Gliederung des Kurses:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Gliederung des Kurses:"

Transkript

1 Lageparameter Sete Glederug des Kurses: I II Allgemee Grudlage Statstsche Aalyse ees ezele Merkmals Aalyse/Beschrebug ees ezele Merkmals Zel: Verdchtug (Komprmerug) eer uüberschaubare Datemege Komprmerede Beschrebug mttels:. Häufgketsvertelug (Tabelle ud Grafe) 2. Term 2. Lageparameter 3. Term 3. Streuugsmaße bzw. -parameter 4. Term 4. Kozetrato der Vertelug 5. Term Glederug Term III: II. Statstsche Aalyse ees ezele Merkmals. Edmesoale HK-Vertelug & hre Darstellug 2. Lageparameter (S.54 bs S.64) 2. Modus 2.2 Meda 2.3 Arthmetsches Mttel 2.4 Geometrsches Mttel 2.5 Harmosches Mttel

2 2 Lageparameter Lageparameter Sete 2 Lage- ud Streuugsparameter Aussehe des Datefeldes z.b. Spa wete Ekomme Ekomme [Euro] [Euro] Lage des Datefeldes z.b. Mttelwert Def. (Lageparameter): Kezahl, mt der de mttlere Lage des Datematerals beschrebe wrd Skalerug ud Lageparameter Skala/Lageparameter Modus Meda Arthm. Mttel Nomal + Ordal + + Metrsch Amerkug:. Ugruppertes Datemateral: ur ezele Merkmalswerte 2. Gruppertes Datemateral: Merkmalswerte werde gruppert

3 Lageparameter Sete 3 2. Häufgster Wert (Modus/Modalwert) Modus D = Wert, der am häufgste vorkommt. Berechug:. Dskretes Merkmal Wert mt der größte relatve HK h(x ) 2. Stetges, gruppertes Merkmal Modalklasse: Klasse mt der größte Häufgketsdchte f(x) Modus: Klassemtte der Modalklasse Awedug ur be egpflge (umodale) Verteluge Gegebespel: x h(x ) 0 0,2 0,4 2 0,4 Bespel A: Bezehugsstatus A (Umfrage 2008) MMA (A ) Abs. HK () Solo (A ) 323 Feste Bezehug (A 2 ) 382 Verheratet (A 3 ) 20 Rel. HK (h=/) 0,438 0,58 0,027 Modus D = {Feste Bezehug}

4 Lageparameter Sete 4 Bespel B: Quadratmeter x (Umfrage 2008) Klasse u Meter² x < x x o Δ x Abs. HK Rel. HK h Klassebrete Dchte- Fukto f(x ) ,0357 0, ,2525 0, ,2439 0, ,969 0, ,3 0, ,598 0,0008 Isgesamt 70,000 Modalklasse: = 2 Modus D = 2,5 (Klassemtte)

5 Lageparameter Sete Meda Z (Zetralwert) Meda Z = halbert das Datemateral, d.h. 50 % aller Ehete lege oberhalb ud 50 % aller Ehete lege uterhalb deses Wertes (Meda = '50-Prozetpukt') a) Berechug (Ugrupperte Date): Gegebe sd: belebge Merkmalswerte x, x 2,..., x ; geordet ach Größe: x() x ( 2)... x ; Als Meda Z wrd defert Z = x +, falls ugerade 2 Z = x + x , falls gerade

6 Lageparameter Sete 6 Bespel: Moatsgehälter DALLES&CO. (Skrpt) Mäer: 650, 2030, 840, 520, 670; = 5 Fraue: 70, 960, 2570, 490; = 4 Geordete, sorterte Werte: Mäer: 520, 650, 670, 840, 2030 Fraue: 490, 70, 960, 2570 M/F: 490, 520, 650, 670, 70, 840, 960, 2030, 2570 Z = x = x = M M+ F ( ugerade) ZF = x + x x x = + = + = gerade Z = x = 70 ( ( 2) ( 3) ) b) Berechug (Grupperte Date): Berechug des Medas mt Hlfe der Vertelugsfukto F(x) Da 50 % der Merkmalswerte ee kleere Merkmalswert als de Meda Z habe, glt: h(x Z) = F(Z) = 0,5

7 Lageparameter Sete 7 b) Metrsch skalertes, dskretes Merkmal Ablese des Medas Z aus der Vertelugsfukto a der Stelle F(Z) = 0,5 a) Falls F(x) auf eer Treppestufe de Wert 0,5 ammt: Meda glech Durchschtt aus uterem ud obere Wert der Treppestufe b) Falls F(x) de Wert 0,5 cht ammt: Meda glech dem kleste Merkmalswert, a dem de Vertelugsfukto größer als 0,5 st. Fx Fx Z=2,5 Z=2 a) b) Auch Formel für ugruppertes Datemateral awedbar

8 Lageparameter Sete 8 Bespel: Semesterazahl x (Wohugsumfrage 2006) (a) Orgaldate MMA Abs. HK Rel. HK (x ) (x ) h(x ) (x ) 65 0,396 3 (x 2 ) 94 0,574 5 (x 3 ) 5 0,030 Summe = 64,000 Kum. abs. HK (x x ) Kum. rel. HK F(x ) 0,396 0,970,000. Berechug mt F(x ): ke Wert F(x ) = 0,5 wo wrd 0,5 zum erste Mal überschrtte? Z=3 2. Formel ugruppert: = 64 (gerade) = + = + = = Z x x x( 82) x ( 83) [ ] (b) Kostruertes Bespel MMA Abs. HK Rel. HK (x ) (x ) h(x ) (x ) 65 0,396 3 (x 2 ) 7 0,04 5 (x 3 ) 82 0,500 Summe = 64,000 Kum. abs. HK (x x ) Kum. rel. HK F(x ) 0,396 0,500,000. Berechug mt F(x ): Es gbt Wert F(x ) = 0,5 Durchschtt aus uterem ud obere Wert der = = 4 2 Treppestufe: Z [ ] 2. Formel ugruppert: Z = 4

9 Lageparameter Sete 9 b2) Metrsch skalertes, stetges Merkmal Uterhalb welche Wertes lege 50% aller Merkmalsauspräguge? gegebe: F(x) = 0,5 gesucht: x Iterpolatosformel 2 : u F( x ) F x u allg eme : x = x + Δx h x u ( ) 0,5 F x u kokret : Z = x + Δx h x

10 Lageparameter Sete 0 x Bespel: Quadratmeter x (Wohugsumfrage 2008) Klasse Meter² Klassebrete Abs. HK Rel. HK u o x < x x Δ h Vertelugsfukto o ( ) F x Dchtefukto f(x ) ,0357 0,0357 0, ,2525 0,2882 0, ,2439 0,532 0, ,969 0,7290 0, ,3 0,8403 0, ,598,000 0,0008 Isgesamt 70,000 Meda legt Klasse 3 (zwsche 5 ud 20) u ( ) 0,5 F x u Z= x + Δx h( x ) 0,5 0, 2882 = = 9,342 0, 2439

11 Lageparameter Sete 2.3 Arthmetsches Mttel Das arthmetsche Mttel x gbt a, welche Merkmalswert jede statstsche Ehet habe würde, we de gesamte Merkmalssumme glechmäßg auf alle statstsche Ehete vertelt wäre (Ersatzwert). Durchschtt aus de Merkmalswerte aller statstsche Ehete a) Formel Ugrupperte Date x = ( x + x x ) = x = 2 Bespel: Körpergröße cm x Durchschttlche Körpergröße st: = 5 x = x = x + x x = ( ) = 852 = 70,4cm 5 5

12 Lageparameter Sete 2 b) Formel Grrupperte Date Gewchtetes (gewogees) arthmetsches Mttel (Addtossatz für Mttelwerte): k = x = x h x Gewchte: relatve Häufgkete Was st x? Dskretes Merkmal: x = x (=Merkmalsausprägug) Stetges, klassertes Merkmal: (= Klassemtte) x = x *

13 Lageparameter Sete 3 Bespel: Klausurote (Dskretes MM) EIGENTLICH: Be Ordalskala ke Arthm. Mttel bereche! Note (x ) ,4 0,2 0,3 0, 0,0 0,0 x gewogees arthmetsches Mttel: k = x = x h x = 0,4 + 20,2 + 30,3 + 40, = 2, ugruppertes arthmetsches Mttel: x 0 x = = = = 2= 2, 0 0 0

14 Lageparameter Sete 4 Bespel: Quadratmeter x (Umfrage 2008) Klasse u Meter² x < x x o Klasse mtte x * Abs. HK Rel. HK h , ,5 77 0, ,5 7 0, , , ,598 Isgesamt 70,000 k * x = x h x = x h x = = k = 5 0, ,5 0, ,5 0, , , ,598 = 40,9475

15 Lageparameter Sete 5 Formale Egeschafte des arthmetsche Mttels x () De Summe der Abwechuge der Merkmalswerte vo x st Null. ( x x) = x x = x x = 0 qed... = = = = (2) De Summe der quadrerte Abwechuge der Merkmalswerte vo x st e Mmum. = ( x x) 2 = m Bewes: = ( ) 2 d a x a = a belebg Extremaproblem:. Abletug wrd Null gesetzt Extrema (m, max) möglch d a da Also: = 2 x a Ketteregel ( x a) = 2 = 0 ( x a) = 0 x a= 0 a= x = x qed..

16 Lageparameter Sete 6 Fechersche Lageregel zum Verglech vo arthmetschem Mttel x, Zetralwert (Meda) Z ud Modus D a) symmetrsche Vertelug: x = Z= D b) asymmetrsche Vertelug: x Z D Lks- ud rechtsstele Verteluge (Abb. III.8) Abb. III.8: Fechersche Lageregel ud lksud rechtsstele Vertelug

17 Lageparameter Sete Geometrsches Mttel Das geometrsche Mttel st svoll be der Mttlug vo Wachstumsrate oder adere multplkatv verküpfte Merkmalswerte. Gegebe: postve Merkmalswerte x, x 2,..., x Geometrsches Mttel GM = x x2... x = x x > 0 = oder log GM = ( log x+ log x log x) = log x =

18 Lageparameter Sete 8 Bespel: Umsätze der Frma F.I.R.M.A. vo Mo. DM Jahr Umsatz 984 2, , , , , Zuwachsrate % +20,00 +20,83-6,89 +4,8 Wachstumsfaktor,2000,2083 0,930,48 We groß st der durchschttlche relatve Umsatzzuwachs (Zuwachsrate) pro Jahr? GM = 4, 2, , 930, 48 =, 579 Durchschttlche Zuwachsrate pro Jahr:,579 00% =,579% Jahr Umsatz, ,0 2,236 2,4900 2,7783 3,000 2,236 2,4900 2,7783 3,

19 Lageparameter Sete Harmosches Mttel Das harmosche Mttel wrd be der Mttelug vo Brüche mt kostatem Zähler agewadt (z.b.: Geschwdgket dvdert durch de Zet, Prese, Verhältszahle). Harmosches Mttel HM = + = x x x x 2 = Bespel: Durchschttsgeschwdgket E Zug fährt vo A ach B ud weder zurück. Auf dem Hweg fährt er m Schtt mt 200 km/h, auf dem Rückweg ur mt 00 km/h. We groß st de Durchschttsgeschwdgket sgesamt? Gesucht: Mttelwert aus Brüche (km/h) Kostater Zähler: Gleche Klometerzahl Berechug: 2 HM = = = 33,3 km / h + = x We Strecke 200 km lag st: Hweg Stude ud Rückweg 2 Stude: 400 km/3h=33,3 km/h

20 Bespel: Wohugsumfrage 2008 Lageparameter Sete 20 Merkmal Skala Modus Meda Arthm. Mttel Afahrtsweg ( M) Metrsch ,07 Meter² Metrsch ,72 Warmmete Metrsch ,85 Ekomme Metrsch ,28 Geburtsjahr Metrsch ,8 Famledstaz Ordal 3 (bs zu 00 km) 3 (bs zu 00 km) Zufredehet Ordal 4 (gut) 4 (gut) Berufschace Ordal 4 (gut) 4 (gut) Aktvtät Nomal (Abtur) Lüeburg Nomal (Ja) Wohug Nomal 2 (WG/Wohhem) Studegag Nomal (BWL) Leuphaa_Medum Nomal 4 (Freude/Elter) Zel Nomal (Famle) Leuphaa_Grud Nomal 4 (Studefach) Geschlecht Nomal 2 (Frau) Bezehuugsstatus Nomal 2 (Feste Bezehug)

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Endmensonale Häfgketsvertelng Sete 1 Glederng des Krses: I II Allgemene Grndlagen Statstsche Analyse enes enzelnen Merkmals Analyse/Beschrebng enes enzelnen Merkmals Zel: Verdchtng (Komprmerng) ener nüberschabaren

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1 Vorlesugsuterlage Statstk ud Wahrschelchketstheore für Iformatker (Tel: Deskrptve Statstk) (WS 6/7) vorläufge Fassug Was st Statstk? Deskrptve Statstk (beschrebed, zusammefassed) Iduktve Statstk (vo Stchprobe

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Die Kontingenztabelle. Randhäufigkeiten. Teststatistik (Chi-Quadrat Statistik) Unabhängigkeitshypothese. Wiederholung: zweidimensionales Datenmaterial

Die Kontingenztabelle. Randhäufigkeiten. Teststatistik (Chi-Quadrat Statistik) Unabhängigkeitshypothese. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Wederholug: zwedmesoales Datemateral Beobachtuge, jeder hat Werte für m Merkmaler, also jeder besteht aus Merkmalauspräguge. z.b. wr otere de Grösse ud das Umsatz verschedee Flale (m).

Mehr

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß Thema Zetrehe Statstk - Neff INHALT. Zetreheaalyse, Tred Leare Regressosaalyse mt eem Eflussfaktor X = "Zet" De tredberegte Sasoschwakuge e = s = y ŷ De mttlere Sasoschwakuge s j k k = = s De rreguläre

Mehr

II. Beschreibende Statistik

II. Beschreibende Statistik II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Physikalisch-Technische Bundesanstalt, Braunschweig

Physikalisch-Technische Bundesanstalt, Braunschweig Üerscht üer essuscherhetserechuge vo der Darstellug der Ehet des Drehmometes üer de Wetergae s h zur Aedug ud Bespel eer Ope-ource-Aedug dafür Drk Röske Physkalsch-Techsche Budesastalt, Brauscheg Darstellug

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

3.3 Das arithmetische Mittel

3.3 Das arithmetische Mittel 3 Beschrebug vo Verteluge vo umersche Merkmale 79 3.3 Das arthmetsche Mttel Defto 3.4 Arthmetsches Mttel se ee umersche Varable mt Werte x, x, x. Wr bezeche das arthmetsche Mttel als amttel ( ) oder x.

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse Hochschule Müche Fakultät Wrtschaftsgeeurwese Dateaalyse Prof. Dr. Volker Abel Verso. Ihaltsverzechs Ihaltsverzechs. Auswertug ud Modellerug vo Zähldate.... Auswertug vo prozetuale Häufgkete.... Auswertug

Mehr

Statistik. Vorlesungsmitschrift - Kurzfassung. Prof. Dr. rer. nat. B. Grabowski

Statistik. Vorlesungsmitschrift - Kurzfassung. Prof. Dr. rer. nat. B. Grabowski Sttstk Vorlesugstschrft - Kurzfssug Prof. Dr. rer. t. B. Grbowsk HTW des Srldes 5 Ltertur LITERATUR. Deses (vorlesugsbegletede) Skrpt de Tele I - Deskrptve Sttstk, II - Whrschelchketsrechug, III- Schleßede

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

IV. VERSICHERUNGSUNTERNEHMUNG

IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG Vers.-Oek.Tel-I-Ka-IV--5 Dr. Rurecht Wtzel; HS 09.0.009 IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG. Überblck ) I desem Katel wede wr us der Aalyse der Verscherugsuterehmug

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Deskriptive Statistik

Deskriptive Statistik PD Dr. Thomas Beßger Deskrptve Statstk Sommersemester 003 Glederug. Eführug.. Vorbemerkuge.. Begrff ud Aufgabe der Statstk.3. Statstsche Grudbegrffe.3.. Statstsche Ehet, Grudgesamthet ud Stchprobe.3..

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Quantitative Geochemie mit Excel

Quantitative Geochemie mit Excel Kompaktkurs Quattatve Geocheme mt Excel Vom Meßwert zur petrogeetsche Modellerug geochemscher Date. ag: DAENAUFBEEIUNG Dateegabe ud Normerug Statstsche Kegröße Auswertug ees ICP-MS Datesatzes (Stöchometrsche

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche ozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 8.9 Harry Zgel 99-4, EMal: HZgel@aol.com, Iteret:

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Test für Varaz Estchprobetest für de Varaz: Hat de Varaz ee bestmmte Wert, bzw. legt er eem bestmmte Berech? Etschedug basert auf dem Ergebs eer ezge Stchprobe. Zwestchprobetest für

Mehr

11. STATISTIK. 11.1. Begriffsbestimmung. Statistik

11. STATISTIK. 11.1. Begriffsbestimmung. Statistik . STATISTIK.. Begrffsbestmmug De Statst st we auch de Wahrschelchetsrechug e Wssesgebet der sogeate Stochast. De Stochast a ma als de Lehre vo zufällge Vorgäge bzw. Eregsse beschrebe. Als zufällge Eregsse

Mehr

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N . Charakterserug vo Polymere. moodsperse polydsperse cytochrom c Ege Bopolymere (Ezyme) habe ur ee ehetlche olekülgröße. moodsperse mometa st kee Polymersatosmethode verfügbar, de Polymere mt eer ehetlche

Mehr

8. Mehrdimensionale Funktionen

8. Mehrdimensionale Funktionen Prof. Dr. Wolfgag Koe Mathematk, SS05.05.05 8. Mehrdmesoale Fuktoe Wer Greze überschretet, versucht, ee eue Dmeso vorzustoße. [Dael Mühlema, (*959), Übersetzer ud Aphorstker] Ege Leute sollte cht dü werde,

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 0.00 Harry Zgel 99-006, EMal: HZgel@aol.com, Iteret:

Mehr

Inhaltsverzeichnis. 1 Allgemeine Messtechnik

Inhaltsverzeichnis. 1 Allgemeine Messtechnik Ihaltsverzechs I Allgemee Messtechk. Grudsätzlches. Grudbegrffe des Messes.. Iteratoales Ehetesystem (SI), Begrffe des Normes, Eche, Justere, Kalbrere.. Das Meßgerät als System, der Begrff der Übertragug.3

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN

WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN Davd Tobsk UDE.EDUcato College Uverstät Dusburg-Esse Campus Esse dokforum Verso.0 DESKRIPTIVE STATISTIK. Orgasato ud Darstellug vo Date Koderug Um alle

Mehr

Zweidimensionale Verteilungen

Zweidimensionale Verteilungen Bblografsce Iformato der Deutsce Natoalbblotek De Deutsce Natoalbblotek verzecet dese Publkato der Deutsce Natoalbblografe; detallerte bblografsce Date sd m Iteret über abrufbar. De Iformatoe

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

Das virtuelle Bildungsnetzwerk für Textilberufe

Das virtuelle Bildungsnetzwerk für Textilberufe Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: 0.0.0033 Sete / 9 Grudlage der Statstk Uter eer Statstk versteht ma ee Aufglederug

Mehr

26.07.2002 André Maurer Wirtschaftsinformatik FH 2.5 Fachhochschule Solothurn, Olten

26.07.2002 André Maurer  Wirtschaftsinformatik FH 2.5 Fachhochschule Solothurn, Olten Statstk Zusammefassug 6.07.00 Adré Maurer adre@maurer.ame www.adre.maurer.ame Wrtschaftsformatk FH.5 Fachhochschule Solothur, Olte Statstk Ihaltsverzechs adre.maurer.ame Ihaltsverzechs Tabelle ud Grafsche

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 3.08 Harry Zgel 99-009, EMal: fo@zgel.de, Iteret:

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

D. Rentenrechnungen 4 Progressive Renten 4.1 Geometrisch fortschreitende Renten. Formel: D. Rentenrechnung 3. Progressive Renten.

D. Rentenrechnungen 4 Progressive Renten 4.1 Geometrisch fortschreitende Renten. Formel: D. Rentenrechnung 3. Progressive Renten. Fazmathematk Thema: Reterechuge Dr. Alfred Brk Fazmathematk A Eführug B Fazmathematsche Grudlage C Zsrechuge D Reterechuge Systematserug vo Retevorgäge 2 Edlche Rete 3 Ewge Rete 4 Progressve Rete 5 Aufgabe

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Folien zur Vorlesung. Statistik für LM- Chemiker und Ernährungswissenschaftler. (Teil 1: Beschreibende Statistik) U. Römisch

Folien zur Vorlesung. Statistik für LM- Chemiker und Ernährungswissenschaftler. (Teil 1: Beschreibende Statistik) U. Römisch Fole zur Vorlesug Statstk für LM- Chemker ud Erährugswsseschaftler (Tel : Beschrebede Statstk) U. Römsch http://www.tu-berl.de/fak3/staff/roemsch/homepage.html Ihaltsverzechs EINLEITUNG. Was versteht ma

Mehr

Investition und Finanzierung Skript III

Investition und Finanzierung Skript III Ivestto ud Fazerug Skrpt III zuletzt geädert am: 05.05.03 Ivestto ud Fazerug Skrpt III Quelle: Vorlesug Ivestto ud Fazerug 6. Semester, FH Erfurt, Prof. Dr. Waldhelm Copyrght 2003 BSTM Sete Alle Agabe

Mehr

Innovative Information Retrieval Verfahren

Innovative Information Retrieval Verfahren Thomas Madl Iovatve Iformato Retreval Verfahre Hauptsemar Wtersemester 004/005 Überblc Formales Vortrag Ausarbetug Scheerwerb Termplaug Kurzvorstellug Theme Themevergabe Wederholug Grudlage Gewchtug ud

Mehr

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes Statstk Defnton: Entwcklung und Anwendung von Methoden zur Erhebung, Aufberetung, Analyse und Interpretaton von Daten. Telgebete der Statstk: - Beschrebende (deskrptve) Statstk - Wahrschenlchketsrechnung

Mehr

Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling

Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling Aalse ud praktsche Umsetzug uterschedlcher Methode des Radomzed Brach Samplg Dssertato zur Erlagug des Doktorgrades der Fakultät für Forstwsseschafte ud Waldökologe der GeorgAugustUverstät Göttge vorgelegt

Mehr

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen We gelgt es de Buchacher (oder FdJ IMMER zu gewe Eletug Schrebwese ud Varable Erwarteter Gew des Buchachers 4 4 De Stratege der Buchacher 5 4 Der ehrlche Buchacher 6 4 "real lfe" Buchacher6 4 La FdJ 9

Mehr

Regression und Korrelation

Regression und Korrelation Regreo ud Korrelato regreo: Zurückführug, Rückchrete correlato: Wechelbezehug Praktche Aäherug (Bepel1) wevele Ewemoleküle d dem Blutplama? (Stück, mol, g, ) we gro t de Ewekozetrato de Blutplama? (St/L,

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Einführung in die deskriptive Statistik

Einführung in die deskriptive Statistik Eführug de dekrptve Stattk Übercht: 1. Grudlage: Mee, Skalere, edeoale Häufgketverteluge 1.1. Mee 1.. Skaleveau 1.3. Mewertklae 1.4. Uvarate Häufgketverteluge 1.5. Graphche Dartellug vo uvarate Häufgketverteluge

Mehr

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 145

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 145 Mahemer Mauskrpte zu Rskotheore, Portfolo Maagemet ud Verscherugswrtschaft Nr. 45 Methode der rskobaserte Kaptalallokato m Verscherugs- ud Fazwese vo Peter Albrecht ud Sve Korycorz Mahem 03/2003 Methode

Mehr

Seminararbeit Studienrichtung Mathematik Lehramt Paris Lodron Universität Salzburg

Seminararbeit Studienrichtung Mathematik Lehramt Paris Lodron Universität Salzburg Arthetsches geoetrsches ud harosches Mttel Seararbet Studerchtug Matheatk Lehrat Pars Lodro Uverstät Salzburg Egerecht vo Peter Baraer Matr.Nr. 00058 be ao. Uv. Prof. Ferdad Österrecher Rahe der Lehrverastaltug

Mehr