- 1 - A H A V M A. Bild 5.17 Einfach statisch unbestimmtes System; a) Systemskizze; b) Schnittbild F 1 F 3 B C F 2 2 F 3

Größe: px
Ab Seite anzeigen:

Download "- 1 - A H A V M A. Bild 5.17 Einfach statisch unbestimmtes System; a) Systemskizze; b) Schnittbild F 1 F 3 B C F 2 2 F 3"

Transkript

1 - - Lgerrektionen können nur mit Hilfe der Elstizitätstheorie bestimmt werden. Technische Mechnik II Elstosttik werden ein- und mehrfch "sttisch unbestimmt" gelgerte Trgwerke vorgestellt. ) b) M H V ild 5.7 Einfch sttisch unbestimmtes System; ) Systemskizze; b) Schnittbild ) 2 3 C D b) H V 2 3 ild 5.8 Zweifch sttisch unbestimmtes System; ) Systemskizze; b) Schnittbild 5.6 Lösen eines erechnungsproblems - ormulierung - mechnisches Erstzmodell (Eigenschften) - Lösung des Erstzmodells - Diskussion, edeutung Hier wird ds Huptugenmerk uf "Lösung des Erstzmodells" und "Diskussion, edeutung" berbeitet - Schnittbild zum Sichtbrmchen der Kräfte, - ufstellen und Lösen der Gleichungen, - Kontrolle des Ergebnisses uf Richtigkeit und Genuigkeit. C D ufgbe 5. estimmung der Lgerkräfte durch Schneiden n den Lgern es hndelt sich links um ein einwertiges Lger und rechts um ein zweiwertiges Lger elstung durch Einzelkräfte und Einzelmoment ufstellen der Gleichgewichtsbedingungen zur estimmung der Lgerkräfte Ein Träger wird mit den Kräften, 2, 3 und einem Moment M belstet (ild 5.9). gegeben: α = 45 0,, 2, 3, M, gesucht: estimmung der uflgerkräfte und α 2 3 M ild 5.9 Träger mit den Kräften, 2, 3 und dem Moment M Leseprobe-TM-I-Vorlesungsskript docx

2 Lösung: H = 2 2 2, V = = (2 sin α M ), 3 (2 2 sin α M ) 3 ufgbe 5.2 estimmung der Lgerkräfte durch Schneiden n den Lgern es hndelt sich um drei einwertige Lger in verschiedenen Richtungen ufstellen der Gleichgewichtsbedingungen zur estimmung der Lgerkräfte Ein Träger wird mit der Krft und dem Kräftepr 2 * h belstet (ild 5.2). In C ht der Träger ein schräg gestelltes, einwertiges Lger. gegeben:, 2,, h, α gesucht: estimmung der uflgerkräfte, und C 2 C α h 2 ) ild 5.2 ) Träger mit der Krft und dem Kräftepr 2 * h Lösung: = 2 tn α, = h 2 (2 h + 3 ) (5.3), C = 2 2h 2 cos α ufgbe 5.3 estimmung der Lgerkräfte durch Schneiden n den Lgern es hndelt sich links um ein zweiwertiges Lger und rechts um ein einwertiges Lger ufstellen der Gleichgewichtsbedingungen zur estimmung der Lgerkräfte Ein Träger wird mit den Kräften, 2 und 3 belstet (ild 5.20). gegeben: α = 30 0,, 2, 3, gesucht: estimmung der uflgerkräfte und /2 ild 5.23 Träger mit den Kräften, 2 und 3 Leseprobe-TM-I-Vorlesungsskript docx

3 Lösung: V = 3 ( cos α - 3 ), H = sin α, = 3 ( cos α ) ufgbe 5.4 estimmung der Lger- und Seilkräfte durch Schneiden n den Lgern Es hndelt sich um ein zweiwertiges Lger und durch die Seilkrft jeweils um ein einwertiges Lger Seilkrft über Umlenkrollen Scheibengewicht G im Schwerpunkt ufstellen der Gleichgewichtsbedingungen zur estimmung der Lgerkräfte Eine dreieckige, schwere Scheibe (Gewicht G) wird in durch ein zweiwertiges Lger und in und C durch ein Seil S gehlten. Ds Seil wird durch zwei Umlenkrollen geführt. Ds Scheibengewicht G greift im Schwerpunkt S Sch der Scheibe n (ild 5.25). gegeben: Scheibengewicht G,, h gesucht: estimmung der uflgerkrft und der Seilkrft S G C 2h/3 SSch h/3 2/3 /3 Seil S ild 5.25 Dreieckige, schwere Scheibe Lösung: S = G 3 2, H = - G 3 2, V = G 3 ufgbe 5.5 estimmung der Lger- und Seilkräfte durch Schneiden n den Lgern Es hndelt sich links um ein zweiwertiges Lger und rechts einwertiges um ein Lger Krfteinleitung über Hebel ufstellen der Gleichgewichtsbedingungen zur estimmung der Lgerkräfte Ein Träger wird mit der Krft m Hebel der Länge c belstet (ild 5.27). gegeben:,, b, c gesucht: estimmung der uflgerkräfte und b c ild 5.27 Träger mit der Krft m Hebel Leseprobe-TM-I-Vorlesungsskript docx

4 Lösung: H = -, V = - c, = c ufgbe 5.6 estimmung der Lger- und Seilkräfte durch Schneiden n den Lgern Es hndelt sich links um ein zweiwertiges Lger und rechts um ein einwertiges Lger Kräfte n einem ebenen System ufstellen der Gleichgewichtsbedingungen zur estimmung der Lgerkräfte Eine Scheibe wird mit den Kräften, 2, 3 und 4 belstet (ild 5.29). gegeben: α, α 3,, 2, 3, 4,, h gesucht: estimmung der uflgerkräfte und /4 /4 2 3 h 3/4 4 /4 ild 5.29 Scheibe mit den Kräften, 2, 3 und 4 Lösung: V =( 4 4 +(- cosα - 3 cosα 3 ) h + sinα sinα 3 ), H = - cosα - 3 cos α 3, = (- cos α h sin α 3-3 cos α 3 h ) ufgbe 5.7 estimmung der Lger- und Seilkräfte durch Schneiden n den Lgern Es hndelt sich um zwei Pendelstützen, die jeweils einem einwertigen Lger entsprechen, d in die Stützen nur eine xhsile Krft eingeleitet werden knn, und rechts um ein einwertiges Lger. ufstellen der Gleichgewichtsbedingungen zur estimmung der Lgerkräfte Ein Träger wird mit der Krft in zwei Punkten belstet (ild 5.3). In besteht ds Lger us zwei Pendelstützen, in us einem einwertigen Lger. gegeben:, gesucht: estimmung der uflgerkrft und der Stbkräfte S, S 2 Leseprobe-TM-I-Vorlesungsskript docx

5 ild 5.3 Träger mit der Krft Lösung: S = ufgbe 5.8 2, =, S 2 = - estimmung der Lger- und Gelenkkräfte durch Schneiden n den Lgern und Gelenken Es hndelt sich in und um jeweils ein zweiwertiges Lger und und ein Gelenk in C elstung des Systems über die Seilkrft n einer Rolle uf dem System ufstellen der Gleichgewichtsbedingungen n Teilsystemen zur estimmung der Lger- und Gelenkkräfte Ein us lken und einer Rolle zusmmengesetztes System wird über ein Seil mit dem Gewicht belstet (ild 5.33). gegeben:, gesucht: estimmung der uflgerkrft und und der Gelenkkrft C. 2 E C Seil D 2 3 Lösung: = 3,9, = 3,35, C = 4,72 ild 5.33 Zusmmengesetztes System Leseprobe-TM-I-Vorlesungsskript docx

6 - 6-6 Ebenes chwerk Lehrziel des Kpitels Definition eines chwerks Sttische estimmheit eines chwerks ufbu eines chwerks nlytische und grphische Lösungsmethoden (CREMONpln, knotenweises Schneiden, RITTERscher Schnitt) f(x) = ω Gleichgewichtsbedingungen n jedem Knoten : Σ x = 0, (6.) : Σ y = 0. (6.2) Ein chwerk besteht us einer nzhl einzelner Stäbe, die zusmmen wie ein Trgwerk wirken. Wegen einiger wesentlicher Einschränkungen werden chwerke gesondert betrchtet. 6. Definition eines chwerks - Die Stäbe sind gerde, - die Stäbe sind n den Verbindungspunkten, den Knoten, gelenkig ngeschlossen, - die Stäbe sind n den Knoten zentrisch ngeschlossen. - Die Lsten greifen nur n den Knoten n. - Dher werden die Stäbe nur in Normlenrichtung (in der chse) uf Druck und Zug belstet. In ild 6. wird die Vorzeichendefinition der chwerkstäbe ngegeben. Die Stbkrft wird immer ls Zugkrft, ds heißt vom Knoten ziehend, mit positivem Vorzeichen ngesetzt. Wenn sich ds Vorzeichen in der Rechnung ls negtiv erweist, hndelt es sich um einen Druckstb. In der Prxis muss für Druckstäbe noch ein Stbilitätsnchweis, zum eispiel mit Hilfe des ω- Verfhren 6., durchgeführt werden. Dies würde hier zu weit führen. Es wird in diesem uch nicht weiter druf eingegngen. S Knoten S ild 6. Vorzeichenfestlegung Wie lle Trgwerke werden uch chwerke durch die uflger mit ihrer Umgebung verbunden. uch hier muß jeweils kontrolliert werden, ob ds System sttisch bestimmt ist. Dbei muß unterschieden werden, ob ds chwerk äußerlich sttisch bestimmt und/ oder innerlich sttisch bestimmt ist. ) b) ild 6.2 chwerk; ) innerlich und äußerlich sttisch bestimmt; b) äußerlich sttisch unbestimmt 6. W. eitz und K.- H. Grote (Hers.), Dubbel, Tschenbuch für den Mschinenbu, 20. uflge, Springer- Verlg, 200 Leseprobe-TM-I-Vorlesungsskript docx

7 - 7 - ür ein innerlich und äußerlich sttisch bestimmtes chwerk reichen die 3 Gleichgewichtsbedingungen m Gesmtsystem und die Gleichungen n den Teilsystemen us, um lle uflgerkräfte und lle Stbkräfte zu bestimmen. ür ein innerlich sttisch bestimmtes und äußerlich sttisch unbestimmtes chwerk reichen die 3 Gleichgewichtsbedingungen m Gesmtsystem nicht us, um lle uflgerkräfte zu bestimmen. Hier muss die Elstizitätstheorie mitberücksichtigt werden (siehe Technische Mechnik II Elstosttik 5.2 ). ild 6.3 Innerlich sttisch unbestimmtes chwerk ür ein innerlich sttisch unbestimmtes und äußerlich sttisch bestimmtes chwerk reichen die drei Gleichgewichtsbedingungen m Gesmtsystem us, um lle uflgerkräfte zu bestimmen. Die Gleichungen n den Teilsystemen reichen nicht us, um lle Stbkräfte zu bestimmen. Jetzt muss hier die Elstizitätstheorie mitberücksichtigt werden (siehe Technische Mechnik II Elstosttik). ild 6.4 Kinemtisches chwerk Nicht erlubt sind kinemtische, lso bewegliche Systeme (ild 6.4). Dieses chwerk ist durch die fehlende Querverstrebung in horizontler Richtung beweglich. Im llgemeinen läßt sich die sttische estimmtheit eines chwerks mit Hilfe der ildungsgesetze (siehe Kpitel 6.2) bestimmen. Dies ist ber nicht immer möglich. Dnn müssen die chwerke mit nderen Methoden, zum eispiel mit Hilfe eines Polplns us der Getriebenlyse 6., uf ihre sttische estimmtheit untersucht werden. 6.2 ufbu eines chwerks In der Definition des chwerks wird schon gesgt, dß ds chwerk us einzelnen, gerden Stäben besteht, die in den Knoten zentrisch miteinnder verbunden sind. lle Lsten greifen nur n diesen Knoten n. Um ds System zu ordnen, werden die Knoten mit römischen Zhlen, die Stäbe mit rbische Zhlen gekennzeichnet. 2 IV I 6 III 5 V 4 ild 6.5 Nummerierung der Knoten und Stäbe VI 5.2 Kunow, Vorlesungsskript zur Technischen Mechnik II Elstosttik 6. W. eitz und K.- H. Grote (Hers.), Dubbel, Tschenbuch für den Mschinenbu, 20. uflge, Springer- Verlg, 200 Leseprobe-TM-I-Vorlesungsskript docx

8 - 8 - Ein Schnittbild, wie wir es gewohnt sind, würde nun sehr umfngreich werden (ild 6.6 ). Deshlb werden die Knoten nicht lle uf einml, sondern ein Knoten nch dem nderen geschnitten, wenn die Stbkräfte berechnet werden. II S 2 S 2 IV S S 7 S 8 S 3 S 9 I S ) S 6 S 7 III S 8 S 9 S 5 S 6 S 5 S 4 V S 4 S 3 VI H II S 2 ild 6.6 Schnittbild; ) Explosionsschnittbild; b) m Knoten II V b) S S 7 Schnittbild m Knoten II zeigt ein solches Einzelschnittbild (ild 6.6 b). Es liegt ein zentrles Krftsystem vor. Die Stbkräfte stehen im Gleichgewicht, wenn die Resultierende, beziehungsweise die Hltekrft zu Null wird. n jedem einzelnen Knoten luten die Gleichgewichtsbedingungen : Σ x = 0, (6.) : Σ y = 0. (6.2) Im vorliegendem eispiel ergeben sich zwölf Gleichungen für zwölf Unbeknnte, die neun Stbkräfte und drei Lgerkräfte. Wenn ein sttische bestimmtes chwerk vorliegt, lssen sich lle Stbkräfte und Lgerrektionen us den Gleichgewichtsbedingungen berechnen. Um die chwerke besser klssifizieren zu können, wird der ufbu eines chwerks untersucht und nch Gruppen unterteilt. Die meisten chwerke werden nch dem. ildungsgesetz ufgebut.. ildungsgesetz Drei chwerkstäbe, die durch Knoten miteinnder verbunden sind (ild 6.7 ), bilden eine sttisch bestimmte Scheibe, zum eispiel Scheibe. Von einer Scheibe usgehend wird durch nbringen zwei weiterer Stäbe (Stb 4 und 5) eine weitere sttisch bestimmte Scheibe, zum eispiel Scheibe 2, gebildet. Scheibe 2 Scheibe 2 2 ) b) ild 6.7 ) Sttische bestimmte Scheibe; b) Scheibenbildung, beginnend mit der Scheibe und Stb 4 und 5. Es sind die einfchsten chwerke, die uch bei der erechnung, zum eispiel durch Schneiden n den Knoten oder durch den CREMONpln, keine Schwierigkeiten mchen. 2. ildungsgesetz Zwei chwerkscheiben und 2, die nch dem. ildungsgesetz ufgebut sind, werden durch drei weitere Stäbe verbunden, die nicht durch einen Punkt gehen dürfen. Leseprobe-TM-I-Vorlesungsskript docx

9 - 9 - ) b) ild 6.8 chwerk nch dem 2. ildungsgesetz; ) chwerkstäbe, die b) zwei Scheiben bilden. Hierbei muss immer kontrolliert werden, ob ds chwerk kinemtisch ist. Ein chwerk nch dem. und 2. ildungsgesetz knn durch Wegnhme und Wiedereinfügen eines Stbes n nderer Stelle in ein nderes sttisch bestimmtes chwerk verwndelt werden. Ds ist die Gruppe von chwerken nch dem 3. ildungsgesetz. 3. ildungsgesetz ild 6.9 chwerk nch dem 3. ildungsgesetz uch hier ist immer zu prüfen, ob ds neu gebildete chwerk kinemtisch ist. ls weitere, große Gruppe gibt es die zusmmengesetzten chwerke. ild 6.0 Zusmmengesetztes chwerk Im obigen System bilden die zwei Scheiben, die jeweils nch dem. ildungsgesetz ufgebut sind, einen Dreigelenkbogen. ei einer Vorbetrchtung können vorb Stäbe sofort ls Nullstäbe erknnt oder, wenn sie sich in der erechnung ls Nullstäbe ergeben, überprüft werden. Ds sind bei einer gegebenen elstung unbelstete Stäbe (Tbelle 6.). Sie werden nur für diesen Lstfll zu Null. Jeder ndere Lstfll knn ndere Stbkräfte zur olge hben. Deshlb dürfen sie niemls us dem chwerk entfernt werden. ls Lösungswege für die erechnung der Lger- und Stbkräfte eines chwerks bieten sich drei Methoden n: - nlytisch durch knotenweises Schneiden (für Systeme nch dem. ildungsgesetz und wenn lle Stbkräfte gesucht werden) - grphisch nch dem CREMONpln (für Systeme nch dem. ildungsgesetz und wenn lle Stbkräfte gesucht werden) Leseprobe-TM-I-Vorlesungsskript docx

10 RITTERsches Schnittverfhren (für Systeme nch dem., 2. und 3. ildungsgesetz und wenn einzelne Stbkräfte gesucht werden). Tbelle 6. Definition der Nullstäbe edingung edingung 2 edingung 3 Keine äußere Krft tritt m Knoten uf. Die äußere Krft wirkt in Richtung einer der Stbchse. Zwei Stäbe liegen in derselben Richtung und ein dritter schließt n demselben Knoten in nderer Richtung n. y S 0 0 x S 2 y S 3 S x S y x S 2 S eweis : S y = 0. : + S + S 2x = 0. : - S + S 2 + S 3x = 0. : S x + S 2 = nlytische Lösung Dmit wird die y- Komponente der Stbkrft S zu Null, ds heißt, dmit wird uch ihre Horizontlkomponente S x zu Null. Wenn keine äußere Krft ngreift, ist uch die Stbkrft Null. : S 2y = 0. Dmit wird die y- Komponente der Stbkrft S 2 zu Null, dnn ist uch die x- Komponente von der Stbkrft S 2 Null. Die Stbkrft S nimmt die Krft uf. : S 3y = 0. Dmit wird die y- Komponente der Stbkrft S 3 zu Null, dnn ist uch die x- Komponente von der Stbkrft S 3 Null. Die Stbkrft S ist gleich der Stbkrft S 2. ei dieser Lösung betrchtet mn ds chwerk zuerst ls Gesmtsystem und löst mit den drei Gleichgewichtsbedingungen m Gesmtsystem die uflgerkräfte. eispiel - Sttisch bestimmtes chwerk nch dem. ildungsgesetz - estimmung der Lgerkräfte durch die Gleichgewichtsbedingungen m Gesmtsystem - estimmung der Stbkräfte durch den CREMONpln Ein chwerkträger wird durch drei Kräfte, 2 und 3 belstet (ild 6.). gegeben:,, 2, 3 gesucht: estimmung der Lger- und Stbkräfte Leseprobe-TM-I-Vorlesungsskript docx

3.4 Ebene Fachwerke. Aufgaben

3.4 Ebene Fachwerke. Aufgaben Technische Mechnik.4- Prof. r. Wndinger.4 Ebene chwerke ufgben ufgbe : 4 5 ür ds bgebildete chwerk sind die Lgerkräfte und lle Stbkräfte in bhängigkeit von der Krft zu ermitteln. ufgbe : Ermitteln Sie

Mehr

2. Mehrteilige ebene Tragwerke

2. Mehrteilige ebene Tragwerke Mehrteilige ebene Trgwerke bestehen us mehreren gelenkig miteinnder verbundenen Teiltrgwerken. Zusätzlich zu den Lgerrektionen müssen die Kräfte in den Gelenken bestimmt werden. Prof. Dr. Wndinger 3. Trgwerksnlyse

Mehr

ÜBUNGSAUFGABEN ZUR VORLESUNG TECHNISCHE MECHANIK I

ÜBUNGSAUFGABEN ZUR VORLESUNG TECHNISCHE MECHANIK I ÜUNGSUGEN ZUR VORLESUNG TECHNISCHE MECHNIK I Kpitel : chwerke Lehrstuhl für Technische Mechnik Technische Universität Kiserslutern c 00 Lehrstuhl für Technische Mechnik Technische Universität Kiserslutern

Mehr

Übungen. Technische Mechanik I

Übungen. Technische Mechanik I LISTE DER WARENZEICHEN Übungen zur Technische Mechnik I - Sttik Vollständig und mit möglichen Lösungsvrinten gelöste Übungsufgben von Annette Kunow - - LISTE DER WARENZEICHEN Text Copyright 6 Annette Kunow

Mehr

4.1 Ebene gerade Balken. Aufgaben

4.1 Ebene gerade Balken. Aufgaben Technische Mechnik 1 4.1-1 Prof. r. Wndinger ufgbe 1 4.1 bene gerde lken ufgben uf dem bgebildeten Sprungbrett steht eine Person mit dem Gewicht G. ) estimmen Sie die Lgerkräfte. b) rmitteln Sie den Verluf

Mehr

1. Stabsysteme. 1.1 Statisch bestimmte Stabsysteme 1.2 Statisch unbestimmte Stabsysteme 1.3 Stabsysteme mit starren Körpern

1. Stabsysteme. 1.1 Statisch bestimmte Stabsysteme 1.2 Statisch unbestimmte Stabsysteme 1.3 Stabsysteme mit starren Körpern 1. Stbsysteme 1.1 Sttisch bestimmte Stbsysteme 1.2 Sttisch unbestimmte Stbsysteme 1.3 Stbsysteme mit strren Körpern Prof. Dr. Wndinger 4. Trgwerke TM 2 4.1-1 1.1 Sttisch bestimmte Stbsysteme Längenänderung

Mehr

Kapitel 6. Fachwerke

Kapitel 6. Fachwerke Kpitel 6 chwerke 6 6 chwerke 6. Sttische Bestimmtheit... 49 6. Aufbu eines chwerks... 5 6. Ermittlung der Stbkräfte... 5 6.. Knotenpunktverfhren... 5 6.. Cremon-Pln... 60 6.. Rittersches Schnittverfhren...

Mehr

6. Lager, Trag- und Fachwerke

6. Lager, Trag- und Fachwerke 6. Lger, Trg- und chwerke 6. reiheitsgrde eines Körpers in der Ebene Ein Körper, der keiner Bindung unterworfen ist, ht in der Ebene offensichtlich zwei trnsltive reiheitsgrde, und knn sich etw nch rechts

Mehr

18. Räumliche Tragsysteme

18. Räumliche Tragsysteme 8. Räumliche Trgssteme isher wurden nur Trgssteme betrchtet, die durch Lsten in einer Ebene bensprucht wurden. In der Pris treten ber häufig räumliche Strukturen uf mit Lsten in beliebiger Rumrichtung.

Mehr

Musterlösungen (ohne Gewähr) knm

Musterlösungen (ohne Gewähr) knm rühjhr 2009 Seite 1/17 rge 1 ( 1 Punkt) Gegeben ist eine Krft, die n einem Punkt P mit dem Ortsvektor r ngreift. Berechnen Sie den Momentenvektor M bezogen uf den Koordintenursprung des krtesischen Koordintensystems.

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) ottfried Wilhelm Leibniz Universität Hnnover Seite 1/ rge 1 ( Punkte) Musterlösungen (ohne ewähr) Eine homogene Wlze (ewicht ) lehnt n einer gltten Wnd. Die Wlze wird, wie in der Zeichnung drgestellt von

Mehr

2 Der Grundgedanke der Methode der Finiten Elemente

2 Der Grundgedanke der Methode der Finiten Elemente Der Grundgednke der Methode der initen Elemente Der Grundgednke der E-Methode sei n einem einfchen chwerk (Bild -) erläutert. ür dieses seien die Verschiebungen der Knotenpunkte und die Normlkräfte unter

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern WS 1/13, 16.0.013 1. Aufgbe: (TM I) ) A g 3 6 ( q() = q 0 9 G B 60 F = q 0 m

Mehr

Technische Mechanik I. - Statik -

Technische Mechanik I. - Statik - LISTE DER WARENZEICHEN Technische Mechnik I - Sttik - von Annette Kunow - 1 - LISTE DER WARENZEICHEN Text Copyright 016 Annette Kunow All Rights Reserved - - LISTE DER WARENZEICHEN LISTE DER WARENZEICHEN

Mehr

IV C. Abb. 1: Belastetes Fachwerk

IV C. Abb. 1: Belastetes Fachwerk Univ. rof. Dr. rer. nt. Wofgng H. Müer Technische Universität erin kutät V Lehrstuh für Kontinuumsmechnik und Mteritheorie - LKM, Sekr. MS Einsteinufer, 08 erin Sttik und eementre estigkeitsehre. Übungsbtt-Lösungen

Mehr

HTWG Konstanz, Fakultät Maschinenbau, Studiengang MEP 1 Übungen Technische Mechanik 1 F 2 = 20KN P 2 (9;-3) F A (1,3;-5) F 4.

HTWG Konstanz, Fakultät Maschinenbau, Studiengang MEP 1 Übungen Technische Mechanik 1 F 2 = 20KN P 2 (9;-3) F A (1,3;-5) F 4. HTW Konstn, kultät Mschinenbu, Studiengng MEP 1 ufgbe 1: erechnen sie die Krftkomponenten, und und den etrg der Krft, flls dieser nicht gegeben ist. erechnen Sie die Summen der Kräfte 1 und 2 bw. 3 und

Mehr

Statik: graphische Lösung von Gleichgewichtsproblemen 1. Kraftecke der Kräfte auf die Scheiben (1) und (2) :

Statik: graphische Lösung von Gleichgewichtsproblemen 1. Kraftecke der Kräfte auf die Scheiben (1) und (2) : 1. Sttik: grphische Lösung von Gleichgewichtsproblemen 1 1.1 Krftecke der Kräfte uf die Scheiben (1) und () : Zwei schwere Scheiben liegen wie skizziert übereinnder und stützen sich m undment b. Es sind

Mehr

1. Aufgabe (ca. 33% der Gesamtpunktzahl)

1. Aufgabe (ca. 33% der Gesamtpunktzahl) Institut für echnik Prof. Dr.-Ing. hbil. P. Betsch Prof. Dr.-Ing. hbil. Th. Seelig Sttik strrer Körper 23. August 27. Aufgbe (c. 33% der Gesmtpunktzhl) B x 2 q 0 C z 2 4 A x z 2 Die oben drgestellte bgeschrägte

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1: 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr

B005: Baumechanik II

B005: Baumechanik II Sommersemester 05 Fkultät für uingenieurwesen und Umwelttechnik Dozent: nsgr Neuenhofer 005: umechnik II 3. März 05 Husübung -ösung ufgbe () Wie hoch könnten wir theoretisch eine Sthlstütze (konstnter

Mehr

1. Querkraftschub in offenen Profilen

1. Querkraftschub in offenen Profilen 1. Querkrftschub in offenen Profilen 1.1 Schubfluss 1.2 Schubmittelpunkt Prof. Dr. Wndinger 5. Dünnwndige Profile TM 2 5.1-1 Geometrie: Die Profilkoordinte s wird entlng der Profilmittellinie gemessen.

Mehr

Technische Mechanik I

Technische Mechanik I Repetitorium Technische Mechnik I Version 3., 9.. Dr.-Ing. L. Pnning Institut für Dynmik und Schwingungen ottfried Wilhelm Leibniz Universität Hnnover Dieses Repetitorium soll helfen, klssische ufgbentypen

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Prof. Dr.-Ing. Dietmar Gross Prof. Dr.-Ing. Wolfgang Ehlers Prof. Dr.-Ing. Peter Wriggers

Prof. Dr.-Ing. Dietmar Gross Prof. Dr.-Ing. Wolfgang Ehlers Prof. Dr.-Ing. Peter Wriggers Springer-Lehrbuch Prof.Dr.-Ing.DietmrGross studierte ngewndte Mechnik und promovierte n der Universität Rostock. Er hbilitierte n der Universität Stuttgrt und ist seit 976 Professor für Mechnik n der TU

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Aufgabe 1 - Lagerreaktionen

Aufgabe 1 - Lagerreaktionen KLAUSUR Technische Mechnik (. Semester 19.07.011 Prof. Volker Ulricht Duer: 10 min. Aufge 1 3 4 5 Σ Punkte 5 1 6 8 5 36 Aufge 1 - Lgerrektionen D F D Gegeen: Längen, =, Streckenlst, Krft F D, Moment Lgerrektionen

Mehr

4.2 Rahmen und Bogen. Aufgaben

4.2 Rahmen und Bogen. Aufgaben Technische Mechnik 4.2- Prof. r. Wndiner ufbe 4.2 Rhen und oen ufben ritteln Sie für den bebildeten Rhen die Lerkräfte und die Schnittlsten. Zhlenwerte: = 2000 N, 2 = 200 N, = 2,5 (rebnis: Ler : 200 N,

Mehr

l/2 l/2 A l/4 D l/4 l/2 l/2 l/2 2F 3F x y 1. Aufgabe (ca. 27 % der Gesamtpunktzahl)

l/2 l/2 A l/4 D l/4 l/2 l/2 l/2 2F 3F x y 1. Aufgabe (ca. 27 % der Gesamtpunktzahl) Institut für Mechnik Prof. Dr.-Ing. hbil. P. etsch Prof. Dr.-Ing. hbil. Th. Seelig Prüfung in Sttik strrer Körper 1. ugust 014 1. ufgbe (c. 7 % der esmtpunkthl) l/ l/ l/4 l/4 D l/ C q l/ l/ 3 l erechnen

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele 6. Lndeswettbewerb Mthemtik yern. Runde 00/04 ufgben und Lösungsbeispiele ufgbe 1 ie Seite [] eines reiecks wird über hinus bis zum Punkt so verlängert, dss = n gilt (n N n>1). ie Gerde durch und den Mittelpunkt

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Satz des Pythagoras. c 2. a 2. b 2

Satz des Pythagoras. c 2. a 2. b 2 Stz des Pythgors 01 c b Hypotenusenqudrt = Summe der beiden Kthetenqudrte ² = c² b² = c² b² ² + b² = c² b² = c² ² b= c² ² c² = ² + b² c= ² + b² 0 Der Stz des Pythgors und seine rechnerische Anwendung Beispiel:

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

1 (bekannt) (4 Punkte)

1 (bekannt) (4 Punkte) . Proekusur Mechnik I WS 003/04, Prof. r. rer. nt. Ventin Popov itte deutich schreien! Nme, Vornme: Mtr.-Nr.: Studiengng: itte inks und rechts nkreuzen! Studienegeitende Prüfung Üungsscheinkusur rgenis

Mehr

4 Der Kreisring unter rotationssymmetrischer Belastung

4 Der Kreisring unter rotationssymmetrischer Belastung 4 Der Kreisring unter rottionssymmetrischer Belstung 4.1 Allgemeines K C HE C, HK? HE C 4 E C JH C A H >? Bild 4.1-1: Beispiele für Kreisringe ls Konstruktionselemente rottionssymmetrischer Flächentrgwerke

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Aufgabe 1 (5 Punkte) Prüfungsklausur Technische Mechanik I

Aufgabe 1 (5 Punkte) Prüfungsklausur Technische Mechanik I Techn. echnik & Fhrzeugdynmik T I Prof. Dr.-Ing. hbi. Hon. Prof. (NUST) D. Beste 6. September 014 Aufgbe 1 (5 Punkte) Ein msseoser Bken iegt horizont zwischen zwei gtten schiefen Ebenen. Auf dem Bken iegt

Mehr

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II

ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II EREBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern SS 2014, 02.08.2014 1. Aufgbe: (TMI,TMI-II,ETMI,ETMI-II) /2 /2 C B S /2 q 0 =

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Lernumgebungen zu den binomischen Formeln

Lernumgebungen zu den binomischen Formeln Lernumgebungen zu den binomischen Formeln Die Fchmittelschule des Kntons Bsel-Lnd ist ein dreijähriger Bildungsgng der zum Fchmittelschulzeugnis führt. Dbei entspricht die 1.FMS dem 10. Schuljhr. Zu Beginn

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Leichtbau Übung 2 - Fachwerke

Leichtbau Übung 2 - Fachwerke Leichtu Üung 2 - Fchwerke C. Krl, D. Montenegro, F. Runkel, C. Schneeerger 07.10.2015 ((Vornme Nchnme)) 09.10.2015 1 Aufge 1 Verformung von Rhmen- und Fchwerken Ds unten drgestellte Rhmenwerk esteht us

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Frage 1: ( 2 Punkte) Frage 2: ( 1 Punkte) Frage 3: ( 1 Punkte) Herbst 2009 Seite 1/9

Frage 1: ( 2 Punkte) Frage 2: ( 1 Punkte) Frage 3: ( 1 Punkte) Herbst 2009 Seite 1/9 Gottfried Wihem Leibniz Universität Hnnover Kusur Technische echnik für schinenbu Seite /9 rge : ( Punkte) Geben Sie den voständigen Stz der Geichgewichtsbedingungen für ds D und 3D nichtzentre Kräftesystem

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

3.3 Biegelinie. Aufgaben

3.3 Biegelinie. Aufgaben Technische Mechnik 2 3.3-1 Prof. Dr. Wndinger ufgbe 1 3.3 iegelinie ufgben Der bgebildete Krgblken mit der konstnten iegesteifigkeit EI y wird m freien Ende durch ds Moment M belstet. Ermitteln Sie die

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

1. Aufgabe: (ca. 16 % der Gesamtpunkte)

1. Aufgabe: (ca. 16 % der Gesamtpunkte) Institut für Mechnik Prof. Dr.-Ing. hbil. P. Betsch Prof. Dr.-Ing. hbil. Th. Seelig Prüfung in Festigkeitslehre 0. März 05. Aufgbe: (c. 6 % der Gesmtpunkte) ) Wie viele unbhängige Spnnungskomponenten gibt

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Entwurf von Knoten und Anschlüssen im Stahlbau

Entwurf von Knoten und Anschlüssen im Stahlbau Entwurf von Knoten und Anschlüssen im Sthlbu Technische Universität Drmstdt Institut für Sthlbu und Werkstoffmechnik Rlf Steinmnn 1 1 Schweißverbindungen Den Nchweis für die usreichende Trgfähigkeit von

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Technische Mechanik II

Technische Mechanik II Repetitorium Technische Mechnik II Version 3., 09.0.00 Dr.-Ing. L. Pnning Institut für Dynmik und Schwingungen Gottfried Wilhelm Leibniz Universität Hnnover Dieses Repetitorium soll helfen, klssische Aufgbentypen

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Integrale

Übungen mit dem Applet Grundfunktionen und ihre Integrale Grundfunktionen und ihre Integrle 1 Übungen mit dem Applet Grundfunktionen und ihre Integrle 1 Ziele des Applets... 2 2 Begriffe und ihre Drstellung mit dem Applet... 2 b 2.1 Bestimmtes Integrl I (b) =

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Wie wirkt sich eine reiserhöhung für Gut uf die konsumierte Menge n us: Bzw.: d (,, ) h (,, V ) 2 V 0,5 0,5 Für die Unkompensierte Nchfrgefunktion gilt:

Mehr

Numerische Integration

Numerische Integration Numerische Integrtion Bei vielen Problemen des nturwissenschftlichen Rechnens treten Integrle uf, die nicht in expliziter Form drgestellt werden können, sei es, dß kein geschlossener Ausdruck für eine

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr