4 Der Kreisring unter rotationssymmetrischer Belastung

Größe: px
Ab Seite anzeigen:

Download "4 Der Kreisring unter rotationssymmetrischer Belastung"

Transkript

1 4 Der Kreisring unter rottionssymmetrischer Belstung 4.1 Allgemeines K C HE C, HK? HE C 4 E C JH C A H >? Bild 4.1-1: Beispiele für Kreisringe ls Konstruktionselemente rottionssymmetrischer Flächentrgwerke Der Kreisring ist ein häufig verwendetes Konstruktionselement bei zusmmengesetzten, rottionssymmetrischen Flächentrgwerken. In Bild werden drei Beispiele gezeigt. 4 ) Bild 4.1-: Rottionssymmetrische Grundlstfälle m Kreisring

2 18 4 Der Kreisring unter rottionssymmetrischer Belstung Der drgestellte Kreisringträger uf Einzelstützen (c) wird hier nicht behndelt, d er nicht usschließlich rottionssymmetrisch bensprucht ist. Zunächst werden nur die beiden Lstfälle nch Bild 4.1- untersucht, wobei R S und M S uf die Ringchse bezogen sind. Die Querschnittsform ist beliebig. S stellt den Schwerpunkt, A die Fläche des Ringquerschnitts dr. 4. Lstfll Rdilkrft R S Die Rdilkrft R S const. wirkt in der Ringebene und knn deshlb nur die Schnittgrößen N und M z wecken, d Q y us Symmetriegründen verschwindet. Die Normlkrft N ergibt sich nch Bild 4.-1 us der Gleichgewichtsbedingung ΣH oder ΣV m Viertelkreis. 4 Bild 4.-1: Viertelkreis mit Rdilkrft R S und resultierenden Schnittgrößen N und M z Drus erhält mn ΣH N + π/ RS cos ϑ dϑ π/ N R S sinϑ R S, (4..1) ein Ergebnis, ds ls Gleichung (..3) bereits n der schmlen Kreisringscheibe hergeleitet wurde. Aus der Beziehung ergibt sich die Rdilverformung Δ U π ε π N EA πδr

3 4.3 Lstfll Krempelmoment M S 19 N R S Δ r, (4..) EA EA die der Gleichung (..33) entspricht. Die elstische Vergrößerung des Rdius ht die Krümmungsänderung 1 1 Δr Δr R S κ + Δr ( + Δr) EA zur Folge, die ds Biegemoment Iz M z EIz κ R S (4..3) A erzeugt. M z knn in der Regel vernchlässigt werden. Für einen Rechteckquerschnitt mit der Höhe h gilt beispielsweise 3 Iz hb b Iz Ab und Wz. A 1 bh 1 b / 6 Dmit ergeben sich die Umfngsspnnungen n der Innen- und Außenseite des Ringes zu N M σ z N b 6 N b i, m ± R S 1 ±. A Wz A 1 Ab A Für ds Verhältnis b/ 1/1 beträgt beispielsweise die Abweichung von der Spnnung im Schwerpunkt ± %. 4.3 Lstfll Krempelmoment M S Bild 4.3-1: Viertelkreis mit Krempelmoment M S und resultierender Schnittgröße M y

4 16 4 Der Kreisring unter rottionssymmetrischer Belstung Ds Krempelmoment M S const. will den Ring us seiner Ebene herus verformen. Es stellt lso die Belstung eines ebenen Systems senkrecht zu seiner Ebene dr und erzeugt ls einzige Schnittgröße ds Biegemoment M y. Die Querkrft Q z und ds Torsionsmoment M x sind nämlich us Symmetriegründen gleich Null. Am Viertelkreis (siehe Bild 4.3-1) lutet ds Momentengleichgewicht um eine horizontle Achse Drus erhält mn ΣM H π/ M y + MS sin ϑ dϑ π/ M y MS cosϑ MS. (4.3.1) Zur Berechnung der Verdrehung ϕ des Ringes um seine Achse wird wie bei der Herleitung von Gleichung (3..) vorgegngen. Hierzu muß zunächst ds Moment M y in die Richtungen der Huptquerschnittschsen η,ζ zerlegt werden (siehe Bild 4.3-). D ) D Bild 4.3-: Huptquerschnittschen und Zerlegung von M y Mn erhält Mη M y cos α MS cos α, Mζ M y sin α MS sin α. Dementsprechend erzeugt ein virtuelles Krempelmoment M S 1 die Biegemomente M η cos α, M ζ sin α. Nch dem Prinzip der virtuellen Arbeit gilt dnn M S MηM ϕds EI und für die Verdrehung ergibt sich η η MζM ds + EI ζ ζ ds,

5 4.4 Lstfll beliebige rottionssymmetrische Belstung 161 MS ϕ E cos α sin α +. (4.3.) Iη I ζ Flls die y-achse eine Huptchse des Querschnitts ist, vereinfcht sich (4.3.) wegen α und I η I y uf MS EI y ϕ. (4.3.3) D die Verdrehung durch Biegemomente verurscht wird, erfolgt sie um den Querschnittsschwerpunkt, d.h. nicht um den Schubmittelpunkt. Bei der Verdrehung um den Winkel ϕ erfährt jeder Punkt des Querschnitts die Rdilverschiebung Δr ϕ z, (4.3.4) wie us Bild zu ersehen ist. Die Rdilverschiebung ist unbhängig von der y-koordinte des Punktes. K, H K, H K K Bild 4.3-3: Rdilverschiebungen infolge der Querschnittsverdrehung ϕ 4.4 Lstfll beliebige rottionssymmetrische Belstung Ds in Bild drgestellte Lstbild läßt sich uf die beiden, zuvor behndelten Lstfälle R S und M S (siehe Bild 4.1-) reduzieren. Die äußeren Krftgrößen R, V und M sind uf den Kreis mit dem Rdius bezogen. Ds Mß c ist positiv, wenn R unterhlb der Ringchse ngreift. Die äquivlente Rdilkrft R S ergibt sich, wenn mn die Krft R mit ihrer Wirkungslänge multipliziert und dieses Produkt durch die Länge der Ringchse dividiert:

6 ? 16 4 Der Kreisring unter rottionssymmetrischer Belstung R π R S R. (4.4.1) π 8? 4 ) Bild 4.4-1: Kreisring mit llgemeiner rottionssymmetrischer Belstung Zum Moment M S trgen die Kräfte R, V und A sowie ds Moment M bei. Um die Ringchse erzeugen sie insgesmt ds tordierende Moment ΣM [ R c + V ( ) + M] π + A ( L ) π L Mit der us dem Gleichgewicht in Vertiklrichtung folgenden Beziehung A V / L ergibt sich drus [ R c + V ( ) + M] Σ M L π. Dieses Gesmtmoment ist durch die Länge der Ringchse zu dividieren, um ds äquivlente Krempelmoment [ R c + V ( ) + M] MS L (4.4.) zu erhlten. Die Auflgerkrft tritt in dieser Gleichung nicht explizit uf.. F C Bild 4.4-: Vorgespnnter Kreisring

7 4. Der Kreisring mit Rechteckquerschnitt 163 Im Lstfll Vorspnnung (siehe Bild 4.4-) wird die der Vorspnnkrft V entsprechende Umlenkkrft V R v ls Belstung ngesetzt. Die äquivlenten Lsten m Schwerpunkt S (siehe Bild 4.1-) luten dnn V R S R v (4.4.3) und Vc MS R v c, (4.4.4) unbhängig von dem Rdius des Spnnglieds. Die Schnittgrößen und Verformungen des Rings ermittelt mn mit den us (4.4.1) bis (4.4.4) berechneten Größen R S und M S nch den Abschnitten 4. und Der Kreisring mit Rechteckquerschnitt Der in Bild 4.-1 drgestellte Ring wird durch die Rdilkrft R und ds Krempelmoment M bensprucht. Deren Bezugslinie mit dem Rdius liegt um ds Mß c unterhlb der Ringchse. Die Huptchsen des Querschnitts stimmen mit dem Koordintensystem y,z überein. Gesucht seien die Rdilverschiebung eines beliebigen Punktes i und die Verdrehung des Ringes um seine Achse. Die Berechnung wird kommentrlos nch den Gleichungen (4..), (4.3.3), (4.3.4), (4.4.1) und (4.4.) durchgeführt. > D, H I E E, H E 4? A bh I y 3 bh 1 Bild 4.-1: Beispiel für die Berechnung von Ringverformungen

8 164 4 Der Kreisring unter rottionssymmetrischer Belstung 4..1 Lstfll R mit beliebigem Angriffspunkt R S R ; MS Rc MS 1Rc ϕ EI 3 y Ebh R Δ Δ + ϕ S 1Rc R 1cz + + i ri rs zi zi 1 Ebh 3 Ebh Ebh h Für die Unterknte des Ringquerschnitts wird mit z i h/: R 6c Δ r u 1 + (vgl. Tfel 14). Ebh h 4.. Lstfll M mit beliebigem Angriffspunkt R S ; MS M MS 1M ϕ EI 3 y Ebh 1M Δri ϕ zi z 3 i Ebh 4..3 Lösungen für usgewählte Angriffspunkte von R und M Für einige usgewählte Lstfälle bzw. Lstngriffspunkte wurden die Schnittgrößen des Kreisrings, die Rdilverschiebungen der Unter- und berknte sowie die Querschnittsverdrehung in Tfel 14 zusmmengestellt. 4.6 Der Kreisring mit einfch symmetrischem Querschnitt Bild zeigt mehrere einfch symmetrische Ringquerschnitte, deren Huptchsen mit dem y-z-system zusmmenfllen.

9 D D D 4.6 Der Kreisring mit einfch symmetrischem Querschnitt 16 Bild 4.6-1: Beispiele für einfch symmetrische Kreisringquerschnitte Für die Verformungsberechnung dieser Ringe werden die Querschnittswerte A und I y benötigt. Diese sind in Bild 4.6- für Teilflächen in Rechteck-, Dreieck-, Kreis- und Hlbkreisform ngegeben. Querschnitt > D! 1 A bh bh I y > D > CF 1 π π d 4 d 8 1 π 1 d 64 9π π 4 4 bh 1 bh 36 bh 48 d 64 Bild 4.6-: Querschnittswerte für Teilflächen Die Gesmtfläche A erhält mn entsprechend A (4.6.1) A i i ls Summe der Teilflächen A i. In einem zu den Koordinten prllelen Hilfssystem y, z ergibt sich die Lge des Schwerpunkts S us 1 zs Aizi. (4.6.) A i Ds Gesmtträgheitsmoment I y setzt sich nch dem Stz von STEINER ( I yi + Ai zi ) [ I yi + Ai ( zi zs ) ] I (4.6.3) y i us den I yi der Teilflächen und den Produkten us Teilfläche und Abstndsqudrt von der y-achse zusmmen. In dem folgende Beispiel sollen die lstunbhängigen Formänderungswerte ik für einen Ring ermittelt werden, der eine Pltte und eine Zylinderschle biegesteif miteinnder verbindet (siehe Bild 4.6-3). Ds System ist vierfch sttisch unbe- i

10 166 4 Der Kreisring unter rottionssymmetrischer Belstung stimmt. Sttt der sttisch Unbestimmten X i werden die äquivlenten Größen R Si und M Si ngesetzt. A H 4 E C # &!! : : : " 4!!!! $ $ %!! HA EI F JJA # # # # :! Bild 4.6-3: Einfch symmetrischer Ring ls Berechnungsbeispiel Die Querschnittswerte werden tbellrisch nch den Gleichungen (4.6.1) bis (4.6.3) ermittelt. Teilfläche i h i A i b z i Ai zi zi zs zi 1 3 I 3 yi 1 A i z i 1,,,3,3,7,1,,4,1,67,1667 -,833,37 1,1,83 1,4 Σ,,8 1, 3,1 z S,8,3667 m;, I y1 I y ,,3 3,,3, ,1 1 3 ; 3 A, m ; I y (1, + 3,1) 1 3 4,6 1 3 m 4 Dmit ergeben sich us (4..) und (4.3.3) für R S 1 und M S 1 die Formänderungen 1 1 EΔ rs 1,; Eϕ.99,. A I Unter Verwendung von (4.3.4) erhält mn für die Verschiebungen bzw. Verdrehungen der Angriffspunkte der vier X i y

11 4.6 Der Kreisring mit einfch symmetrischem Querschnitt 167 Lstfll E 1 E E 3 E 4 R M S S 1-1, 1-496,6 -.99, +1, +1.39, Die Krft X 1 1 ist lut (4.4.1) und (4.4.) gleichwertig mit +.99,,, R S1 1,94 und M S1 1,833, 794.,, Drus folgt mit den Zhlenwerten der vorstehenden Tbelle Lstfll E 11 E 1 E 31 E 41 RS1, ,7-116,7 MS1, ,4 +473, -11,4-473, Σ +16,1 +473, -7,1-473, Die Berechnung wird sinngemäß uch für die nderen drei Lstfälle X i 1 durchgeführt., X 1 RS und M S 1, 94., M S Lstfll E 1 E E 3 E 4, , +.67,7-1.34,3 -.67,7 X3 S3 + 1 R 1 und + 1,333, 333. M S 3 Lstfll E 13 E 3 E 33 E 43 RS3 1-1, +1, MS3 +,333-11,9-1.39, +34, +1.39, Σ -38,4-1.39, +447, +1.39, X4 S4 1 R und 1. M S 4 + Lstfll E 14 E 4 E 34 E 44 M S ,6 -.99, +1.39, +.99, Wegen der unterschiedlichen Wirkungsrdien gilt entsprechend (..31) ,. Bei 1 und 34 dgegen dürfen die Indizes vertuscht werden.

12 168 4 Der Kreisring unter rottionssymmetrischer Belstung 4.7 Der Kreisring mit unsymmetrischem Querschnitt Die Berechnung erfolgt, wie für den einfch symmetrischen Querschnitt gezeigt wurde. Der einzige Unterschied liegt in der Ermittlung der Verdrehung ϕ infolge M S 1 nch (4.3.) sttt (4.3.3). Die Neigung α der Huptchsen und die Huptträgheitsmomente I η, I ζ wird mn in der Regel mit Hilfe eines Rechenprogrmms bestimmen.

13

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

- 1 - A H A V M A. Bild 5.17 Einfach statisch unbestimmtes System; a) Systemskizze; b) Schnittbild F 1 F 3 B C F 2 2 F 3

- 1 - A H A V M A. Bild 5.17 Einfach statisch unbestimmtes System; a) Systemskizze; b) Schnittbild F 1 F 3 B C F 2 2 F 3 - - Lgerrektionen können nur mit Hilfe der Elstizitätstheorie bestimmt werden. Technische Mechnik II Elstosttik werden ein- und mehrfch "sttisch unbestimmt" gelgerte Trgwerke vorgestellt. ) b) M H V ild

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,

Mehr

18. Räumliche Tragsysteme

18. Räumliche Tragsysteme 8. Räumliche Trgssteme isher wurden nur Trgssteme betrchtet, die durch Lsten in einer Ebene bensprucht wurden. In der Pris treten ber häufig räumliche Strukturen uf mit Lsten in beliebiger Rumrichtung.

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromgnetische Felder und Wellen: Lösung zur Klusur 8- Aufgbe In einem unmgnetischen Medium mit Brechzhl n läuft die Welle E E exp{iωt βz)}j { k β ρ} e ρ Dbei ist J die Besselfunktion und die Beschreibung

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Kreis und Kreisteile. - Aufgaben Teil 2 -

Kreis und Kreisteile. - Aufgaben Teil 2 - - Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3.

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3. I. Reelle Zhlen L9_0 Rtinle Zhlen: ; ;,8 ;, ; 9 7 L9_0 Irrtinle Zhlen: 7 ; + ; ; 8 8 8 L9_0 L9_0 L9_0 L9_0 8 + ist bereits vllständig vereinfcht! (Achtung: + +, vgl. Tschenrechner,, und,, ls +, ), : +

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

04.12.15. 2. Rahmen und Bogen

04.12.15. 2. Rahmen und Bogen Gekrümmte Blken werden ls Bogen bezeichnet. Rhmen sind Trgwerke, die us strr verbundenen gerden Blken oder Bogen zusmmengesetzt sind. Die Schnittlsten können wie bei gerden Blken us Gleichgewichtsbetrchtungen

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Kegelschnitte. Geschichte der Kegelschnitte

Kegelschnitte. Geschichte der Kegelschnitte Kegelschnitte Kegelschnitte ds sind geometrische Figuren, die sich ergeen, wenn mn einen Kegel und eine Eene einnder schneiden lässt. Wir unterscheiden 3 Tpen von Kegelschnitten: Prel, Ellipse und Hperel.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 004/005 DES LANDES HESSEN AUFGABENGRUPPE A PFLICHTAUFGABEN P. Es gilt =. Berechne jeweils den Wert des Terms: ) 0,3 b) () c) : ( + ) P. Von 800 Jugendlichen lesen lut einer Umfrge

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

Theoretische Mechanik - Übungen 10 WS 2016/17

Theoretische Mechanik - Übungen 10 WS 2016/17 Prof. Dr. A. Ms Institut für Physik N A W I G R A Z Theoretische Mechnik - Übungen 1 WS 16/17 Aufgbe P: Poissonklmmern Präsenzufgben 15. Dezember 16 ) Betrchten Sie zwei Erhltungsgrößen A und B, d. h.

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

3.4 Ebene Fachwerke. Aufgaben

3.4 Ebene Fachwerke. Aufgaben Technische Mechnik.4- Prof. r. Wndinger.4 Ebene chwerke ufgben ufgbe : 4 5 ür ds bgebildete chwerk sind die Lgerkräfte und lle Stbkräfte in bhängigkeit von der Krft zu ermitteln. ufgbe : Ermitteln Sie

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I Institut für Angewndte und Eperimentelle Mecni Tecnisce Mecni I ZÜ. Aufgbe. F 4 O F F F In den Knten einer gleicseitigen Prmide wiren 4 Kräfte gemäß nebensteender Sie. Für die Beträge der Kräfte gilt:

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11 Reder für den Einstz in der Wiederholungsphse im Mthemtikunterricht der Jhrgngsstufe Anhng zur schriftlichen Husrbeit zur Zweiten Sttsprüfung für ds Lehrmt n öffentlichen Schulen von Andres Rschke Vorwort

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromgnetische Felder und Wellen: Lösung zur Klusur 8-1 Aufgbe 1 Ihr Lbortem ht ein Mteril entwickelt, ds in reiner Form einen Brechungsindex von n = 1.6 besitzt (bei λ = 5 nm). Durch Dotierung des

Mehr

ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.

ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden. FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter ERLÄUTERUNGEN ZUM An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.. SYSTEM UND BELASTUNG q= 20 kn / m C 2 B 4

Mehr

-25/1- DIE RÖHRENDIODE

-25/1- DIE RÖHRENDIODE -25/1- DIE RÖHRENDIODE ufgben: Messverfhren: Vorkenntnisse: Lehrinhlt: Litertur: ufnhme der Kennlinie einer Röhrendiode und einiger rbeitskennlinien. Bestimmung des Exponenten der Schottky-Lngmuirschen

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Hinweise zur Berechnung von statisch bestimmten Systemen

Hinweise zur Berechnung von statisch bestimmten Systemen Hinweise zur Berechnung von sttisch bestimmten Systemen. Knn ds System eindeutig us sttisch bestimmten Grundsystemen ufgebut werden, ohne Hilfsfesseln einzuführen? Wenn j, Teilsysteme ncheinnder entsprechend

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr