaze Zahl z mi z x < z

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Isiu für Aalysis SS7 Arbeisgruppe Agewade Aalysis 997 PD Dr Peer Chrisia Kusma Höhere Mahemaik I für die Fachrichug Physik Lösugsvorschläge zur Bachelor-Modulprüfug Aufgabe : (a) (i) Kurze Rechug liefer

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL

BERGISCHE UNIVERSITÄT WUPPERTAL BERGISCHE UNIVERSITÄT WUPPERTAL Klausuraufgabe zum Grudsudium Prüfugsgebie: Eiführug i die Wirschafsiformaik (PO 2006) Grudlage vo Decisio Suppor Syseme (BWiWi 1.14) Tag der Prüfug: 08.08.2008 Name des

Mehr

richtige Entscheidung mit Wahrscheinlichkeit 1 α Fehlentscheidung 1. Art mit Wahrscheinlichkeit α

richtige Entscheidung mit Wahrscheinlichkeit 1 α Fehlentscheidung 1. Art mit Wahrscheinlichkeit α II Lösug zu Aufgabe 7: -Tes für Erwarugswer Saisische Tess diee dazu Hypohese abzusicher oder begrüde zu verwerfe. Hypohese esehe aus eperimeelle Beobachuge oder formale Überleguge, die eier Prüfug uerzoge

Mehr

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t 6. Tilggsrechg 6.. Eiführg Gegesad der Tilggsrechg is die Feslegg der Rückzahlge für eimalig asgezahle Kredie eischließlich der Kredizise d -gebühre eweder a) am Fälligkeisag i eier mme (sog. gesamfällige

Mehr

Vergleich der Schätzungen und Hypothesenprüfungen. μ=? Typische Aufgaben der Hypothesenprüfung. Typische Fragen - gebrauchte Merkmale

Vergleich der Schätzungen und Hypothesenprüfungen. μ=? Typische Aufgaben der Hypothesenprüfung. Typische Fragen - gebrauchte Merkmale Hypoheseprüfuge Dr László Smeller Vergleich der Schäzuge ud Hypoheseprüfuge Schäzuge: Frage: Wie groß (is eie physikalische Größe) Bluzuckerkozeraio... Awor: Pukschäzug: z.b.: Körperhöhe, Bludruck, μ?

Mehr

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung.

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung. R Lösug zu Aufgabe 4: Kofideziervall a) Abschäzug vo Erwarugswer ud adardabweichug: Wie bereis i Übugsaufgabe eigeführ, selle der Mielwer ud die reuug eier ichprobe die bese chäzwere für de Erwarugswer

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Eigenschaften von Texten

Eigenschaften von Texten Worthäufigkeite Eigeschafte vo Texte Eiige Wörter sid sehr gebräuchlich. 2 der häufigste Wörter (z.b. the, of ) köe ca. 0 % der Wortvorkomme ausmache. Die meiste Wörter sid sehr selte. Die Hälfte der Wörter

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Prof.Dr.B.Grabowski (Schwingungen als komplexe Zeiger) Lösung zum Übungsblatt Nr. 2. (Wiederholung Linearfaktorzerlegung von Polynomen)

Prof.Dr.B.Grabowski (Schwingungen als komplexe Zeiger) Lösung zum Übungsblatt Nr. 2. (Wiederholung Linearfaktorzerlegung von Polynomen) Maheaik 3 Übug Schwiguge als koplexe Zeiger KI Maheaik 3 Lösug zu Übugsbla Nr. I. LFZ Zu Aufgabe Wiederholug Liearfakorzerlegug vo Polyoe Zerlege Sie folgede Polyoe i Liearfakore: a y x 4 x 5 4 3 b y.5x.5x

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen Prof. Dr. H. Breer Osabrück WS 2014/2015 Aalysis I Vorlesug 20 Kovexe Fuktioe Eie kovexe Teilmege. Eie ichtkovexe Teilmege. Defiitio 20.1. Eie Teilmege T R heißt kovex, we mit je zwei Pukte P, Q T auch

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Assessmentprüfung Makroökonomik I 4. Juli 2007

Assessmentprüfung Makroökonomik I 4. Juli 2007 ...... (Nae, Vorae) (Marikel-Nuer) Assesseprüfug Makroökooik I 4. Juli 2007 UNBEDINGT LESEN 1. Überprüfe Sie die Vollsädigkei dieser Prüfugsuerlage. Die Seie sid durchlaufed uerier. Verlage Sie Ersaz,

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

38 Normen und Neumannsche Reihe

38 Normen und Neumannsche Reihe 168 V. Lieare Algebra 38 Norme ud Neumasche Reihe Wir erier zuächst a (vgl. 15.6) 38.1 Normierte Räume. Es sei E ei Vektorraum über K = R oder K = C. Eie Abbildug : E [0, ) heißt Norm auf E, falls gilt

Mehr

3 Leistungsbarwerte und Prämien

3 Leistungsbarwerte und Prämien Leisugsbarwere ud Prmie 23 3 Leisugsbarwere ud Prmie Zie: Rechemehode zur Ermiug der Barwere ud Prmie bei übiche Produe der Lebesversicherug. 3. Eemeare Barwere ud Kommuaioszahe Barwer eier Erebesfaeisug

Mehr

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf.

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf. Physik awede ud verstehe: Lösuge 5. Brechug ud Totalreflexio 004 Orell Füssli Verlag AG 5. Brechug ud Totalreflexio Beim Übergag i ei Medium gilt obige Aussage icht mehr. Würde das Licht die kürzeste Strecke

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Perkolation (WS 2014) Übungsblatt 2

Perkolation (WS 2014) Übungsblatt 2 Istitut für Stochasti Prof. Dr. G. Last Dipl.-Math. S. Ziesche Perolatio WS 04 Übugsblatt Aufgabe Zeige Sie für T, dass θ 0 p ud χ 0 p stetig auf [0, ] sid, we ma als Wertebereich R + { } zulässt. Lösug:

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Bernsteinpolynome Vortrag zum Proseminar zur Analysis, Malte Milatz

Bernsteinpolynome Vortrag zum Proseminar zur Analysis, Malte Milatz Bersteipolyome Vortrag zum Prosemiar zur Aalysis, 6. 10. 2010 Malte Milatz I diesem Vortrag wird der bereits im Sript zur Aalysis ii zitierte Approximatiossatz vo Weierstraß mithilfe der Bersteipolyome

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 13. Besprechung in KW05/2018

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 13. Besprechung in KW05/2018 Techische Uiversität Müche Witer 2017/18 Prof. J. Esparza / Dr. M. Lutteberger, S. Sickert 2018/02/08 HA-Lösug TA-Lösug Diskrete Strukture Tutoraufgabeblatt 13 Besprechug i KW05/2018 Beachte Sie: Soweit

Mehr

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt)

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt) ) Neoklassisches Wachsumsmodell (ohne echnischen Forschri).1) Problemsellung (Arbeismark) Das Problem, das von Solow - dem Begründer der neoklassischen Wachsumsheorie - angegangen wurde, bezog sich auf

Mehr

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht Nachtrag Alteratives Buch zum Satz vo Fermat 1999 bei amazo ur och gebraucht 1 Uedliche (Zahle-) Mege 2 Wiederholug Steuer Bei eiem Eikomme vo ud eiem Steuersatz vo 33% müsse Sie Steuer zahle. Da werde

Mehr

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils Physikalische Aalyse der Dimesioierugsgrudlage zur Ewicklug eier ehode zur Kozipierug ud Opimierug eies Elekromobils Auore: K. Brikma, W. Köhler Lehrgebie Elekrische Eergieechik Feihsraße 140, Philipp-eis-Gebäude,

Mehr

1.1 Eindimensionale, geradlinige Bewegung

1.1 Eindimensionale, geradlinige Bewegung 1 Kiemaik 1. Ieio Or, Geschwidigkei ud Beschleuigug eies Körpers zu jedem Zeipuk beschreibe. y z e y e z e r () Orsvekor: r () R. Girwidz 1 1 Kiemaik 1.1 Eidimesioale, geradliige Bewegug Eidimesioales

Mehr

2.3 Schätzeigenschaften der OLS-Methode

2.3 Schätzeigenschaften der OLS-Methode .3 Schäzeigechafe der OLS-Mehode Jede Schäzmehode wei beimme Güeeigechafe auf, die vo der Erfüllug beimmer Vorauezuge abhäge. Wa die gewöhliche Mehode der kleie Quadrae (OLS-Mehode) beriff, id beimme Schäzeigechafe

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

AUFGABEN. Verständnisfragen

AUFGABEN. Verständnisfragen AUFGABEN Gelegetlich ethalte die Aufgabe mehr Agabe, als für die Lösug erforderlich sid. Bei eiige adere dagege werde Date aus dem Allgemeiwisse, aus adere Quelle oder sivolle Schätzuge beötigt. eifache

Mehr

3. Erfüllungsbetrag und Barwert von Pensionsverpflichtungen. S finanzmathematischer Barwert des Zahlungsstroms (T, S) zum Zeitpunkt t n. n 0.

3. Erfüllungsbetrag und Barwert von Pensionsverpflichtungen. S finanzmathematischer Barwert des Zahlungsstroms (T, S) zum Zeitpunkt t n. n 0. 3. Erfüllugsberag ud Barwer vo Pesiosverflichuge 3.. Der Erfüllugsberag eier Verflichug S S S......... i, r= i, v= = r i T= Folge vo Zeiue i < ( ) S= S Folge vo Zahlberge u de Zeiue (T,S) : v S : Zahlugssro

Mehr

Aufgaben zur Ökonometrie I

Aufgaben zur Ökonometrie I Aufgabe zur Ökoomerie I 3. Sigifikazess ud Kofideziervalle 3. Wie groß is der Sadardfehler der Regressio vo GASV auf VEINKR ( Eergiemodell Ib, s. Ergebisse i Aufgabe.8) (mi Ierpreaio)? Der Sadardfehler

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering Basisfall Vergleichsbasiertes Sortiere Programmieraufgabe Algorithm Egieerig Deis Felsig 013-0-07 1 Eileitug I dieser Programmieraufgabe sollte Basisfälle für vergleichsbasiertes Sortiere utersucht werde.

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

= 3. = 14,38... = x neu x = 0, = 97,87...%. Wie verändert sich der arithmetische Mittelwert von 20 Zahlen, wenn...

= 3. = 14,38... = x neu x = 0, = 97,87...%. Wie verändert sich der arithmetische Mittelwert von 20 Zahlen, wenn... Mathemati macht Freu()de AB Statistische Kegröße ud Boxplot Arithmetischer Mittelwert x 1, x,..., x ist eie Liste vo reelle Zahle. Das arithmetische Mittel x der Zahle ist x = x 1 + x + + x. Arithmetischer

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 5 1. Die Beroullische Ugleichug besagt, dass für N 0 ud x R mit x 1 stets 1 + x 1 + x gilt. Wir wolle u aaloge Ugleichuge für

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Entscheidungsunterstützungsmodelle für Materialwirtschaft und Produktion

Entscheidungsunterstützungsmodelle für Materialwirtschaft und Produktion Escheidusuersüzusmodelle für Maerialwirschaf ud Produio Fachebie Produio ud Supply Chai Maaeme Prof. Dr. Chrisoph Gloc Ihale der Verasalu (/2). Grudlae der Plau ud Escheidu (Grudberiffe, Modelle als Plaushilfsmiel,

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe.

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe. Musterlösug Vortragsübug Blatt 4 Vorwort. Variate der harmoische Reihe. Folgede Aussage wird i der achfolgede Musterlösug ab ud a gebraucht ud öte sich für Sie auch außerhalb der HM durchaus als ützlich

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Lösungen zur Nachklausur zur Analysis einer Variablen F. Merkl

Lösungen zur Nachklausur zur Analysis einer Variablen F. Merkl Lösuge zur Nachlausur zur Aalysis eier Variable F. Merl 3.4.7. Die folgede Teilaufgabe baue teilweise aufeiader auf. Sie dürfe die Ergebisse vorhergeheder Teilaufgabe auch da verwede, we Sie diese icht

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12 FAKULTÄT FÜR MATHEMATIK, CAMPUS ESSEN Prof. Dr. Patrizio Neff 0.04.0 Lösugsvorschlag zur. Hausübug i Aalysis II im SS Hausaufgabe (8 Pute): Bereche Sie für die Futio f : R! R; f() : ep( ) a der Stelle

Mehr

Einige wichtige Ungleichungen

Einige wichtige Ungleichungen Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie KIT) Istitut für Aalysis Prof. Dr. Tobias Lamm Dr. Patric Breuig SS 3.9.3 Klausur Höhere Mathemati I für die Fachrichtug Physi Aufgabe 4+3+3) Pute) a) Sei a ) N eie reelle

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen Semiarausarbeitug: Gegebeispiele i der Wahrscheilichkeitstheorie - Uterschiedliche Kovergezarte vo Folge vo Zufallsvariable Volker Michael Eberle 4. März 203 Eileitug Die vorliegede Arbeit thematisiert

Mehr

Hilfsmittel Beliebiger Taschenrechner Lösungsformel für quadratische Gleichungen (siehe Folgeseite)

Hilfsmittel Beliebiger Taschenrechner Lösungsformel für quadratische Gleichungen (siehe Folgeseite) Fchhochschule Nordwesschweiz Hochschule für Wirschf Aufhmerüfug 9 Mhemik MATHEMATIK Doze: Thoms Schäfer Dum 8. Aril 9 Zei 8.. Nme, Vorme Prüfugsor Ole Hilfsmiel Beliebiger Tscherecher Lösugsformel für

Mehr

14. Folgen und Reihen, Grenzwerte 14.1 Eine Folge definieren Explizite Definition. 14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 14.1 Eine Folge definieren Explizite Definition. 14. Folgen und Reihen, Grenzwerte 4. Eie Folge defiiere Eplizite Defiitio Reursive Defiitio 4. Glieder eier vorher defiierte Folge bereche Ei Glied Mehrere Glieder 4.3 Eie Folge defiiere ud eiige ihrer Glieder bereche 4.4 Eiige oder uedlich

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 8 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (.5 Pukte) Wir defiiere die Ereigisse D = die ähmaschie bekommt eie kleie Defekt} ud U

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Analysis II Sommer 2016 Prof. Dr. George Marinescu / Dr. Frank Lapp Übung

Analysis II Sommer 2016 Prof. Dr. George Marinescu / Dr. Frank Lapp Übung Aalysis II Sommer 06 Prof Dr George Mariescu / Dr Frak Lapp Übug Zuallererst sollt ihr die zusätzliche Übug utze um Lösuge vo Aufgabe zu bespreche, zu dere Besprechug ihr i de Übuge davor icht gekomme

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen Agabe Aalysis - Beweise, Vollstädige Idutio, Folge 4. März 0 Aufgabe : Zum Aufwärme i Zeige durch geschictes Umforme, dass + + gilt. +!!!!!! +!! +! + + + + + ii Zeige durch vollstädige Idutio, dass 6 +

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Metrisierbarkeit. Technische Universität Wien Seminararbeit aus Analysis WS 2014 Sinan Özcaliskan

Metrisierbarkeit. Technische Universität Wien Seminararbeit aus Analysis WS 2014 Sinan Özcaliskan Metrisierbarkeit Techische Uiversität Wie Semiararbeit aus Aalysis WS 04 Sia Özcaliska Ihaltsverzeichis Eileitug 3 Der Metrisierbarkeitssatz vo Alexadroff-Urysoh 3 3 Der Metrisierbarkeitssatz vo Nagata-Smirov

Mehr

Berechnung der Fourierkoeffizienten von Polygonzügen. Abschnittweise analytische Integration: e dt e. und: te dt e te

Berechnung der Fourierkoeffizienten von Polygonzügen. Abschnittweise analytische Integration: e dt e. und: te dt e te Berehug der Fourieroeffiziee vo Polygozüge Bei Polygozüge läss sih das Iegral elag der Gerade explizi löse ud ma erhäl Formel mi explizier Abhägigei vo de Epue des Polygos. Bei der Abasug vo Koure erhäl

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug Arbeitsblatt 22: Reursive Reihe Aloholetzug Erläuteruge ud Aufgabe Zeicheerlärug: [ ] - Drüce die etsprechede Taste des Graphirechers! [ ] S - Drüce erst die Taste [SHIFT] ud da die etsprechede Taste!

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meihardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meihardt) Sprechstude jederzeit ach Vereibarug Forschugsstatistik I Dr. Malte Persike persike@ui-maiz.de http://psymet03.sowi.ui-maiz.de/

Mehr