VII. Numerische Behandlung von Differentialgleichungen

Größe: px
Ab Seite anzeigen:

Download "VII. Numerische Behandlung von Differentialgleichungen"

Transkript

1 VII. Nmerisce Beadlg vo Differetialgleicge 7.. Gewölice Diff gleicge erster Ordg Afgabe: Ftio r implizit gegebe drc Bedigge a die Ableitg????? Ableitg vo ac i jedem möglice Pt ist gegebe drc Ftio. Diff gleicgsproblem allgemei: As Beziege zwisce de Äderge Ableitge d de Ftioswerte soll eie gescte Ftio bestimmt werde!

2 7... Beispiel: Freier Fall Kgel wird as Höe losgelasse zm Zeitpt t mit Afagsgescwidigeit v Erdbescleigg g. ds v t s& t dt dv g v& t dt d s && s t. dt Diff gleicg für vt: v& t v t g Itegratio v t t v& τ dτ t gdτ gt;

3 Diff gleicg für st: s& t s t v t gt Itegratio s t t gτ dτ gt. As Afagswerte t d d as der Bedigg für die Ableitg wird die Ftio selbst bestimmt. I dieser eiface Form eplizit lösbar drc Qadratr! Im Allgemeie ev. Itegral ict diret lösbar oder Diff gleicg a ict af Itegral zrücgefürt werde

4 7... Defiitio: Afagswertproblem AWP As Afagswert d Differetialgleicg soll die Ftio für > bestimmt werde. Dabei ist die Diff gleicg ier i epliziter Form gegebe d.. i der Form:... Impliziter Fall:??? Beispiel implizit: *ep

5 7..3. Beispiel für eplizit lösbare Diff gleicg: α d Lösg drc Itegratio Separatio d d α d d αdt α d l l α d daer e α

6 7..4. Geometrisce Problemstellg: Vo eier Ftio sid alle möglice Ableitgswerte a alle möglice Stelle beat also a alle potetielle Ftioswerte Dies etsprict eiem Vetorfeld vo Tageterictge Weiteri beat ist der Ftioswert a eier Stelle. Gesct: Krve dere Tagete i alle Pte dem vorgegebee Vetorfeld etsprict:

7 Im Beispiel Freier Fall ist dieses Vetorfeld trivial: v& t g v t I der vt-ebee ist jede Tageterictg drc de Vetor v T gegebe also ier drc de Vetor -g T. Die Lösgsrve ist da die Gerade mit Steigg -g drc de Nllpt also vt-gt. v : Tagetevetor T.

8 7..5. Das Elerverfare: Gegebe AWP Afagswertproblem d Gesct: für Wir wolle bei loal als lieare Ftio g betracte d eie leie Scritt der Läge z etlag dieser lieare Näerg gee. Dadrc erält ma de Näergswert g

9 Ersetze wieder Ftio loal drc Tagetegleicg! Dies ergibt die Iteratiosvorscrift des Elerverfares Vorwärts-Eler: ; ; für... Der Eifaceit alber wäle wir die Scrittweite ostat mss aber ict sei.

10 Eler as Itegratio: Betracte die Diff gleicg zwisce de Stelle d : ] d d. as Rectecregel idem die Fläce ter der Krve ageäert wird drc die Fläce des Rectecs mit de Ece d

11 Elerverfare as Taloretwiclg : z Beat sid mit Zwiscestelle z. Der -Term ist lei d wird veraclässigt Elerverfare. Eler as der Disretisierg des Differetialqotiete: d d ergibt wieder das Elerverfare!

12 7..6. Verbesserte Verfare: Rücwärts-Eler: Der Diff qotiet a atürlic mit derselbe Berectigg ageäert werde drc d d Dies fürt z der Vorscrift Im Uterscied zm eiface Eler tact ier die Ubeate ac oc i der Ftio af; das mact die Sace omplizierter.

13 Um z eralte ist die Nllstelle eier Ftio z bestimme ämlic vo f z z z Die berecete Nllstelle z ist da die äcste Näerg! z Solce Verfare eiße implizite Verfare im Gegesatz zm eiface Elerverfare das ei eplizites Verfare ist. Zr Bestimmg vo a ma iterative Verfare wie z.b. das Newtoverfare verwede.

14 Weitere Talorpolom-Verfare: Berücsictigg öerer Terme i der Taloretwiclg: 6 3 z mit Zwiscestelle z. Hier tact aber die beate Ableitg af. Sie a berecet werde as d d d d d d Beötigt: Partielle Ableitge Nacdiffereziere Ketteregel

15 Also ] ] d damit Af diese Art öe beliebig oe Ableitge der Lösgsftio a eier Stelle af Ableitge der Ftio zrücgefürt werde. Die äcste Iterierte erält ma as dem Afag der Taloretwiclg a der letzte Stelle. Ma sprict ier ac vo Eiscrittverfare da stets Modifizierg: Rge-Ktta; vermeide öere Ableitge.

16 Merscrittverfare: Hier wird as merere sco berecete Iterierte das äcste gewoe also -m -. Solce Verfare öe ser eifac as Qadratrregel ergeleitet werde z.b. ] d d ter Verwedg der Mittelptsregel. Also

17 7..7. AWP für Diff gleicge erster Ordg im R : Sei T L Also T T L L mit vorgegebeem Startvetor T L Lösg geaso drc Eler: M M M

18 7..8. AWP für Diff gleicge öerer Ordg: Gegebe eie Bedigg für die j-te Ableitg der Ftio d d j j j j K Ψ mit Afagswerte j j M M

19 Umformliere i Diff gleicg erster Ordg im R j : Defiiere daz Vetorftio... j T d setze : : j : j-. Damit eralte wir für... j j j j Ψ M M

20 mit Afagsbedigge j j j M M M Elerverfare af Vetor:

21 7..9. Feleraalse: Start bei a Gescter Wert b Bei äqidistater Eiteilg ist Scrittweite : b-a/ Damit j j j... Defiitio loaler Disretisiergsfeler: A der Stelle ist der loale Dis.-Feler gegebe drc also der Feler der i eiem Scritt vo ac etstet. ist dabei der eate Wert eier Lösg ict! e

22 Defiitio globaler Disretisiergsfeler: Für das AWP zr Bestimmg der Lösg a der Stelle b ist der globale Dis.-Feler gegebe drc b Defiitio der Kovergez: Die drc ser Lösgsverfare erzegte Folge eißt overget we gilt b lim g

23 We also i eater Aritmeti bei immer feiere Uterteilge der Näergswert gege de eate Wert overgiert. Das bedetet atürlic ac dass der globale Feler gege gee mß!

24 A jeder Stelle trete ee loale Feler af d addiere sic zm globale Feler. Um isgesamt Kovergez z eralte mss also das Verfare so sei dass - loal ei geüged leier Feler etstet Kosistez d - sic diese loale Feler r z eiem leie globale Feler afsmmiere Stabilität. Defiitio Kosistez: Ei Verfare eißt osistet we der loale Disretisiergsfeler midestes vo der Ordg ist also O

25 Ist p O mit p so eißt das Verfare vo der Ordg p. Offesictlic ist das Elerverfare osistet vo Ordg da gilt z mit eier Zwiscestelle z. Zr Uterscg der Stabilität bescräe wir s af de lieare Spezialfall λ mit Lösg epλ

26 7.3. Partielle Differetialgleicge Beispiel Diffsio: Die Strömg j ervorgerfe drc Dictetersciede - erfolgt i Rictg des egative Gradiete der Kozetratio j t D t Masseeraltg: Äderg der Kozetratio i eiem Volmeelemet a r drc Strömg erfolge t t div j j j j 3

27 D Zsamme: div t Im isotrope Fall ist D eie ostate Zal z.b. D: Δ t im zweidimesioale Fall; Δ eißt Laplace-Operator.

28 Eiteilg Partieller Diff gleicge: Gleicgewictsgl. elliptisce PDE: Δ Wärmeleitgsgl. parabolisce PDE: Δ t Wellegleicg perbolisce PDE: Δ tt f

29 Elliptisce PDE: Gegebe sid zsätzlic Radwerte. Also Δ f af Gebiet Ω d af Γ dem Rad vo Ω Ω Γ Parabolisce PDE: Gegebe sid Afags- d Radwerte. Also Δ t af Gebiet Ω d af Γ zm Zeitpt t Γ Γ d t vorgegebe af Γ dem Ω Rad vo Ω. t Γ

30 Lösgsmetode am Beispiel Laplacegleicg Δ f af Gebiet Ω d af Γ Differezeverfare: Ersetze Differetialqotiet drc Differezeqotiete. Das Gebiet Ω wird disretisiert d.. drc ei Ptegitter j j......m dargestellt: j j am eifacste äqidistat mit ostater Scrittweite.

31 -dimesioaler Fall: - f für a < < b av; bw; a.... i- i i. b d d i i i i d d i i i i i f i

32 ergibt lieares Gleicgssstem: b f f f a f M M L O O M O O O M O L Mase: [ - - ] I D: - Mase: etsprict Differezfilter -

VII. Numerische Behandlung von Differentialgleichungen

VII. Numerische Behandlung von Differentialgleichungen VII. Numerisce Beandlung von Differentialgleicungen 7.. Gewönlice Diff gleicungen erster Ordnung Aufgabe: Funtion nur implizit gegeben durc Bedingungen an die Ableitung????? Ableitung von nac in jedem

Mehr

VII. Numerische Behandlung von Differentialgleichungen

VII. Numerische Behandlung von Differentialgleichungen VII. Nmerisce Beandlng von Differentialgleicngen 7.. Gewönlice Diff gleicngen erster Ordnng Afgabe: Fntion nr implizit gegeben drc Bedingngen an die Ableitng????? Ableitng von nac in jedem möglicen Pnt

Mehr

Mathe II 7. Übung mit Lösungshinweisen

Mathe II 7. Übung mit Lösungshinweisen Facbereic Matemati Prof. Dr. Fels Marti Fucssteier TECHNISCHE UNIVERSITÄT DARMSTADT ASS 007 3. Jui 007 Mate II 7. Übug mit Lösugsiweise Gruppeübuge (G ) Offee/Abgesclossee ud ompate Mege Etsceide Sie,

Mehr

Ableitungen. Manfred Hörz. ..., f (x n. ,..., x i. ,..., x n ) +Δ x,..., x n

Ableitungen. Manfred Hörz. ..., f (x n. ,..., x i. ,..., x n ) +Δ x,..., x n Ableituge Mafred Hörz. Partielle Ableitug Hat eie Fuktio mer als eie Variable ud leitet ma pro Variable ab, idem ma die adere als kostat betractet, so sprict ma vo partielle Ableituge. Alle Ableituge zusamme

Mehr

Die Herleitungen der Ableitungsregeln

Die Herleitungen der Ableitungsregeln Matemati Etrablatt Teme: Herleitge der Ableitgsregel Die Herleitge der Ableitgsregel. Die Smmeregel Damit die Regel awedbar ist, setze wir oras, dass die Ftioe d a eiem Iterall I deiiert d a der etspreede

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben.

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben. Pof. D. Jüge Rot Didati de eometie alte Pizip d Satz vo Cavaliei dlage des olmebegiffs (eiscließlic Satz vo De) olme de d des stmpfs Kgelvolme d Kgelobefläce Pizip vo Cavaliei Boaveta Cavaliei (598 47;

Mehr

Kapitel 8: Unendlich teilbare Verteilungen

Kapitel 8: Unendlich teilbare Verteilungen - 8 (Kapitel 8: Uelich teilbare Verteilge Kapitel 8: Uelich teilbare Verteilge I iesem Kapitel were wir elich teilbare Verteilge af ( I R, B stiere, ie afs Egste mit e reellwertige Prozesse (X t t mit

Mehr

Bestimmung von Vertrauensintervallen (Konfidenzintervallen) bei unbekannten Wahrscheinlichkeiten

Bestimmung von Vertrauensintervallen (Konfidenzintervallen) bei unbekannten Wahrscheinlichkeiten Bestimmug vo Vertrauesitervalle (Kofidezitervalle bei ubekate Warsceilickeite Beispiel : Es soll utersuct werde, wie viele 8-järige Erstwäler bei der äcste Budestagswal wäle gee werde. Dazu werde 600 Persoe

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Lösungen zur Nachklausur zur Analysis einer Variablen F. Merkl

Lösungen zur Nachklausur zur Analysis einer Variablen F. Merkl Lösuge zur Nachlausur zur Aalysis eier Variable F. Merl 3.4.7. Die folgede Teilaufgabe baue teilweise aufeiader auf. Sie dürfe die Ergebisse vorhergeheder Teilaufgabe auch da verwede, we Sie diese icht

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Ler-Olie.et Matematiportal Eifürug i die Itegralrecug Eifürug i die Itegralrecug Bestimme der Fläce uter der Kurve I de Naturwissescafte (z.b. i der Pysi) ist es macmal ötig, de Fläceialt zu ermittel,

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

8. Gewöhnliche Differentialgleichungen (ODE)

8. Gewöhnliche Differentialgleichungen (ODE) 8 Gewöhliche Differetialgleichuge (ODE) 81 Motivatio Eidimesioale (1d) Bewegug eies Teilches (Masse m, keie Reibug) im Potezial U() U() E klassisch: Ermittle die Bahkurve/Trajektorie (t) des Massepukts

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

Perkolation (WS 2014) Übungsblatt 2

Perkolation (WS 2014) Übungsblatt 2 Istitut für Stochasti Prof. Dr. G. Last Dipl.-Math. S. Ziesche Perolatio WS 04 Übugsblatt Aufgabe Zeige Sie für T, dass θ 0 p ud χ 0 p stetig auf [0, ] sid, we ma als Wertebereich R + { } zulässt. Lösug:

Mehr

Übungen zur Physik III WS 09/10

Übungen zur Physik III WS 09/10 Übge zr Physik III WS 09/0 Prof. r. Th. Mael, r. W. Walkowiak, H. Czirr, S. Faller, M. Potz Blatt 6 Asgabe:..009 Abgabe: oerstag, 9..009 Afgabe : (Formel vo Parseval-Placherel) Betrachte Sie die Wellefktioe.x/

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Bernsteinpolynome Vortrag zum Proseminar zur Analysis, Malte Milatz

Bernsteinpolynome Vortrag zum Proseminar zur Analysis, Malte Milatz Bersteipolyome Vortrag zum Prosemiar zur Aalysis, 6. 10. 2010 Malte Milatz I diesem Vortrag wird der bereits im Sript zur Aalysis ii zitierte Approximatiossatz vo Weierstraß mithilfe der Bersteipolyome

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Tema: Bilaze, eizwert, Stadardbildugsetalpie ufgabe: Bestimme Sie de bere, mlare eizwert eies Klewasserstffgases aus de a eiem Durcfluss-Kalrimeter (Bild 1) gemessee Date. T 1, m w Gas Luft V g T G T T

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

Übungen zu Mathematik für ET

Übungen zu Mathematik für ET Witersemester 07/8 Prof. Dr. Heig Kempka Übuge zu Matematik für ET Übugsblatt Weiacte zum Tema versciede Aufgabe. Aufgabe Berece Sie die folgede Grezwerte : + + 6 a) lim b) lim 7 + 7 + + si d) lim cos

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

3.2 Reihen Folgen und Reihen. Beispiele : (i) a n+1 = 1 2 beschränkt. a n 2. ), n N, a 1 = 2; zeigen: (a n ) n monoton fallend & nach unten

3.2 Reihen Folgen und Reihen. Beispiele : (i) a n+1 = 1 2 beschränkt. a n 2. ), n N, a 1 = 2; zeigen: (a n ) n monoton fallend & nach unten 6 3 Folge ud Reihe Beispiele : i + = beschrät Satz 3..5 + = +, N, a = ; zeige: ooto falled & ach ute + a = li + = + s.o. a + = + a = a + a a = a a+ a ii x =, x + = + x, =,,... x ooto wachsed: Idutio: x

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Kapitel IV: Unendliche Reihen

Kapitel IV: Unendliche Reihen Igeieurmathemati I WS 13/14 - Prof. Dr.. Mafred Leitz Kapitel IV: Uedliche Reihe 11: Uedliche Zahlereihe Kapitel IV: Uedliche Reihe 11 Uedliche Zahlereihe A Zum Begriff uedliche Zahlereihe B Uedliche Reihe

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Computergrafik Ihalt Achtug! Kapitel ist relevat für CG-2! 0 1 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe ud Grudlage Objekttrasformatioe Objektrepräsetatio ud -Modellierug Sichttrasformatioe

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Gleichwertige Feststellung von Schülerleistungen

Gleichwertige Feststellung von Schülerleistungen (c) 2006 ttp://www.emat.de Friedric-Sciller-Gymasium Ludwigsburg Jargagsstufe 3 Gleicwertige Feststellug vo Scülerleistuge Profilfac Matematik Tema: Verfasser: Kurslerer: Die -Fuktio Adrea Wedelgaß Frau

Mehr

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung Repetitorium Aalysis für Physier WS08/09 Motag - Folge ud Reihe Musterlösug. Verstädisfrage Thomas Blasi a Sid folgede Aussage richtig oder falsch: Jede overgete Folge hat eie Grezwert. Richtig. i Der

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe.

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe. Musterlösug Vortragsübug Blatt 4 Vorwort. Variate der harmoische Reihe. Folgede Aussage wird i der achfolgede Musterlösug ab ud a gebraucht ud öte sich für Sie auch außerhalb der HM durchaus als ützlich

Mehr

Die gleichen Verhältnisse, wenn wir Faktor 1 festhalten. Diese Überlegungen geben uns eine Vorstellung über das Ertragsgebirge.

Die gleichen Verhältnisse, wenn wir Faktor 1 festhalten. Diese Überlegungen geben uns eine Vorstellung über das Ertragsgebirge. Pro. Dr. Friedel Bolle Vorlesug "Miroöoomie" WS 008/009 II. Teorie der Uteremug/ 36 Pro. Dr. Friedel Bolle Vorlesug "Miroöoomie" WS 008/009 II. Teorie der Uteremug/ 37 7. Frge: Welce Eigescte be Produtiosutioe

Mehr

INHALTSVERZEICHNIS MITTWOCH

INHALTSVERZEICHNIS MITTWOCH Luca Turi / Vorkurs: Matematik Recefertigkeite / UNIZH / Mittwoc - I - VORKURS: MATHEMATIK RECHENFERTIGKEITEN Mittwoc: Aweduge der scriftlice Polyomdivisio wie «Abspalte vo Nullstelle» ud «Bestimmug eier

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

2. METHODE NACH ARCHIMEDES

2. METHODE NACH ARCHIMEDES . METHODE NACH ARCHIMEDES Dem Recer gleic, der eie Kräfte ammelt, um eie Krei zu mee, ud ict fidet, ud auf de Leratz it, der ötig wäre,... 0 Date Aligieri Arcimede vo Syraku Mit dem eierzeit größte griecice

Mehr

INHALTSVERZEICHNIS MITTWOCH

INHALTSVERZEICHNIS MITTWOCH Luca Turi / Vorkurs: Matematik Recefertigkeite 6 / UNIZH / Mittwoc - I - VORKURS: MATHEMATIK RECHENFERTIGKEITEN 6 Mittwoc: Aweduge der scriftlice Polyomdivisio wie «Abspalte vo Nullstelle» ud «Bestimmug

Mehr

INHALTSVERZEICHNIS MITTWOCH

INHALTSVERZEICHNIS MITTWOCH Luca Turi / Vorkurs: Matematik Recefertigkeite 7 / UNIZH / Mittwoc - I - VORKURS: MATHEMATIK RECHENFERTIGKEITEN 7 Mittwoc: Aweduge der scriftlice Polyomdivisio wie «Abspalte vo Nullstelle» ud «Berecug

Mehr

Numerische Behandlung von gewöhnlichen Differentialgleichungen Eine Einführung

Numerische Behandlung von gewöhnlichen Differentialgleichungen Eine Einführung Numerisce Beadlug vo gewölice Differetialgleicuge Eie Eifürug K. Taubert SoSe7 Uiversität Hamburg Numerisce Beadlug vo gewölice Differetialgleicuge Eie Eifürug Uiversität Hamburg SoSe7 K. Taubert Numeri

Mehr

2.3 Binäre Linearcodes

2.3 Binäre Linearcodes Codierusteorie Biäre Liearcodes Es stellt sic eraus, dass a, u bei der Kostrutio effizieter Codes wirlic weiterzuoe, sic az wesetlic auf de Beriffsapparat der odere Alebra stütze uss, sodass auc wir ict

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so:

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so: Asymptotische Notatio Ladaus asymptotische Notatio O, Ω, o, ω, Θ, wird vorausgesetzt siehe Folie auf webseite oder eischlägige Literatur (z.b. Corme, Leiserso, Rivest) Geometrische Reihe α 0 folgt aus

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Klausur Analysis I (WS 2010/11) mit Lösungen

Klausur Analysis I (WS 2010/11) mit Lösungen Humboldt-Uiversität zu Berli Istitut für Matematik Prof. Dr. B. Kummer Klausur Aalysis I (WS 00/) mit Lösuge Vorbemerkuge: Wäle Sie aus de vorgegebee Ausgabe 8 aus! Trage Sie am Ede i der folgede Tabelle

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

9 Differenzierbare Funktionen

9 Differenzierbare Funktionen 9 Differezierbare Fuktioe Lerziele: Kozept: Ableitugbegriff Reultat: Ketteregel Defiito. E ei I R ei Itervall. Eie Fuktio f : I R eißt ifferezierbar im Pukt a I, fall er Grezwert f (a) := lim x a f(a;x)

Mehr

Explizite, eingebettete und implizite RK-Verfahren

Explizite, eingebettete und implizite RK-Verfahren Kutta-Teorie: Explizite, eingebettete und implizite RK-Verfaren Lukas Klic Kutta-Teorie: : Explizite, eingebettete und implizite RK- Verfaren Lukas Klic Seite: Gliederung -Verfaren - Explizite Verfaren

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier Die eideutige Duplizierug ud Replizierug mit spezielle Supplemetsysteme Rudolf Pleier D-92694 tzerict, Mai 2015 Ialtsverzeicis 1 1 Die xistez ud izigeit der Duplizierug ud der Replizierug mit Termigescäfte...

Mehr

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER Elektrotechik ud Iformatiostechik Istitut für Nachrichtetechik, Vodafoe Chair Dr. Emil Matus - Digitale Sigalverarbeitugssysteme I/II - Übug 3 ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER.

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

24 Konvergente Teilfolgen und Cauchy-Kriterium

24 Konvergente Teilfolgen und Cauchy-Kriterium 120 IV. Uedliche Reihe ud Taylor-Formel 24 Kovergete Teilfolge ud Cauchy-Kriterium Lerziele: Kozepte: Teilfolge, Häufugswerte, Limes superior ud iferior, Cauchy-Folge Resultate: Satz vo Bolzao-Weierstraß,

Mehr

38 Normen und Neumannsche Reihe

38 Normen und Neumannsche Reihe 168 V. Lieare Algebra 38 Norme ud Neumasche Reihe Wir erier zuächst a (vgl. 15.6) 38.1 Normierte Räume. Es sei E ei Vektorraum über K = R oder K = C. Eie Abbildug : E [0, ) heißt Norm auf E, falls gilt

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie KIT) Istitut für Aalysis Prof. Dr. Tobias Lamm Dr. Patric Breuig SS 3.9.3 Klausur Höhere Mathemati I für die Fachrichtug Physi Aufgabe 4+3+3) Pute) a) Sei a ) N eie reelle

Mehr

Wir wünschen Ihnen viel Erfolg bei der Klausur.

Wir wünschen Ihnen viel Erfolg bei der Klausur. Klausur zur Vorlesug Aalysis I Bo, de. Februar 009 Prof. Dr. W. Müller Dr. A. Wotze Nachame, Vorame: Matrielummer: Nummer der Übugsgruppe: A Drehe Sie diese Zettel bitte erst auf Aufforderug um. Sollte

Mehr

Kaiser Prüfungsordner Analysis Theoriefragen

Kaiser Prüfungsordner Analysis Theoriefragen Mtemti ür Iormtier Kiser Prüugsorder Alysis Teorierge tulisierte Ausreitug vo Micel Jros mici24, Std 6..24 23:37 revisio # 89 Alle Atworte wurde vo mir muell eu eigetippt. Sie stmme teilweise us dem Kiser-Sriptum,

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

Lorenzattraktor:

Lorenzattraktor: 3 3 3 ) ( c b a 7... Lorenattraktor: D glecngssstem as Modell ür Bescrebng der Ltrklaton n der Erdatmospäre. We be der logstscen Parabel esteren we Attraktoren, wscen denen de Lösngskrve caotsc wecselt.

Mehr

Mathematische Randbemerkungen 1. Binomialkoeffizienten

Mathematische Randbemerkungen 1. Binomialkoeffizienten Mathematische Radbemeruge Biomialoeffiiete Der biomische Lehrsat ist eies der etrale Resultate der Aalysis I meier Vorlesug über Differetial- ud Itegralrechug habe ich ih daher gleich u Begi ausführlich

Mehr

Eulersche Summationsformel

Eulersche Summationsformel Eulersche Summatiosformel ei Prosemiarvortrag Sve Grützmacher Betreut vo Dr. Kaste Cotets Vorwort Die eifache Formel 3 Die allgemeie Formel 5 4 Awedug 7 VORWORT Vorwort Dieser Prosemiarvortrag beschäftigt

Mehr

Irrationalität und Transzendenz. 1 Algebraische Zahlen

Irrationalität und Transzendenz. 1 Algebraische Zahlen Vortrag im Rahme des Prosemiars zur Aalysis, 12.6.26 Marti Woitalla Der Vortrag beschäftigt sich mit dem Thema, welche Zahle als Lösug eies Polyoms i Q[X] auftrete öe. Außer de ratioale Zahle x a =, a

Mehr

Mehrdimensionale Differenzialrechnung

Mehrdimensionale Differenzialrechnung Szabolcs Rozsyai Stetigkeit Eie Fuktio f heißt stetig a er Stelle D, falls lim f( eistiert u lim f(. Die Fuktio heißt stetig falls sie i alle Pukte es Defiitiosbereichs stetig ist. laut Skript: f : R R

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an.

Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an. System- ud Gerätetecik Projekt Kocplatte Uterrictsleitug: Bucer Name: Datum: Seite C C C Sie abe u die Kocplatte repariert ud das Prüfprotokoll fertiggestellt Als der Kude die Kocplatte bei Ie abolt, will

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

beschreiben wir zuerst den Gesamtschadenprozess, der mit

beschreiben wir zuerst den Gesamtschadenprozess, der mit Die klassishe Ritheoie. Eifühg I diesem Kapitel betahte wi de klassishe Risiko-Pozess d leite eiige Egebisse fü die Wahsheilihkeit des Ris he. Isbesodee beweise wi Ldbeg s Ugleihg d zeige, wie explizite

Mehr

Computer-Graphik 2 SS 10

Computer-Graphik 2 SS 10 5/3/10 lausthal omputer-raphik I. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Frühe Beispiele / Motivatio Beispiele für : Parameter t auf der erade Kotevektor bei B-Splies u,v-parameter bei

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

6. Die Gamma-Funktion

6. Die Gamma-Funktion 6.. Die Gamma-Futio ist für C mit Re > 0 defiiert durch Γ( := 0 t e t dt (Euler-Itegral. Bemerug. Es ist t e t = t x e t mit x = Re. Beatlich overgiert 0 t x e t dt für x > 0 (das ist die reelle Gamma-Futio.

Mehr

$Id: reell.tex,v /11/09 11:16:39 hk Exp $

$Id: reell.tex,v /11/09 11:16:39 hk Exp $ Mathemati für die Physi I, WS 2018/2019 Freitag 9.11 $Id: reell.te,v 1.56 2018/11/09 11:16:39 h Ep $ 1 Die reelle Zahle 1.5 Poteze mit ratioale Epoete Wir sid gerade mit de Vorbereituge zur allgemeie biomische

Mehr

Konvergenz von Fourier-Reihen

Konvergenz von Fourier-Reihen Kovergez vo Fourier-Reihe Ausarbeitug zum Semiar zur Fourieraalysis, 3..27 obias Reimes Diese Ausarbeitug beschäftigt sich mit der Kovergez vo Fourier-Reihe. Hierzu werde im erste Abschitt eiige Vorbemerkuge

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

Vorlesung für Schüler

Vorlesung für Schüler Universität Siegen Facbereic Matematik Vorlesung für Scüler 1.12.2 Emmy-Noeter-Campus Prof. Dr. H. J. Reinardt Computerlösungen dynamiscer Probleme Zusammenfassung Es werden zunäcst einface dynamisce Probleme

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 3 (Abgabe Di 22. Mai 2012 in Vorlesung)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 3 (Abgabe Di 22. Mai 2012 in Vorlesung) TU Müche Physik Departmet, T33 http://www.wsi.tum.de/t33 Teachig Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck Übug i Thermodyamik ud Statistik 4B Blatt 3 Abgabe Di. Mai i Vorlesug. Mikrokaoische

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

Kapitel 2 Splineinterpolation

Kapitel 2 Splineinterpolation Kapitel 2 Splieiterpolatio Eifürug ud Motivatio Kubisce Splies Felerdarstellug B-Splies Fazit Numerisce Matemati II Herbsttrimester 202 Problemstellug: Wir abe gesee, dass Polyomiterpolate bei Eröug des

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Wahrscheinlichkeitstheorie Aufgabensammlung

Wahrscheinlichkeitstheorie Aufgabensammlung rof. Dr. Z. Kabluchko Sommersemester 2016 Herik Flasche 4. Juli 2016 Wahrscheilichkeitstheorie Aufgabesammlug Keie Abgabe 1 Grezwertsätze er Wahrscheilichkeitstheorie 1.1 Lemma vo Borel Catelli Lemma 1.1

Mehr

Anhang A: Die Gamma-Funktion

Anhang A: Die Gamma-Funktion O. Forster: Zetafuktio ud Riemasche Vermutug Ahag A: Die Gamma-Fuktio A.. Defiitio. Die Gamma-Fuktio ist für eie komplee Variable z mit Rez > durch das Euler-Itegral Γz := t z e t defiiert. Da mit := Rez

Mehr

Vorbereitung auf 6. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 6. Übungsblatt (Präsenzübungen) - Lösungen Prof. Dr. Raier Dahlhaus Statisti Witersemester 06/07 Vorbereitug auf 6. Übugsblatt Präsezübuge - Lösuge Aufgabe P0 Bereche vo UMVU-Schätzer. Gegebe sei jeweils ei statistisches Modell R, B R, P θ, θ Θ

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

W03 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

W03 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Waldivetur Prof. Dr. Cristop Klei Istitut für Waldivetur ud Waldwacstum Arbeitsbereic Waldivetur ud Fererkudug Stratifizierte Sticprobe Stratifizierte Zufallsauswal I mace Fälle ist es vorteilaft, eie

Mehr