4. Geldpolitische Institutionen Regelgebundene Geldpolitik. Geldpolitik bei unvollständiger Information

Größe: px
Ab Seite anzeigen:

Download "4. Geldpolitische Institutionen Regelgebundene Geldpolitik. Geldpolitik bei unvollständiger Information"

Transkript

1 4. Gedpoitishe Istitutioe Regegeudee Gedpoitik Deegatio der Gedpoitik Gedpoitik ei uvostädiger Iformatio stohastishe Kotrofeher Beoahtugsfeher

2 Regegeudee Gedpoitik Bisher: izige gedpoitishe GP Rege t Aus AVW II Führt GP Rege kostater Ifatio zum automatishe Ausgeih vo Nahfrageshoks Aer iht zum Ausgeih vo Ageotsshoks GP Rege kostater Gedmege oder GM-Wahstum Automatisher Ausgeih vo Ageotsshoks Aer iht zum Ausgeih vo Nahfrageshoks Bisher im Barro-Gordo Rahme ur Ageotsseite Mit rweiterug zur Nahfrageseite Köe Vor- ud Nahteie eider Rege utersuht

3 Regegeudee Gedpoitik Vergeih vershiedeer Rege für die Zetraak Dahiter steht fogede Idee: We die ZB sih kosequet a eie eiht verifizierare Rege hät, da erwirt sie Reputatio ud ka auf diese Weise vermeide, dass die Marktteiehmer eie üerhöhte Ifatio erwarte. Zugeih staiisiere vershiedee Rege automatish Ifatio ud/oder Beshäftigug Wir woe zuähst eifahe Rege vergeihe Feste Ifatiosrate: kostat. Feste Gedmegewahstumsrate: μ kostat Friedma-Rege; Friedma, 959 3

4 Regegeudee Gedpoitik Beide Rege sid eiht üerprüfar. Wir wisse ereits, dass die Rege eier feste Ifatio zu eier automatishe Staiisierug vo Nahfrageshoks führt, währed die Rege eier kostate Gedmege oder eies kostate Gedmegewahstums dazu führt, dass sih Nahfrageshoks auf Beshäftigug ud Ifatio auswirke. Adererseits sote die Ifatiosrate auf Ageotsshoks reagiere, um die Shwakuge der Beshäftigug zu vermider. Die Rege eier feste Ifatiosrate führt aso dazu, dass Ageotsshoks zu üermäßig starke Shwakuge der Beshäftigug führe. 4

5 Kostate Ifatio oder Gedmegewahstum? Wir werde u zeige, dass die Rege eier feste Ifatiosrate esser ist as die Rege eier feste Gedmegewahstumsrate, we i das Gewiht auf dem Zie der Preisstaiität hireihed groß ist oder ii die Variaz der Ageotsshoks reativ kei ist im Verhätis zur Variaz vo Nahfrageshoks. 5

6 Ageotsseite Wir rauhe zuähst eie Modeerweiterug: Ageotsseite: Produktiosfuktio Y Θ Beshäftigug Y BIP Θ Produktivitätsparameter, der Shwakuge uteriegt. Normiere Θ 0 < < kostater Parameter Gewimaximierug: max PY W, u.d.nb Y Areitsahfrage: Θ P Θ W W P Θ P Θ W 6

7 Reatio zwishe Größe ud ihre Wahstumsrate Bisher: iht expizit zwishe Größe ud ihre Wahstumsrate utershiede. Das müsse wir jetzt aer tu, wei wir das Mode expizit mit Wahstumsrate areitet. Zusammehag zwishe ogarithme ud Wahstumsrate Betrahte Y 0 as gegee ud ormiere es auf. Die Wahstumsrate sei y. Da ist der ogarithmus des BIP diese Jahres Y y 7

8 Ageotsseite i Wahstumsrate, y Y, w W, Θ Notatio: Areitsahfrage i ogarithmierter Form w w e ohidug: Ageotsshok:, mit 0 ud Var σ Natürihe Wahstumsrate der Beshäftigug: Phiipskurve: e Produktiosfuktio i ogarithmierter Form: y 8

9 Nahfrageseite wird durh die Quatitätstheorie dargestet, M V P Y. I Wahstumsrate zw. ogarithme: μ y : die Veräderug der Umaufgeshwidigkeit Iterpretiere wir as Nahfrageshoks ormiert so dass, 0 Var σ Aahme: ov, 0 Ageots- u. Nahfrageshoks uahägig voeiader 9

10 Üerik Die Ökoomie wird eshriee durh. Aggregierte Produktiosfuktio PF. Phiipskurve PK 3. Quatitätstheorie QT 4. Gedpoitik GP Gegee eie, wie muss die Gedmege im Durhshitt wahse? Aus QT ud PF fogt: y e μ y μ oder μ y μ 0

11 GP Rege ud Kostefuktio Wir vergeihe zwei Rege:. Kostate Ifatio KI. μ μ Friedma-Rege FR Die geseshaftihe Kostefuktio sei Uter wehe Bediguge führt die Friedma-Rege zu gerigere erwartete Koste as die Rege eier feste Ifatio?

12 Rege eier kostate Ifatiosrate KI: PK: Beshäftigug hägt vo Ageotsshok a Nahfrageshoks werde eutraisiert Weder i oh vorhade rwartete Koste: e [ ] σ

13 3 Friedma Rege FR μ μ QT: PF: FR: μμ Für PK rauhe wir die Ifatioserwartuge: PK: Oe eisetze, um Ifatio zu estimme y μ μ a e a

14 4 Friedma Rege FR Beshäftigug hägt vo Nahfrageshoks a. Ageotsshoks werde durh die Friedma-Rege eutraisiert Ifatio shwakt mit Ageotsshoks. rwartete Koste: [ ] [ ] σ σ σ

15 5 Vergeih: FR vs. KI Vergeihe die erwartete Koste Koste Friedma-Rege > Koste kost. Ifatio FR führt zu höhere erw. Koste as KI, we i das Gewiht auf dem Zie der Preisstaiität hireihed groß ist, oder ii die Variaz der Nahfrageshoks reativ groß ist im Verhätis zur Variaz der Ageotsshoks. σ σ σ σ > σ σ > σ σ > >

16 4.. Deegatio der Gedpoitik Rogoff 985 zeigt im Barro-Gordo Mode, dass die Deegatio vo Gedpoitik a eie Zetraaker mit adere Präfereze as die der Geseshaft, de Ifatiosias verriger ka. Geseshaftihe Ziefuktio mi [ ] Koservativer Zetraaker mit dem Zie mi [ ] woei. > Der koservative Zetraaker egt ei größeres Gewiht auf das Zie der Preisstaiität as die Geseshaft. 6

17 Rogoff 985: Ituitio ud Asatz Ituitiv: Warum wird der Ifatiosias keier as ei eiem Zetraaker, der die geseshaftihe Ziefuktio verfogt? Forma: Wie groß ist der Ifatiosias, de der Rogoffshe Zetraaker erzeugt? mi [ ] e Phiipskurve: ε -Ageotsshoks: ε, [ε]0, Variaz σ ε Vg. Ashitt 3.5: Diskretioäre Poitik: I jeder Periode reagiert die ZB auf de Shok mi 7

18 8 Reaktiosfuktio der ZB ud rwartuge Optimae Reaktio der Zetraak auf de Shok: Ratioae rwartuge: Der Ifatiosias ist um so keier, je größer ist. Poitishe Shussfogerug? mi mi e ε e ε 443 Ifatio Bias e e e

19 Reaktio auf Shoks, Trade-off Wie reagiert der koservative Zetraaker auf Shoks? ε < ε Der koservative ZBer reagiert weiger stark auf Ageotsshoks. Trade-off zwishe iedrigem Ifatiosias ud fexier Poitik vg. Ashitt 3.5: Gauwürdigkeit versus Fexiiität Je höher das Gewiht auf dem Zie der Preisstaiität, desto geriger der Ifatiosias, aer desto weiger staiisiert die ZB de Areitsmarkt. Ziekofikt Tatsähihe Ifatio ud Beshäftigug häge a vo Shoks ud vo. 9

20 ösug des Trade-offs Wie öse wir de Kofikt? Gegee sei eie Mege vo ZB-Kadidate, die sih durh ihre Gewihte auf dem Zie der Preisstaiität utersheide. Wähe dejeige aus, desse Poitik zu dem gerigste erwartete geseshaftihe Koste führt. mi [ ], ε, ε I der geseshaftihe ZF steht das korrekte Gewiht. Ifatio ud Beshäftigug häge a vom Gewiht des Zetraakers 0

21 ösug des Trade-offs Neeediguge: Poitik der ZB Ratioae rwartuge Phiipskurve isetze i geseshaftihe Kostefuktio ε e e ε ε mi K ε ε ε ε

22 ösug des Trade-offs Bedigug erster Ordug: Rehte Seite > 0! im Optimum muss gete ε σ 3 4 σ ε 0 K 3 3 σ ε 3 3 σ ε >

23 ösug des Trade-offs > > gerigerer Ifatiosias, aer auh gerigere Staiisierug der Beshäftigug. Der optimae Zetraaker geiht diese eide ffekte aus. Totaes Differetia der Optimaitätsedigug: ist um so größer, je größer ud je keier σ ε 3

24 Zusammehag zwishe Ifatio ad Uahägigkeit Damit der erufee Zetraaker seie Präfereze etsprehed agiere ka, muss er uahägig sei! Der Parameter wird desha oft as Syoym für die Uahägigkeit der Zetraak gerauht. mpirishe Tests Theorie impiziert Hypothese:. Hypothese: Durhshittihe Ifatiosrate ist egativ mit der Uahägigkeit der ZB korreiert.. Hypothese: Beshäftigugsshwakuge sid positiv mit der Uahägigkeit der ZB korreiert. Aesia / Summers 993 Bestätigt Hypothese, aer verwirft Hypothese. 4

25 rweiterug der Deegatio Adere Mögihkeit der Deegatio: Kadidate für die Positio des Zetraakhefs utersheide sih auh durh ihr Ifatioszie ud durh ihr Beshäftigugszie. > ZF eies Kadidate mi [ ] Wie sieht ei optimaer ZB-Chef aus? First est soutio: kei Ifatiosias ud geseshaftih optimae Staiisierug der Beshäftigug. Ka ma dieses Zie erreihe? 5

4. Geldpolitische Institutionen Regelgebundene Geldpolitik. Geldpolitik bei unvollständiger Information

4. Geldpolitische Institutionen Regelgebundene Geldpolitik. Geldpolitik bei unvollständiger Information 4. Gdpoitish Istitutio Rggud Gdpoitik Dgatio dr Gdpoitik Gdpoitik i uvostädigr Iformatio stohastish Kotrofhr Boahtugsfhr Modusihrhit Rggud Gdpoitik Bishr: izig gdpoitish GP Rg Aus AVW II Di Rg ir kostatr

Mehr

Zentraler Grenzwertsatz für i.i.d. Zufallsvariablen mit endlicher Varianz

Zentraler Grenzwertsatz für i.i.d. Zufallsvariablen mit endlicher Varianz Zetraer Grezwertsatz für i.i.d. Zufasvariabe mit edicher Variaz Es sei X ) N eie Foge vo i.i.d. Zufasvariabe auf Ω, A, ) mit edicher, positiver Variaz: 0 < Var X )

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

a) Vollständiges Messergebnis der Fläche A des Rechtecks mit den abweichungsbehafteten Kantenlängen a und b:

a) Vollständiges Messergebnis der Fläche A des Rechtecks mit den abweichungsbehafteten Kantenlängen a und b: X Lösug zu ugabe 5: bweihugsortplazug a) Vollstädiges Messergebis der Flähe des Rehteks mit de abweihugsbehatete Kateläge a ud b: Viele Messgröße werde idirekt gemesse, d.h. um eie Messwert zu ermittel

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

UNTERSUCHUNG VON STEHENDEN WELLEN AUF EINER GESPANNTEN SCHRAUBEN- FEDER UND EINEM GESPANNTEN SEIL.

UNTERSUCHUNG VON STEHENDEN WELLEN AUF EINER GESPANNTEN SCHRAUBEN- FEDER UND EINEM GESPANNTEN SEIL. Mehaik Shwiguge ud Welle Mehaishe Welle UNTERSUCHUNG VON STEHENDEN WELLEN AUF EINER GESPANNTEN SCHRAUBEN- FEDER UND EINEM GESPANNTEN SEIL. Erzeugug vo stehede Logitudialwelle auf eier Shraubefeder ud stehede

Mehr

Mikroökonomik. 5.2 Vollkommener Wettbewerb

Mikroökonomik. 5.2 Vollkommener Wettbewerb Mikroökoomik 5.2 Vollkommeer Wettbewerb Zur Vereifachug: Zwei Güter, ei Gut ist Outut, das adere ist u.a. Iut für de Produktiosrozess es steht für die Ressource der Gesellschaft, die sie für Produktio

Mehr

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1 Kapitel 2 Terme Josef Leydold Auffrischugskurs Mathematik WS 207/8 2 Terme / 74 Terme Ei mathematischer Ausdruck wie B R q q (q ) oder (x + )(x ) x 2 heißt eie Gleichug. Die Ausdrücke auf beide Seite des

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1 Kofidezitervalle Praktische Übug Stochastik SS 017 Lektio 10 1 Kofidezitervalle Geerelle Aahme: Parametrisches Modell (P ϑ ) ϑ Θ Beobachtuge X 1,..., X u.i.v. ach P ϑ mit ubekatem ϑ Θ Grudidee: Schätzer

Mehr

Innere und äußere (transversale) Orientierungen

Innere und äußere (transversale) Orientierungen Iere ud äußere (trasversale) Orietieruge Ei geometrishes Objekt P (ei Weg, eie Flähe) liege i eie höherdimesioalem geometrishe Objekt K K ka ei affier Raum sei Eie iere Orietieruge legt liks, rehts obe,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

KAPITEL 2: NÄHERUNGSVERFAHREN

KAPITEL 2: NÄHERUNGSVERFAHREN 2.1 Variatiosprizip 2.2 Störugstheorie KAPITL 2: NÄRUNGSVRFARN Amerkug: i alle folgede Theme wird die Gültigkeit der BO-Näherug vorausgesetzt Literatur: z.b: Atkis, Friedma, Moleular Quatum Mehais, Oxford

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Kapitel 2: Stochastische Prozesse. Copyright M. Gross, ETH Zürich 2006, 2007

Kapitel 2: Stochastische Prozesse. Copyright M. Gross, ETH Zürich 2006, 2007 Kaitel 2: Coyright M. Gross, ETH Zürich 2006, 2007 Bedigte Verteiluge Ebeso a die Verbudwahrscheilicheit vo Zufallsvariable über bedigte Wahrscheilicheite ausgedrüct werde i i,, i,, Wiederum ommt eie Produtregel

Mehr

Versuchsauswertung D05

Versuchsauswertung D05 D05 Steiis Protokoll 03.05.004. Theorie: Physikalishes Afägerpraktikum Gruppe 3 Versuhsauswertug D05 Habe zwei Medie utershiedlihe optishe Dihte, so wird ei Lihtstrahl beim Übergag zum optish dihtere Medium

Mehr

( ) a ) ( ) n ( ) ( ) ( ) a. n n

( ) a ) ( ) n ( ) ( ) ( ) a. n n Pre-Study 7 orste Shreier 77 Wiederholu Diese Fre sollte Sie ohe Skript etworte köe: W ist der Sius zw. der Cosius immer NULL? Ws versteht m uter eier Phsevershieu? Ws wird im Eiheitskreis sekreht /wereht

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Repetitionsaufgaben Potenzfunktionen

Repetitionsaufgaben Potenzfunktionen Repetitiosaufgabe Potezfuktioe Ihaltsverzeichis A) Vorbemerkuge/Defiitio 1 B) Lerziele 1 C) Etdeckuge (Graphe) 2 D) Zusammefassug 7 E) Bedeutug der Parameter 7 F) Aufgabe mit Musterlösuge 9 A) Vorbemerkuge

Mehr

Nachfrageschocks können durch Geldpolitik so ausgeglichen werden, dass Inflation und Beschäftigung konstant bleiben.

Nachfrageschocks können durch Geldpolitik so ausgeglichen werden, dass Inflation und Beschäftigung konstant bleiben. 3.4 Gdpoiik i kojukur Shwakug Nahfragshoks kö durh Gdpoiik so ausggih wrd, dass Ifaio ud Bshäfigug kosa i. Agosshoks führ zu im Trad-off zwish Saiisirug dr Bshäfigug ud Saiisirug dr Ifaio. Agosshoks vrshi

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Kapitel 4. Budgetmenge. Budgetmenge. Nutzenmaximierung und Konsumentenauswahl. Nutzenmaximierung und Konsumentenauswahl

Kapitel 4. Budgetmenge. Budgetmenge. Nutzenmaximierung und Konsumentenauswahl. Nutzenmaximierung und Konsumentenauswahl Nutzemaimierug ud Kosumeteauswahl Kaitel 4 Nutzemaimierug ud Kosumeteauswahl Defiitio der Budgetmege ud der Budgetbeschräkug. Die ege der mögliche Alterative Darstellug der otimale Kosumeteauswahl: Grahisch.

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

2 Asymptotische Schranken

2 Asymptotische Schranken Asymptotische Schrake Sowohl die Laufzeit T () als auch der Speicherbedarf S() werde meist durch asymptotische Schrake agegebe. Die Kostate c i, welche i der Eiführug deiert wurde, sid direkt vo der Implemetatio

Mehr

Materialauswahl. Daher erweist sich Gold (aber auch Silber) als das vielseitigste Metall.

Materialauswahl. Daher erweist sich Gold (aber auch Silber) als das vielseitigste Metall. aterialauswahl Theoretish öte fast alle etalle mehr oder weiger gut zwes Aregug eies Oberflähe- Plasmos a eiem Übergag vo ieletrium zu etall geutzt werde. Jedoh wird eie eihe vo diese aterialie durh pratishe

Mehr

Asymptotische Notationen

Asymptotische Notationen Foliesatz 2 Michael Brikmeier Techische Uiversität Ilmeau Istitut für Theoretische Iformatik Sommersemester 29 TU Ilmeau Seite 1 / 42 Asymptotische Notatioe TU Ilmeau Seite 2 / 42 Zielsetzug Igoriere vo

Mehr

Eigenschaften von Texten

Eigenschaften von Texten Worthäufigkeite Eigeschafte vo Texte Eiige Wörter sid sehr gebräuchlich. 2 der häufigste Wörter (z.b. the, of ) köe ca. 0 % der Wortvorkomme ausmache. Die meiste Wörter sid sehr selte. Die Hälfte der Wörter

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Seminar stochastische Geometrie. Kriging. Andreas Stach Institut für Stochastik, Universität Ulm

Seminar stochastische Geometrie. Kriging. Andreas Stach Institut für Stochastik, Universität Ulm Semiar stochastische Geometrie Krigig Adreas Stach Istitut für Stochastik, Uiversität Ulm 9 Gliederug Motivatio Modellaahme ud Variogramm Krigig Verfahre Motivatio Sei D R p,p hier p Seie,, z,, z die Messstelle

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Zweidimensionale Häufigkeitsverteilungen

Zweidimensionale Häufigkeitsverteilungen Voraussetzuge Utersucugseieite U,...,U Merka X, Y Zweidiesioae Häufigkeitsverteiuge Uriste (x, y, (x 2, y 2,..., (x, y geordete Uriste wird scwierig: Ordug ac de x- oder ac de y-werte? 2 diskret vs. stetig

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

, h(1) =, h(2) = c. a) Säulendiagramm siehe Tafel- oder Folienskizze b) Ermittlung von c: Die Summe der relativen Häufigkeiten muss 1 sein: c = 4 9

, h(1) =, h(2) = c. a) Säulendiagramm siehe Tafel- oder Folienskizze b) Ermittlung von c: Die Summe der relativen Häufigkeiten muss 1 sein: c = 4 9 Techische Uiversität Müche SS 2006 Zetrum Mathematik Blatt 3 Prof. Dr. J. Hartl Dr. Haes Petermeier Dr. Corelia Eder Dipl.-Ig. Marti Nagel Höhere Mathematik 2 (Weihestepha). Jeder der Bewoher eies Stadtviertels

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

sich alle extensiven Größen des Bereiches in gleichem Maß. Beispiele sind Volumen, Masse, Energie und Entropie.

sich alle extensiven Größen des Bereiches in gleichem Maß. Beispiele sind Volumen, Masse, Energie und Entropie. 62 hermodyamik sich alle extesive Größe des Bereiches i gleichem Maß. Beisiele sid olume, Masse, Eergie ud Etroie. Zustadsgröße Eie Zustadsgröße oder Zustadsfuktio Y ist eie hysikalische Größe, die ur

Mehr

Diplomvorprüfung Stochastik

Diplomvorprüfung Stochastik Uiversität Karlsruhe TH Istitut für Stochastik Prof. Dr. N. Bäuerle Name: Vorame: Matr.-Nr.: Diplomvorprüfug Stochastik 10. Oktober 2006 Diese Klausur hat bestade, wer midestes 16 Pukte erreicht. Als Hilfsmittel

Mehr

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten.

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten. Aufgabe 36 (S. 346: Schätzverfahre für Mittelwert ud Stadardabweichug a Puktschätzuge für µ aufgrud der Werte der kleie Stichprobe aus Aufgabe 3 Bei eier Puktschätzug wird für de zu schätzede Parameter

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

Lösungen zu Mathematik für Informatiker I Übungen Sommersemster 2007

Lösungen zu Mathematik für Informatiker I Übungen Sommersemster 2007 Lösuge zu Mathematik für Iformatiker I Übuge Sommersemster 2007 Aexader (Axe) Straschi Apri 2007 Diese Lösuge zu der Übug Mathematik für Iformatiker I, Sommersemester 2007, etsteht gerade im aufe meies

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis, Woche 2 Reelle Zahle A 2. Ordug Defiitio 2. Ma et eie Ordug für K, we. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a, b, c K

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

7.7. Abstände und Winkel

7.7. Abstände und Winkel uu uu uu uu uu uu uu uu 77 Astäde ud Wikel 77 Wikel Geade - Geade Schittwikel zweie Geade: Am Schittpukt zweie Geade g ud g lasse sich die eide Wikel (g, g ) ud (g, g ) messe Als Schittwikel ezeichet ma

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Grundsätzlich sollen Varianz bzw. Standardabweichung Maße dafür sein, wie stark eine Verteilung um ihren Erwartungswert streut.

Grundsätzlich sollen Varianz bzw. Standardabweichung Maße dafür sein, wie stark eine Verteilung um ihren Erwartungswert streut. Eie Iterpretatiosfrage habe ich zu eiem Beispiel das i der der letzte Vorlesug behadelt wurde: Auf Folie.7 zur Variaz. Dort wird ei Beispiel eier stetige Zufallsvariable geat (Warte a eier S-Bah-Haltestelle).

Mehr

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln.

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln. FORMELSAMMLUNG A. Ableitugsformel ud Itegralformel Futio ƒ( Ableitug ƒ'( Stammfutio F( IR, ( IN) + + l ( ) + ( + ) + ( + ) + + + + + + + + r r, (r R \ {}) r r r + si os os os si si ta + (ta l os ot [ +

Mehr

Physik im Bauwesen Grundwissen und Bauphysik

Physik im Bauwesen Grundwissen und Bauphysik Rhea Krawietz, Wilfried Heimke Physik im Bauwese Grudwisse ud Bauphysik ISBN-10: 3-446-4076-4 ISBN-13: 978-3-446-4076-8 Leseprobe Weitere Iformatioe oder Bestelluge uter http://www.haser.de/978-3-446-4076-8

Mehr

Thema: Integralrechnung (Grundlagen und Flächenberechnungen)

Thema: Integralrechnung (Grundlagen und Flächenberechnungen) Q GK Mathematik-Vh Vorereitug zur. Kursareit am..7 Thema: Itegralrechug Grudlage ud Flächeerechuge Checkliste Was ich alles köe soll Ich kee de Begri des krummliige Trapezes ud weiß, dass sei Flächeihalt

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 8 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (.5 Pukte) Wir defiiere die Ereigisse D = die ähmaschie bekommt eie kleie Defekt} ud U

Mehr

Statistik II für die BA Studiengänge an der WSF. Für Wen?

Statistik II für die BA Studiengänge an der WSF. Für Wen? tatistik II für die BA tudiegäge a der WF Für We? tudiegag tudetezahl Leistugsahweis VWL+PÄO (VWL? Klausur tat. II ozialwisseshafte? Klausur (tat. I+ tat. II oziologe? Höreshei * * Um de Hörshei zu bekomme,

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

Kapitel 10: Optimalcodierung IV

Kapitel 10: Optimalcodierung IV Kpitel 10: odierug IV Ziele des Kpitels Lempel-Ziv Codig Cover, pp. 319ff 2 Lempel-Ziv Codig Lempel-Ziv Codig Wurde 1977 zum erste Ml vorgestellt Beötigt keie Quellesttistik Wesetlihes Chrkteristikum ist

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Versuchsprotokoll zum Versuch Nr. 5 Spezifische Wärme vom 18.11.1996

Versuchsprotokoll zum Versuch Nr. 5 Spezifische Wärme vom 18.11.1996 Gruppe: A vom 8..996 Laut der Versuhsaleitug sollte zuerst der Wasserwert bestimmt werde. Eimal durh Leermessug (jeweils zwei Messuge) ud eimal mit dem Mishugsverfahre (ebefalls 2 Messuge). Ashließed sollte

Mehr

Übung 11. Stochastische Signale Prof. Dr.-Ing. Georg Schmitz

Übung 11. Stochastische Signale Prof. Dr.-Ing. Georg Schmitz Übug Aufgabe : Ukorrelierte, statistisch uabhägige Prozesse Es sid zwei stochastische Prozesse gegebe mit X = cos(z ), Y = cos(z φ). Hierbei sei Z auf [ π, π] gleichverteiltes weißes Rausche mit E{Z }

Mehr

8. Regressionsanalyse

8. Regressionsanalyse 8. Regressiosaalyse Beschreibug der Abhägigkeit zweier Merkmale Gegebe eie Stichprobe (X ; Y ) : : : (X ; Y ) zur Grudgesamtheit (X; Y ), = corr(x; Y ) Korrelatioskoe ziet, R empirischer Korrelatioskoe

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h.

h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h. Kotigeztabelle / Kreuztabelle für 2 diskrete /omialskalierte Variable ethält: 1. absolute gemeisame Häufigkeite h 11 h 12 h 21 für Kombiatioe vo zwei Merkmale / Variable a b steht also für mit jeweils

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG 9 - LÖSUNGEN. Ziehug vo Kugel aus eier Ure a. Die Zahl der Permutatio der Kugel, die aus Klasse utereiader gleicher

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

3.2 Wilcoxon Rangsummentest

3.2 Wilcoxon Rangsummentest 3. Wilcoxo Ragsummetest Wir gehe davo aus, dass zwei Teilstichprobe x 1, x,..., x 1 ud y1, y,..., y vorliege, wobei die erste Teilstichprobe aus Realisieruge vo uabhägig ud idetisch stetig verteilte Zufallsvariable

Mehr

Quantenmechanik I. Musterlösung 12.

Quantenmechanik I. Musterlösung 12. Quatemechaik I. Musterlösug 1. Herbst 011 Prof. Reato Reer Übug 1. Ster-Gerlach (19). Ei Strahl aus ugeladee Teilche mit Spi s = 1 läuft etlag der x-achse ud durchquert ei i z-richtug stark ihomogees Magetfeld.

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis 1, Woche 2 Reelle Zahle A1 2.1 Ordug Defiitio 2.1 Ma et eie Ordug für K, we 1. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a,

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte . Wer Rechtschreibfehler fidet, darf sie behalte. Rechefehler werde zurückgeomme. Absolute Häufigkeit: h Wie viele Elemete weise diese bestimmte Wert (= diese bestimmte Ausprägug) auf? > Azahl h der Elemete

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

10. Grundlagen der linearen Regressionsanalyse 10.1 Formulierung linearer Regressionsmodelle

10. Grundlagen der linearen Regressionsanalyse 10.1 Formulierung linearer Regressionsmodelle 10. Grudlage der lieare Regressiosaalyse 10.1 Formulierug liearer Regressiosmodelle Eifaches lieares Regressiosmodell: Das eifache lieare Regressiosmodell ist die simpelste Form eies ökoometrische Modells

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrheilihkeittheorie, Shätz- ud Tetverfahre ÜBUNG 0 - LÖSUNGEN. Kofidezitervall für de Mittelwert eier ormalverteilte Grudgeamtheit bei gegebeer Variaz a. Gegebe id

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript Wahrscheilichkeitsrechug & Statistik - Ergäzug zum Skript Prof. Schweizer 9. Oktober 008 Mitschrift: Adreas Steiger Warug: Wir sid sicher dass diese Notize eie Mege Fehler ethalte. Betrete der Baustelle

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst?

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst? Quaterecher Witersemester 5/6 Theoretische Iformatik Uiversität Haover Dr. Matthias Homeister Dipl.-Math. Heig Schoor Probeklausur Hiweis: Diese Probeklausur ist kürzer als die tatsächliche Klausur.. a

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Beurteilende Statistik - Testen von Hypothesen Alternativtest

Beurteilende Statistik - Testen von Hypothesen Alternativtest Moika Kobel 26.03.2005 Hypothesetest_i.mcd Beurteilede Statistik - Teste vo Hypothese Alterativtest Bsp.: Eie Fabrik liefert Schachtel mit Schraube hoher Qualität ( 10% der Schraube sid fehlerhaft ) ud

Mehr