Kernphysik I. Kernmodelle: Schalenmodell

Größe: px
Ab Seite anzeigen:

Download "Kernphysik I. Kernmodelle: Schalenmodell"

Transkript

1 Kenphysk I Kenmodelle: Schalenmodell

2 Zusammenfassung letzte Stunde: Femgasmodell Kene m Gundzustand snd entatete Femgassysteme aus Nukleonen, mt hohe Dchte 0,17 Nukleonen/fm 3. De Kendchte st bestmmt duch den "hadcoe" und de Rechwete de N-N Wechselwkung. Im Zusammenhang mt de hohen Dchte steht en hohe Fem-Impuls 50 MeV/c, de Ausduck hohe Beweglchket und schwache Bndung st. Fem - Impuls : p F p p F p n F h R 0 π 8 9 1/ 3 50MeV / c fü Z N A Fem - Enege Potentalt opf : : V 0 E F E F p F 33MeV M + B 40MeV De knetsche Enege des Nukleoneng ases st wegen de gengen Bndungsen ege B etwa glech de Potental tefe analog zum feen Elektonen gas n Metall.

3 Schalenmodell Töpfchenmodell und Femgasmodell snd phänemonologsche Modelle mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfomel und können vele wetee Beobachtungen ncht bescheben: Spn und Patät des Gundzustandes und angeegte Kennveaus Magnetsche Momente Ladungsvetelungen Fomfaktoen Magsche Zahlen: Z, 8, 0, 8, 50, 8, 16

4 Schalenmodell Atomphysk: Hohe Elektonbndungsenege be abgeschlossenen Schalen mt Odnungszahlen Z, 10, 18, 36, 54, 80, 86 Edelgase

5 Magsche Zahlen Empsche Hnwese deuten auf ene Schalenstuktu des Atomkens hn. Evdenz fü de sogenannten magschen Zahlen:, 8, 0, 8, 50, 8, 16 egbt sch aus: Kene, be denen de Neutonenzahl N ode de Potonenzahl Z ene magsche Zahl st, snd besondes stabl. Se bestzen ene besondes hohe Sepaatonsenege fü en enzelnes Nukleon. Glechzetg st de Sepaatonsenege fü en wetees hnzugefügtes Nukleon wesentlch klene als duchschnttlche Sep. Enege

6 Wetee Evdenz fü magsche Zahlen Neutonensepaatonsenege

7 Evdenz fü magsche Zahlen Neutonensepaatonsenege

8 Evdenz fü magsche Zahlen Hohe Nukleonensepaatonsenege be magschen Zahlen. S p Ist Z ode N ene magsche Zahl, so gbt es besondes vele stable Kene mt dese Potonen- bzw. Neutonenzahl. z.b. 6 Kene mt N 50 7 Kene mt N 8. Von Sn Z 50 exsteen 10 natülch vokommende Isotope. S n Außegewöhnlch stabl snd doppeltmagsche Kene we: 4 He, 16 8O, 40 0Ca, 48 0Ca und 08 8Pb. A

9 Wetee Evdenz fü magsche Zahlen veschwndende Quadupolmomente Enege de esten angeegten Zustände

10 Schalenmodell Ähnlches Phänomen st aus de Physk de Elektonen n de Atomhülle bekannt: Edelgase mt abgeschlossene Valenzschale haben ene seh goße Ionsatonsenegen. Alkalmetalle, welche n de Atomhülle nu en Elekton zuvel bestzen, haben seh klene Ionsatonsenegen. In Analoge zu Atomphysk kann man vemuten, magsche Zahlen entspächen Schalenabschlüssen m Ken. We übetägt man dese Vostellung auf Kene? De Nukleonen bewegen sch als fee Spn ½ Telchen n enem mttleen sphäschen Kenpotental. Deses Potental stellt den gemttelten Effekt de Wechselwkungen mt allen andeen Nukleonen m Ken dastellt. Das mttlee Kenpotental V wd selbstkonsstent duch de Nukleon-Nukleon- Wechselwkung ezeugt, de nu von ene elatv kuzen Rechwete st. Es legt bem Kenpotental ken Analogon zum Coulombpotental ene zentalen Ladung we n de Atomphysk vo!

11 Schalenmodell Im Gundzustand besetzen de Nukleonen de nedgsten vefügbaen Enegenveaus -> mnmale totale Enege ohne das Paul-Pnzp zu veletzen. Paul-Pnzp glt unabhängg fü Potonen und Neutonen. Nukleonen bewegen sch auf wohl defneten Obtalen mt dsketen Enegen. Nukleonen haben jedoch veglechbae Göße we de Ken. We entstehen wohldefnete Bahnen ohne Nukleon-Nukleon-Stöße? Paul-Pnzp: Wenn Enege n enem Stoß übetagen wd, müssen de Nukleonen andee Obtale höhee und tefee besetzen. Alle nahen teflegenden Zustände snd jedoch besetzt. De Nukleonen m Gundzustand bewegen sch deshalb kollsonsfe nnehalb des Kens.

12 Schalenmodell Beschebung de Nukleonenm Ken : Schödngeglechung mt Hamlton - Opeato H V V j j v v v H [ T + V ] + V j V j kann n este Näheung venachlässgt wedenv H h Δ + Vj m < j snd Potentale de Wechselwkung zwschen den Nukleonen; Glechungst beets fü klene A exakt ncht lösba. v weden duch abstandsabhängge PotentaleV esetzt : Knetsche h m T v v Restwechselwkung : VR Vj V j Restwechselwkung st m Schalenmodell klen? und Enege : Δ + v V + V h m R N Δ ode n Stöungstheoe beückschtgt weden. R 0

13 Schalenmodell Beschebung de Nukleonen m Ken : Schödngeglechung mt Hamlton - Opeato H V j h Δ + m snd Potentale de < j V j Wechselwkung zwschen den Nukleonen; Glechung st beets fü klene A exakt ncht lösba. H h m Δ + v V + V R Restwechselwkung st m Schalenmodell klen? und wd n este Näheung venachlässgt V ode n Stöungstheoe beückschtgt. R 0

14 Schalenmodell 0 1 cos!! 1 1,, 1,, R l l m V E d R d m P m l m l l Y E V m p H Y R nl nl nl lm m lm nlm nlm nlm nlm lm nl h h v v v v v ϑ π ϕ ϑ ψ ψ ψ ϕ ϑ ϕ ϑ ψ ψ V ncht von V,θ,φ! Wellenfunktonen WF de Obtale lassen sch sepaeen: Ansatz Schödnge-Glechung: Lösungen des wnkelabhänggen Antels: sphäsche Kugelfunktonen - bestmmt de Patät de WF Glechung fü Radalantel Beachte: Zentfugalpotental n - 1 0, 1,, 3, st de Anzahl de Knoten de Radalwellenfunkton l 0, 1,, 3 stellt den Bahndehmpuls da m -l,...,l-1,l Pojekton des Bahndehmpuls auf z-achse De Entatung von E st l + 1, wobe de Vofakto den zwe nach dem Paul-Pnzp möglchen, entateten Spnenstellungen Rechnung tägt. Kenpotental st popotonal zu Nukleonendchte ρ: V~ ρ

15 Schalenmodell Zentalpotentale V - Kasten -V V 0 0 : R : > R - Hamonsch e Oszllato V -V mω - Woods - Saxon -V0 V R 1 + exp a Enege Egenwete 3 E hω N + Entatung de Zustände mt veschedenen n,l Weten : N n 1 + l Realstschee Näheung sehe Ladungsvetelung V 0 Potentaltefe, R Kenadus a Randunschäfe..

16 Schalenmodell Hamonsche Oszllato Dehmpuls Dehmpuls: nu geade l fü geade N, -> Patät + ungeade l fü ungeade N, -> Patät -

17 Schalenmodell Hamonsche Oszllato Rechnungen mt Hamonsche Oszllato Potental epoduzeen de magschen Zahlen göße 0 ncht! Möglche Usache: falsche Potentalvelauf be hamonschem Oszllato m Kennnen? Nukleonen spüen mme Potental mt Gadenten. Man ewatet enen flachen Potentalvelauf. Koektu duch enen attaktven Antel m Potental de popotonal zu l st. Auswkung auf goße l Wete: Enegen weden abgesenkt. Auswkung we en effektves Absenken des Potentals be goßem R, Entspcht enem flacheen Potentalvelauf. Dese Koektu epoduzet de magschen Zahlen jedoch auch ncht! Auch Modellechnungen Rechteck- und Woods-Saxon Potental können de magschen Zahlen göße 0 ncht epoduzeen.

18 LS-Kopplung M. Goeppet-Maye und Jensen, Haxel, Suess lefen 1950 mt de Spn-Bahn-Kopplung den entschedenden Betag fü das Schalenmodel. V dv v v V + Vls l s d De Kopplung bewkt ene Aufspaltung de Nveaus mt glechem l j l + s l s Fü Ewatungswet glt : ~ j l s 1 1/ l + l l s j j + 1 l l l 1/ l 1 fü j l + 1/ : V + Vls l 1 fü j l 1/ : V Vls l + 1 Enegeaufspaltung wächst lnea mt l ΔE l + l l 3 + 3/ l l / l l wenn j l + 1/ wenn j l 1/

19 LS-Kopplung Auswkungen de Spn-Bahn-Kopplung Absenkung de jl+1/ Otbtale aus de höheen Oszllatoschale. Repodukton de magschen Zahlen! Wchtge Konsequenz: Abgesenkte Obtale aus höhee N+1 Schale haben andee Patät als Obtale de N Schale. Stake WW ehält Patät. De abgesenkten Obtale mt andee Patät snd seh ene Zustände und mschen ncht nnehalb de Schale.

20 LS-Kopplung Spn-Bahn-Kopplung st en Effekt an de Obefläche und st fü goße l am stäksten. Im Gegensatz zu Atomhülle legen de jl+1/ Zustände tefe als de jl-1/ Zustände. Spn-Bahnwechselwkung n Kenen hat umgekehtes Vozechen we de de Elektonenhülle. Gund: Abstoßendes Kenpotental zwschen Nukleonen be klenen Abständen. Dekte Nachwes de Spn-Bahn-Wechsel- Wkung duch elastsche n 4 He-Steuung: De j3/ Resonanz wd be kleneen Enegen als de j1/ Resonanz angeegt. P 1/ P 3/

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

Kern- und Teilchenphysik. Schalenmodell γ-zerfall

Kern- und Teilchenphysik. Schalenmodell γ-zerfall Ken- und Techenphysk Schaenmode γ-zefa Schaenmode Beschebung de Nukeonen m Ken : Schödngegechung mt Hamton - Opeato H V V H [ T V )] V ) V ) kann n este Näheung venachässgt wedenv H V m < snd Potentae

Mehr

II.4 Schalenmodell des Atomkerns

II.4 Schalenmodell des Atomkerns II.4 Schalenmodell des Atomkens We geade dskutet wude snd das Töpfchen- und das Fem-Gas-Modell statstsche Modelle, de natugemäß nu de globalen Egenschaften enes statstschen Ensembles von Atomkenen bescheben

Mehr

Moderne Experimente der Kernphysik

Moderne Experimente der Kernphysik Modene Expeente de Kenphysk Wnteseeste 0/ Voesung 0 30..0 Modene Expeente de Kenphysk Pof. Thosten Kö Voesung 0 30..0 A nächsten Montag, 5..0 fndet de Veanstatung ausnahswese Insttut fü Kenphysk, 4. Stock,

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Schalenmodell Kern- und Teilchenphysik Schalenmodell Das Tröpfchenmodell ist ein phänemonologisches Modell mit beschränktem Anwendungsbereich. Es wird an die Experimente angepasst (z.b. die Konstanten

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

4. Krummlinige orthogonale Koordinaten

4. Krummlinige orthogonale Koordinaten 4 Kummlnge othogonale Koodnaten ückblck Zu uanttatven Efassung äumlche (und etlche) Beüge denen Koodnatensysteme Bshe haben w Katessche Koodnaten betachtet: { } { } { } Bass: e,,, Koodnaten:,,,, y, Vektoen:

Mehr

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen:

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen: Zu nneung tchwote aus de 9. Volesung: ntelung von tößen: kn, kn kn,, kn, Q Q = 0 elastsche töße de umme de nneen nege de Telchen (chwngung und Rotaton) blebt unveändet, Q > 0 unelastsche töße knetsche

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

3.2 Kinematik der tiefinelastischen Streuung. 3.3 Wirkungsquerschnitt für tiefinelastische ep Streuung

3.2 Kinematik der tiefinelastischen Streuung. 3.3 Wirkungsquerschnitt für tiefinelastische ep Streuung 3. Knematk de tefnelastschen Steuung,, Reakton bescheben duch Vaablen: e - e - ν, q,w q P,0 P Invaant mass W an fndet: q W Pq q Pq ν W ν a lastsche Steuung: W ν Knematk duch ene Vaable bestmmt b Inelastsche

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments)

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments) 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Tommelstock Dehstuhl mt Kesel (Ehaltung

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2000PHYSIK (LEISTUNGSKURS) Grundgesetze der klassischen Physik - Anwendung und Grenzen

SCHRIFTLICHE ABITURPRÜFUNG 2000PHYSIK (LEISTUNGSKURS) Grundgesetze der klassischen Physik - Anwendung und Grenzen achbeech Physk - Jahn-Gymnasum alzwedel CHRITLICH ABITURPRÜUNG 000PHYIK (LITUNGKUR) Thema : Gundgesetze de klassschen Physk - Anwendung und Genzen atelltenbewegung De Bewegung von atellten efolgt m Allgemenen

Mehr

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I Ludwg Pohlmann PC III - Elektoheme SS 5 Elektolytlösungen, Letfähgket, Ionentanspot Tel I. Enfühende Übelegungen. Solvataton, Hydataton 3. Ionenbeweglhketen und Letfähgketen Lteatu: Wedle.6. -.6.7 Tel

Mehr

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08 12. Votag Vezwegung Semna Zahlentheoe WS 07/08 Pof. D. Tosten Wedhon Unvestät Padebon von Geda Weth und Ingo Plaschczek 22. Janua 2008 12. Vezwegung (A) p-adsche Bewetung enes gebochenen Ideals n enem

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

Einführung in die Physik I. Mechanik der starren Körper

Einführung in die Physik I. Mechanik der starren Körper Enfühung n de Physk I Mechank de staen Köpe O. von de Lühe und U. Landgaf Bslang wuden nu Massen als Punktmassen dealset behandelt, ene ausgedehnte etelung de Masse spelte ene unwesentlche Rolle Defnton

Mehr

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung: Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

Kerne sind stark gebundene Systeme aus farbneutralen Nukleonen:

Kerne sind stark gebundene Systeme aus farbneutralen Nukleonen: X. Kenphysik. ukleonen und Kenkaft Kene sind stak gebundene Systeme aus fabneutalen ukleonen: Impuls de ukleonen aufgund Unschäfeelationen elativ goß (s. späte). Bild feie ukleonen in einem effektiven

Mehr

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω Rotatonsbewegung ω d ϕ / dt glechfömge Kesbewegung dϕ ds/ und vds/dtdϕ/dtω δϕ ds m v (Umlaufgeschwndgket v, Kesfequenz ode Wnkelgeschwndgket ωdϕ/dt. ) F Außedem glt ωπν mt de Fequenz ν. Umlaufzet T : T1/νπ/ω

Mehr

Temperaturabhängigkeit der Beweglichkeit

Temperaturabhängigkeit der Beweglichkeit Temperaturabhänggket der Beweglchket De Beweglchket nmmt mt zunehmender Temperatur ab! Streuung mt dem Gtter! Feldabhänggket der Beweglchket Für sehr hohe Feldstärken nmmt de Beweglchket n GaAs ab! Feldabhänggket

Mehr

Physik A VL12 ( )

Physik A VL12 ( ) Physk A VL1 (06.11.01) Dynak de otatonsbewegung II Wedeholung/Zusaenfassung: Beschebung von Dehbewegungen ollbewegungen Enege de otatons- und ollbewegung Dehpuls Dehpulsehaltung Wedeholung/Zusaenfassung:

Mehr

4. Energie, Arbeit, Leistung

4. Energie, Arbeit, Leistung 4 43 4. Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

Kernphysik I. Kernkräfte und Kernmodelle: Deuteron

Kernphysik I. Kernkräfte und Kernmodelle: Deuteron Kernpysk I Kernkräfte und Kernmodelle: Deuteron Wederolung: Ladungsunabänggket der Kernkräfte Neutronen und Protonen aben nct nur fast de glece Masse, sondern snd auc n rer Kernwecselwrkung änlc. Des set

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A Fomelsammlung EM. Allgemenes De Enhet de Stomstäke st das Ampee [A]. De Enhet de adung Q st das oulomb [][As]. Q bzw. t dq dt De Enhet de Spannung st das Volt [V]. W st das Enegegefälle zwschen zwe Punkten

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

7. Systeme von Massenpunkten; Stöße

7. Systeme von Massenpunkten; Stöße Mechank Sytee von Maenpunkten; Stöße 7. Sytee von Maenpunkten; Stöße 7.. De Schwepunkt W defneen den Schwepunkt ene Syte: t: M M... Geatae () Veanchaulchung: ( + ) 3 au () folgt: M M d dt p p () De Geatpul

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung.

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung. De Kaftstoß Efahng: Geschwndgketsändeng de Kge st popotona z de Kaft nd de Zetdae t he Enwkng. Kaftstoß: t Enhet: s a t t t p t. Zwetes ewtonsches Ao: p t Wenn af enen Köpe t de Masse de Kaft wkt, so bewkt

Mehr

Kerne und Teilchen. Aufbau der Kerne (2) Moderne Experimentalphysik III Vorlesung 18.

Kerne und Teilchen. Aufbau der Kerne (2) Moderne Experimentalphysik III Vorlesung 18. Kene und Teichen Modene Expeimentaphysik III Voesung 8 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau de Kene KIT Univesität des Landes Baden-Wüttembeg und nationaes Foschungszentum in de

Mehr

r r Kraftrichtung Wegrichtung Arbeit: negativ

r r Kraftrichtung Wegrichtung Arbeit: negativ De Abet Abet wd vechtet, wenn ene Kaft entlang ene ege wkt. De Kaft e kontant: coα Kaftchtung Kaftchtung Kaftchtung α egchtung α egchtung α egchtung Abet: potv Abet: negatv Abet: Null 0 α < 90 bzw.: co

Mehr

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.  MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kene und Teilchen Modene Expeimentalphysik III Volesung 16 MICHAEL FEINDT INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kenkaft KIT Univesität des Landes Baden-Wüttembeg und nationales Foschungszentum in de Helmholtz-Gemeinschaft

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6 Übungen zur Vorlesung Physkalsche Chee B. Sc. ösungsvorschlag zu Blatt 6 Prof. Dr. Norbert Happ Jens Träger Wnterseester 7/8.. 7 Aufgabe De Wellenfunkton des haronschen Oszllators hat de For Ψ v N v H

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Kapitel 5 Systeme von Massenpunkten, Stöße

Kapitel 5 Systeme von Massenpunkten, Stöße Katel 5 ystee von Massenunkten, töße Drehoente und Drehuls enes Telchensystes O t : z r r r F x r F F F y F F t (acto = reacto) : F t äußeren Kräften F und F und nneren Kräften F = -F Drehoente : D D r

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Physik und Umwelt I Lösungen der Übungen Nr. 4. Die Masse des gesamten Zuges ist: m = kg. Seine Geschwindigkeit v beträgt: folgt:

Physik und Umwelt I Lösungen der Übungen Nr. 4. Die Masse des gesamten Zuges ist: m = kg. Seine Geschwindigkeit v beträgt: folgt: Aufgabe 4. Phyk und Uwelt I Löungen de Übungen. 4 t de etche nege de Zuge zu beechnen, de be Anfahen wede aufgebacht weden u. De Mae de geaten Zuge t: 5 kg. ene echwndgket betägt: 44 k/h 4 /. ü de etche

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer Neunale Netze, Fuzzy Cntl und Genetsche Algthmen Neunale Netze, Fuzzy Cntl, Genetsche Algthmen Pf. Jügen Saue Lehbef N. 3: Musteasszaten, Klassfkaten, Suppt Vect Machnes Musteasszaten Musteasszaten snd

Mehr

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T.

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T. hermodynamsche resonse -unktonen: 9 zwete Abletungen der thermodynamschen Potentale sezfsche Wärme (thermscher resonse) E C S be konstantem olumen (sochor):,,, be konstantem Druck (sobar): C S Komressbltät

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

5. Dynamik starrer ausgedehnter Körper

5. Dynamik starrer ausgedehnter Körper nnhmen: 5. Dnmk ste usgedehnte Köpe bstände m Köpe fest: ncht defomeb, d.h. fü lle ssepunkte, j glt: j ( t) ( t) const j olumen: sse: m m echnsche Dchte: 3 d mt: d d dm kg/ m sse: Homogene sse: dm d dm

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²

Mehr

Greifen an einer Masse mehrere Kräfte an, so gibt es zwei mögliche Fälle:

Greifen an einer Masse mehrere Kräfte an, so gibt es zwei mögliche Fälle: 4.3 Ado vo Käfte Gefe a ee Masse ehee Käfte a, so gbt es zwe öglche älle: We de vektoelle Sue de Käfte ull st, da vehat de Masse Ruhe ode gadlg glechföge Bewegug. 4 0 3 4 Wchtges Pzp de Statk 3 Veblebt

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Baudynamik und Erdbebeningenieurwesen

Baudynamik und Erdbebeningenieurwesen Baudynamk und Erdbebenngeneurwesen Themen und Antworten für de Lzenzprüfung 1. Defneren Se den Begrff: Grad des dynamschen Frehetsgrads. Geben Se Bespele von Systemen mt enem enzgen Grad des dynamschen

Mehr

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment 7 Stae Köpe 7. Beschebung des staen Köpes 7. Käfte a staen Köpe- Dehoent 7.3 Rotatonsenenege und Täghetsoent 7.4 Dehoent und Wnkelbeschleungung 7.5 Dehpuls 7.6 Beechnung von Täghetsoenten 7.7 Päzesson

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

MULTI ASSET TREND III INDEX

MULTI ASSET TREND III INDEX MULTI ASSET TREND III INDEX De Mult Asset Tend III Index (de "Index") (ISIN: DE000A11RDD4; WKN: A11RDD4) st en von de UnCedt Bank AG ode hem Rechtsnachfolge (de "Indexsponso") entwckelte und gestaltete

Mehr

1. Klausur in "Technischer Thermodynamik I" (WiSe2013/14, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik I (WiSe2013/14, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Apl. Professor Dr.-Ing. K. Spndler 1. Klausur n "Technscher Thermodynamk I" (WSe2013/14, 12.12.2013) - VERSION 1 - Name: Fachr.: Matr.-Nr.:

Mehr

Musterlösung zu Übung 4

Musterlösung zu Übung 4 PCI Thermodynamk G. Jeschke FS 05 Musterlösung zu Übung erson vom 6. Februar 05) Aufgabe a) En Lter flüssges Wasser egt m H O, l ρ H O, l L 998 g L 998 g. ) De Stoffmenge n H O, l) von enem Lter flüssgen

Mehr

Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 2016 A 1.1

Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 2016 A 1.1 Insttut für Technsche und Num. Mechan Technsche Mechan IV Prof. Dr.-Ing. P. Eberhard, Prof. Dr.-Ing. M. Hanss SS 16 A 1.1 Aufgabe 1: En mechansches Sstem wrd durch folgende lnearserte Bewegungsglechungen

Mehr

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen Vobeetung fü. Klassenabet Dezmalzahlen und Zuodnungen Name:. Setze de chtgen Zechen en:

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Zero-sum Games. Vitali Migal

Zero-sum Games. Vitali Migal Sena Gaphentheoe und Kobnatok Wnteseeste 007/08 Zeo-su Gaes Vtal Mgal 1 Inhaltsvezehns 1. Enletung... 3. Dastellung von Spelen... 3 3. Stategen... 4 4. Spele t unvollständge Infoaton... 9 1. Enletung Als

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

Streuung elastische Streuung am Nukleon quasielastische Streuung

Streuung elastische Streuung am Nukleon quasielastische Streuung Kene und Teilchen Modene Expeimentalphysik III Volesung 6 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Steuung elastische Steuung am Nukleon quasielastische Steuung KIT Univesität des Landes Baden-Wüttembeg

Mehr

3.6 Molekulare Dynamik

3.6 Molekulare Dynamik 3.6 Molekulare Dynamk In den letzten 5 Jahrzehnten wurden drekte numersche Smulatonen zur statstschen Auswertung von Veltelchensystemen mmer wchtger. So lassen sch Phasenübergänge, aber auch makroskopsche

Mehr

AKADEMIE DER WISSENSCHAF1'EN

AKADEMIE DER WISSENSCHAF1'EN S ZUN GSBER ehe DER KÖNGLCH REUSSSCHEN AKADEME DER WSSENSCHAF1'EN JAH~GANll- 1913 Z'VEER HALBBAND. JUL BS DECEvBER SÜCK XXX -- L M ENER AFEL DRM VERZECHNSS DER ENGEGANGENEN DRUCKSCHRFEN NAMEN- UND SACHREGSER

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium ISBN: Weitere Informationen oder Bestellungen unter

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium ISBN: Weitere Informationen oder Bestellungen unter Lesepobe Jügen Koch, Matn Stämpfle Mathematk fü das Ingeneustudum ISBN: 978-3-446-46- Wetee Infomatonen ode Bestellungen unte http://www.hanse.de/978-3-446-46- sowe m Buchhandel. Cal Hanse Velag, München

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

TEIL 1 Untersuchung des Grundbereichs 2)

TEIL 1 Untersuchung des Grundbereichs 2) Matin ock, Düppenweilestaße 6, 66763 Dillingen / Saa lementa-physikalische Stuktu Wassestoff-Molek Molekülionlion ( + ) ) kläung ung des Velaufs de Gesamtenegie (( Ges fü den Σ g Zustand des -Molekülsls

Mehr

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D. Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Physikalische Grundlagen der Biomechanik

Physikalische Grundlagen der Biomechanik Physkalsche Gundlagen de Bomechank Dplomabet zu Elangung des Magstegades an de Natuwssenschaftlchen Fakultät de Leopold-Fanzens-Unvestät Innsbuck engeecht be Hen A. Unv.-Pof. D. Chstoph LEUBNER Insttut

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

10 Einführung in die Statistische Physik

10 Einführung in die Statistische Physik 10 Enführung n de Statstsche Physk More s dfferent! P.W. Anderson, Nobelpres 1977 10.1 Prolegomena Technsch gesehen st de Rolle der Statstschen Mechank der Glechgewchtssysteme, ausgehend von unseren Kenntnsse

Mehr

2 Mechanik. 1. Kinematik: Die Beschreibung von Bewegungen

2 Mechanik. 1. Kinematik: Die Beschreibung von Bewegungen Mechank. Knematk: De Beschebung von Bewegungen Idealsee ausgedehnte Köpe zu Massenpunkten, ndem Masse m Schwepunkt (s. späte) veent angenommen wd. Beschebe de Bewegung des Massenpunktes n katesschen Koodnaten

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr