Satz des Pythagoras. c 2. a 2. b 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Satz des Pythagoras. c 2. a 2. b 2"

Transkript

1 Stz des Pythgors 01 c b Hypotenusenqudrt = Summe der beiden Kthetenqudrte ² = c² b² = c² b² ² + b² = c² b² = c² ² b= c² ² c² = ² + b² c= ² + b²

2 0 Der Stz des Pythgors und seine rechnerische Anwendung Beispiel: In einem rechtwinkligen Dreieck sind die beiden Ktheten mit = 5,6 cm und b = 9 cm gegeben. Mche eine mßstbgetreue Zeichnung. Berechne die Länge der Hypotenuse. Zeichnung: = 5,6 cm c Rechnung: b = 9 cm c² = ² + b² c² = 5,6² + 9² c² = 31, c² = 11,36 c = 11,36 = 10,6 1 1( : (6 : Ergebnis: Die Länge der Hypotenuse beträgt c = 10,6 cm. Prüfe n der Zeichnung durch Nchmessen.

3 Rechenschem zum hndschriftlichen Wurzelziehen = vom Komm usgehend bildet mn Zweiergruppen 1. Schätzung mn zieht die Wurzel us 60 7 (= 1. Ziffer) Probe mn mcht die Probe 7 = 49 7 = 49 Probe Rest 7 = mn bildt den Rest = Probe Rest mn holt die nächsten zwei Ziffern herunter = Schätzung mn teilt den Rest durch ds doppelte Ergebnis (14) Probe 7 = 49 dbei läßt mn die letzte Ziffer (4) zunächst unberücksichtigt Rest 118(4 : 14(. 8 ( =. Ziffer) mn mcht die Probe unter Hinzunhme der. Ziffer Probe Rest Probe 7 49 = 1184 : = Flls der Rest 0 ist, geht die Aufgbe uf. Ds Verfhren knn uch für mehr ls 4-stellige Zhlen oder für Kommzhlen verwendet werden. Es knn beliebig oft fortgesetzt werden. Immer teilt mn den Rest durch ds doppelte Ergebnis und erhält so eine neue Ziffer. Ob die Wurzel ufgeht oder nicht, zeigt sich dnn im Rechenverluf.

4 04 weitere Beispiel: 8369 = (3 : /9/ (9 : Achtung: Nicht zu hoch schätzen, niemls höher ls = ( : (9 : leichte Übungen: Achtung: Beim Teilen knn uch eine Null uftreten = = = = = = = = Ergebnisse: weitere Übungen: = 97,16 09 = 1, = , 9 = 1, = 199 0, = 0, = 406 0, = 0, = 507 3, 57 1 = 1, = ,81= 0,9

5 05 Qudrt Fläche Seite Digonle Gegeben ist die Fläche eines Qudrtes, gesucht ist die Länge der Seite A= m² =? A = m² = m² = 18 m Gegeben ist die Seite eines Qudrtes, gesucht ist die Länge der Digonle = 5 m d =? d = 5 m d² = 5² + 5² d² = 5+ 5= 50 d = 50 7,07 m = 5 m Gegeben ist die Digonle eines Qudrtes, gesucht ist die Länge der Seite d = 8 m =? ² + ² = 8² ² = 64 : ² = 3 = 3 5,66 m d = 8 m

6 06 Die Qudrtspirle usw Die meisten Wurzeln gehen nicht uf, sie hben unendlich viele Stellen hinter dem Komm. 1= 1 = 1, = 1, = 5 =, =, =, =, = 3 10 = 3,16...

7 Übungen und Husufgben A 1. In einem rechtwinkligen Dreieck sind die beiden Ktheten mit = 10 cm und b = 4 cm gegeben. Berechne die Länge der Hypotenuse.. Gegeben = 9 cm b = 40 cm Gesucht: c =? 3. Gegeben = 1,1 cm b = 6 cm Gesucht: c =? 4. Gegeben = cm b =,1 cm Gesucht: c =? 5. Gegeben = 6 cm b = 9,1 cm Gesucht: c =? 6. Ein rechteckiges Rsenstück ht die Länge 7 m und die Breite 36 m. Wie lng ist der Weg, der digonl über den Rsen führt? 7. Wie lng muss eine Leiter sein, um bis zur Spitze einer 9,9 m hohen Muer zu reichen, wenn sie unten m von der Muer bstehen soll? 8. Ein Stteldch ist 8 m hoch und 1 m breit. Wie lng sind die Dchsprren? 8 m Dchsprren 9. Zustzufgbe: 1 m x 17 m 6 m 9 m

8 Lösungen A c² = ² + b² c= ² + b² c² = c= 676 = 6 cm c² = c= 1681 = 41 cm c² = 1,1+ 36 c= 37,1 = 6,1 cm c² = 4+ 4,41 c= 8, 41 =,9 cm c² = 36+ 8,81 c= 118,81 = 10,9 cm c² = c= 05 = 45 cm c² = , 01 c= 10, 01 = 10,1 cm c² = c= 100 = 10 cm Tbelle ² 1,1 1,1 4,1 4,41,9 8, ,1 37, ,1 8,81 9,9 98, ,1 10,01 10,9 118, großes Dreieck: ² = c² b² = c² b² ² = 17 (6 + 9) = = 89 5 = 64 = 64 = 8 cm kleines Dreieck: x = = = 100 x = 100 = 10 cm

9 Übungen und Husufgben B Berechne im rechtwinkligen Dreieck jeweils die Länge der fehlenden Seite. ² = c² b² = c² b² b² = c² ² b= c² ² c² = ² + b² c= ² + b² c b 1. Gegeben = 15 cm b = 0 cm Gesucht: c =?. Gegeben = 4,5 cm b = 6 cm Gesucht: c =? 3. Gegeben = 9 cm c = 15 cm Gesucht: b =? 4. Gegeben = 48 cm c = 80 cm Gesucht: b =? 5. Gegeben b = 8 cm c = 8,9 cm Gesucht: =? 6. Eine Leiter von 8, m Länge wird so n eine Muer gestellt, dss sie unten 1,8 m bsteht. Wie hoch ist die Muer? Mche zuerst eine Skizze. 7. Ein Omnibus setzt eine Wndergruppe n einem Wldstück b, ds er uf zwei zueinnder rechtwinklig verlufenden Strßen umfhren muss. Der Bus muss zunächst 5,6 km uf der einen und dnn 3,3 km uf der nderen Strße fhren. Die Wnderer wählen den Weg, der digonl durch den Wld geht. Wie viele km ist der Weg des Busses länger ls der der Wndergruppe? Mche zunächst eine Skizze. 8. Wie weit muss mn eine 13 m lnge Leiter vor die Muer eines 1,60 m hohen Giebels stellen, wenn die Leiter bis zur Spitze des Giebels reichen soll? Mche eine Skizze. 9. Bestimme x. 6 cm 1 cm x =?

10 Lösungen B 1. c= ² + b² c = 15² + 0² = c = 65 c= 5 cm c = 4,5² + 6² = 0, c = 56,5 c= 7,5 cm b= c² ² b = 15² 9² b= 1 cm b = 80² 48² b= 64 cm = c² b² = 8,9² 8² = 3,9 cm b= c² ² b = 8, ² 1,8² b= 8 m c= ² + b² c = 5, 6² + 3,3² c = 6,5 km ( Wnderweg) Busweg = 8,9 km Unterschied = 8,9 km 6,5 km =,4 km Tbelle ² 1,8 3,4 3, 10,4 3,3 10,89 3,9 15,1 4,5 0,5 5,6 31, ,5 4,5 7,5 56, , 67,4 8,9 79, ,6 158, = 13² 1, 6² = 3, cm 9. Digonle d = = 30 cm x = 30² 18² = 4 cm

11 Übungen und Husufgben C 1. z y x x = 13 m z = 143 m y =?. Wie groß ist die Seite eines qudrtischen Flächenstückes mit dem Flächeninhlt 539m². A = 539 m² 3. Ein qudrtisches Stück Lnd ht die Größe,5 h (1 h = m²). Wie lng muss ein Zun sein, der dieses Lndstück eingrenzen soll? 4. Ein rechteckiges Rsenstück mit den Seitenlängen 50 m und 30 m wird gerne von unchtsmen Fußgängern digonl ls Abkürzung begngen. Wie viel Meter spren sie? 5. Wie lng muss eine Leiter sein, wenn sie bis zur oberen Knte einer 7m hohen Muer reichen und unten m bstehen soll? 6. Auf ein 10 m breites Hus soll ein 3,75 m hohes Dch gesetzt werden. Wie lng müssen die Dchsprren mindestens sein? Mche eine Skizze. 7. Zum Bu eines Drchens werden zwei Stäbe von e = 40 cm und f = 60 cm e Länge verwendet. Der Stb e teilt den Stb f im Verhältnis 1:. Wie lng muss ein Fden sein, der ds f Drchenkreuz umspnnt? x 8,5 m b c 3 m 4,5 m 8. Bestimme x. 9. Bestimme den Flächeninhlt des schräg liegenden Rechteckes für = 70 cm, b = 45 cm, c = 8 cm.

12 Lösungen C 1. y = z² x² y = 55 m Tbelle ². ² = 539 = 73 m 3 9 3,75 14, ² = 500 4,5 0,5 = 150 m U = 4 = 600 m 5 5 6,5 39,065 7,8 53 7,5 56,5 c= ² + b² 8,5 7,5 4. c= ,31 m Ersprnis 1,69 m 0,5 40, ,8 800 c= ² + b² c 7, 8 m 44, c= 5² + 3,75² = 6, 5 m c1 = 0² + 0² 8, 8 cm , c = 0² + 40² 44,7 cm U = c1+ c 146 cm h= 8,5² 7,5² = 4 m x= 4² + 3² = 5 m 9. x = b² + c² = 53cm A= x= 3710 cm² Weitere interessnte Aufgben: cm 40 m x =? 0,5 m 0,5 m x =? 8 cm Ergebnisse: x = 4,5 m x = 53 cm

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

1.1. Vorspiel bei den alten Griechen

1.1. Vorspiel bei den alten Griechen 1.1. Vorspiel bei den lten Griechen Die Mthemtiker der griechischen Antike wren ihrer Zeit und uch ihren Epigonen im "finsteren Mittellter" um Etliches vorus. Einige ihrer Entdeckungen werden wir im Lufe

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e.

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e. K. D Alcmo / J. Dy: Lerninhlte selbstständig errbeiten Mthemtik 0 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Alle Knten des Prisms sind lng. Unterteile den Streckenzug zunächst in die Einzelstrecken,

Mehr

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d November 2006 Quadratische Funktionen

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d November 2006 Quadratische Funktionen .) Entscheide, ohne zu zeichnen, ob die Prbeln - eng/weit, - nch oben/nch unten geöffnet, - nch oben/nch unten verschoben sind. Als Vergleich soll die Normlprbel dienen. ) y = 3x b) y =,8x -7 c) y = -,5x

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de SCHOOL-SCOUT Lernzirkel -

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS Definition: Ktete Ktete Hypotenuse Jene beiden Seiten, die den recten Winkel bilden (,b) nennt mn Kteten, die dritte

Mehr

Pythagoras & Co Einleitung

Pythagoras & Co Einleitung mth_gew_techn_pythgors.nb 1 Pythgors & Co 5.1. Einleitung Pythgors von Smos wurde um 570 v. Chr. geboren. Der nch ihm bennnte Stz wr bereits früher beknnt. Pythgors zeigte, dss es unendlich viele rechtwinklige

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

6.1. Matrizenrechnung

6.1. Matrizenrechnung 6 Mtrizenrechnung 6 Mtrizen und Vektoren Definition Eine Tbelle in der Drstellung A (m,n) n n m m mn heißt m,n-mtrix ( n ) ( ) mit den Zeilenvektoren ( m m mn ) und den Sltenvektoren m, m,, n n mn Mtrizen

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen 1 Rechenregeln Betrg einer Zhl Subtrktion Kommuttivität der Addition (Vertuschungsgesetz) Assozitivgesetz der Addition (Verbindungsgesetz) Vorzeichenregeln Vorzeichen vor Klmmern Definition der Multipliktion

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

DER PYTHAGORÄISCHE LEHRSATZ

DER PYTHAGORÄISCHE LEHRSATZ 1 DER PYTHAGORÄISCHE LEHRSATZ 1. Schneide die Qudrte uf der Seite 2 us und klebe sie zu den entsprechenden Seiten des rechtwinkeligen Dreiecks. 2. Schneide die Bezeichnungen us und klebe sie in die richtigen

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Repetitionsaufgaben Logarithmusgleichungen

Repetitionsaufgaben Logarithmusgleichungen Kntonle Fchschft Mthemtik Repetitionsufgben Logrithmusgleichungen Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Repetition Logrithmen D) Logrithmusgleichungen 4 E) Aufgben mit Musterlösungen 5 A)

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 Gnze Zhlen 1 35 Ausgngstempertur +6 C... ) Temperturbnhme um 9 C b) Temperturbnhme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 36 Ausgngstempertur 4 C... ) Temperturzunhme um 10 C b) Temperturzunhme um 21 C (

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Aufgabe 1: Die Zahl 100 soll derart in zwei Summanden zerlegt werden, dass die Summe der Quadrate der beiden Summanden möglichst klein wird.

Aufgabe 1: Die Zahl 100 soll derart in zwei Summanden zerlegt werden, dass die Summe der Quadrate der beiden Summanden möglichst klein wird. Etremwertufgen Zhlenrätsel ufge : Die Zhl 00 soll derrt in zwei Summnden zerlegt werden, dss die Summe der Qudrte der eiden Summnden möglichst klein wird. ufge : Die Zhl 60 ist so in zwei Summnden zu zerlegen,

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Größen Umfang und Flächeninhalt. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Größen Umfang und Flächeninhalt. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Mrco Bettner/Erik Dinges Vertretungsstunde Mthemtik 4 5. Klsse: Größen Umfng und Flächeninhlt Downloduszug us dem Originltitel: Umfng Rechteck 1 Größen Umfng und Flächeninhlt 1. Ds drgestellte

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Hans Walser. Geometrische Spiele. 1 Vier gleiche rechtwinklige Dreiecke. 1.1 Allgemeiner Fall

Hans Walser. Geometrische Spiele. 1 Vier gleiche rechtwinklige Dreiecke. 1.1 Allgemeiner Fall Hns Wlser Geometrische Spiele 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fll Wir strten mit einem elieigen rechtwinkligen Dreieck in der ülichen Beschriftung. A c B Strtdreieck C Nun versuchen

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Quadrate 1. Michael Schmitz

Quadrate 1. Michael Schmitz www.mthegmi.de Dezember 2009 Qudrte Michel Schmitz Zusmmenfssung Beim Flten von Ppier wird häufig qudrtisches Ppier ls Ausgngsmteril benutzt. Zu diesem Zweck gibt es eine Vielzhl qudrtischer Fltblätter

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Basics-Trainer / 10. Schuljahr - Grundlagentraining für jeden Tag!

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Basics-Trainer / 10. Schuljahr - Grundlagentraining für jeden Tag! Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Mthe-Bsics-Triner / 0. Schuljhr - Grundlgentrining für jeden Tg! Ds komplette Mteril finden Sie hier: School-Scout.de 0. Schuljhr H.-J.

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

1. Rechensteine und der Pythagoräische Lehrsatz.

1. Rechensteine und der Pythagoräische Lehrsatz. 1. Rechensteine und der Pythgoräische Lehrstz. Der Beginn der wissenschftlichen Mthemtik fällt mit dem Beginn der Philosophie zusmmen. Er knn uf die Pythgoräer zurückdtiert werden. Die Pythgoräer wren

Mehr

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11 Inhlt Seite Vorwort 5 1 3 4 5 6 7 8 9 10 Zhlenrten 6 10 Zhlenrten Grundrechenrten 7-11 Die vier Grundrechenrten Übungskiste C Übungskiste D Punktrechnung und Strichrechnungen Positive und negtive Zhlen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

DOWNLOAD. Flächeninhalt und Umfang: Rechteck und Quadrat. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen.

DOWNLOAD. Flächeninhalt und Umfang: Rechteck und Quadrat. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen. DOWNLOD ndres Mrschll Lur Petry Flächeninhlt und Umfng: und Qudrt reitslätter und Test zur sonderpädgogischen Förderung ndres Mrschll, Lur Petry Bergedorfer Unterrichtsideen Downloduszug us dem Originltitel:

Mehr

Lernumgebungen zu den binomischen Formeln

Lernumgebungen zu den binomischen Formeln Lernumgebungen zu den binomischen Formeln Die Fchmittelschule des Kntons Bsel-Lnd ist ein dreijähriger Bildungsgng der zum Fchmittelschulzeugnis führt. Dbei entspricht die 1.FMS dem 10. Schuljhr. Zu Beginn

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

Herleitung der Strasse für quadratische Räder

Herleitung der Strasse für quadratische Räder Herleitung der Strsse für qudrtische Räder P = P( P / y P ) sei der Berührungspunkt des Rdes mit der Strsse bzw mit der gesuchten Kurve P = P ( / y ) sei der Mittelpunkt der entsprechenden Qudrtseite des

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

Platonische Körper Eine Übersicht mit Bauanleitungen für den Einsatz in der Lehre Februar 2016 Julia Bienert

Platonische Körper Eine Übersicht mit Bauanleitungen für den Einsatz in der Lehre Februar 2016 Julia Bienert Eine Übersicht mit Bunleitungen für den Einstz in der Lehre Februr 016 Juli Bienert Inhltsverzeichnis 1 Bunleitungen... 1 1.1 Aufbu der Anleitungen... 1 1. Anleitungen... Weiterführende Litertur... 9 Anhng

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges DOWNLOAD Mrco Bettner/Erik Dinges Vertretungsstunden Mthemtik 32 10. Klsse: Mrco Bettner/Erik Dinges Bergedorfer Unterrichtsideen Downloduszug us dem Originltitel: Vertretungsstunden Mthemtik 9./10. Klsse

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3 2.5 Algebr Inhltsverzeichnis Fktorisieren 2. Terme fktorisieren...................................... 2.2 (-) usklmmern....................................... 2.3 Terme mit Klmmern fktorisieren..............................

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Grundwissen Jahrgangsstufe 9

Grundwissen Jahrgangsstufe 9 Grundwissen Jhrgngsstufe 9 GM 9. Qudrtwurzeln und die Menge der reellen Zhlen QUADRATWURZELN Unter der Qudrtwurzel us einer Zhl (kurz: Wurzel us, Schreibweise ) versteht mn diejenige nichtnegtive Zhl,

Mehr

Beispiel mit Hinweisen 1 1/2 Vermessungsaufgaben

Beispiel mit Hinweisen 1 1/2 Vermessungsaufgaben eispiel mit Hinweisen 1 1/2 Vermessungsufgben nläßlich einer Erbschft soll ds viereckige Grundstück CD [d = D = 78m, c = CD = 74m, Winkel C = = 45, Winkel CD = = 123, Winkel C = = 79 ] durch eine Gerde

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Welches der Rechtecke findest Du am schönsten (harmonisch, wohltuend)?

Welches der Rechtecke findest Du am schönsten (harmonisch, wohltuend)? 1 3 4 5 6 7 8 9 10 Welches der Rechtecke findest Du m schönsten (hrmonisch, wohltuend)? Umfrge von G. Th. Fechner, der 1876 einer Reihe von Personen jeglicher Herkunft und Bildung Rechtecke unterschiedlichen

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Inhaltsverzeichnis der Lösungen. der Aufgaben des Nachschlagewerkes

Inhaltsverzeichnis der Lösungen. der Aufgaben des Nachschlagewerkes Inhltsverzeichnis der Lösungen der Aufgben des Nchschlgewerkes Grphen einer Funktion / Füllgrphen - Lösungen... II Prozentrechnung Lösungen...III Stz des Pythgors - Lösungen...IV Flächen / Flächeninhlte

Mehr