Erhaltung der Masse. B = mb, für b = 1. sys. Die Masse des Systems bleibt bei Bewegung durch das Strömungsfeld konstant.

Größe: px
Ab Seite anzeigen:

Download "Erhaltung der Masse. B = mb, für b = 1. sys. Die Masse des Systems bleibt bei Bewegung durch das Strömungsfeld konstant."

Transkript

1 Ehaltng de Masse Die Masse des Sstems bleibt bei Beegng dch das Stömngsfeld konstant B mb, fü b dm ss dv tt KV KF n da 0 integale Fom diffeentielle Fom übe Gaßschen Sat ode am Element

2 Zeitliche lokale Massenändeng :

3 Massenflss übe die Obefläche des Elements (in -Richtng) : ( ) ( ) ( ) ( )

4 Nettomassenflss in -Richtng ) ( ) ( ) ( In - nd -Richtng ehält man ) (, ) (

5 diffeentielle Fom de Kontinitätsgleichng b. mit

6 lok. konek. d t t Mit folgt : b. 0 di d d

7 Sondefälle : stat. Stömng Inkompessibles Flid konstant 0

8 Ehaltng des Implses F : Af die Flidmasse ikende esltieende Kaft I Ss dm : Impls Anendng af ein diffeentielles Massesstem: m ss konstant F F F d( m) d m ma : Obeflächen- nd Volmenkäfte

9 Volmenkaft : Geichtskaft maßgeblich in katesischen Koodinaten: F F F b b b mg mg mg

10 Obeflächenkaft: Element Umgebng F n A F s F F F F, Fn A beliebige Obefläche

11 Nomalspannng: n lim A 0 F n A Schbspannng: lim A 0 lim A 0 F F A F A

12 die übliche Zeichenkonektion gilt C C D B D B A A

13 Bedetng de Indies : S ij : i Richtng de Nomalen de Ebene j Richtng de Spannng Spannngen af 3 othogonalen, dch einen Pnkt gehende Ebenen definieen den Spannngsstand eindetig Obeflächenkäfte (nicht ollständig):

14 Smmation liefet die Komponenten de esltieenden Obeflächenkaft: Käfte in - / - / -Richtng: F S k F j F i F F S S S S F F S S

15 Einseten in mit ma F F s F b F m t a egibt k j i

16 Diffeentielle Fom de Implsehaltng X Y g t g t Z g t

17 Kinematik des Flidelements Afgabe : Spannngen dch Geschindigkeitskomponenten asdücken Beegng eines Elements Ändeng seine Lage nd seine Fom Bestimmng de Vefomng mittels de elatien Beegng ischen Pnkten I nd II I II d d (t konst.) O d : : Otsekto Geschindigkeitsändeng

18 d in Komponentenscheibeise d d d d d d d d d d d d Um den Zsammenhang mit Tanslation, Rotation, Dehnng nd Scheng ekennen, id mgeschieben d & ε d & ε d & ε d & ε d & ε d & ε d & ε d & ε d d ω d ω d & ε d ω d ω d ω d ω d d d

19 ε& i d ij ε ε ε ε ε ε ε ε ε & & & & & & & & & & De Vegleich beide Gleichngsssteme egibt folgende Definitionen fü nd b. ij ε& ij ω ω ω ω

20 Bedetng on & ε, ε&, ω? i ij ij Unefomtes Element beegt sich in de Stömng Tanslation:

21 Rotation: dγ ω s dϕ tan( dϕ) dϕ dϕ

22 dϕ & ϕ ω ω Zeitliche Winkeländeng as dem aithmetischen Mittel Dehng m -Achse In 3D ehält man : ω ω Deh- ode Wibelekto ω ij -Teme ω ω ω ω ω i ω j ω k : Rotation des nefomten Elements

23 Relatie Volmenändeng (Volmendilatation) V d V ) ( V V d V ) ( di V d V ) ( Kontinitätsgleichng fü inkomp. Flide Rechteck Scheng Paallelepiped β α γ d d d V

24 Vefomng des Elements Dehnng dβ Scheng dα

25 Dehnngsgeschindigkeit entspicht de eitlichen Dehnngsändeng po Kantenlänge entspicht den Haptdiagonalen de Mati ij d d α d β ε ε ε & & &,, d β d d d β α γ ; : gesamte Winkeländeng po Zeit

26 Schegeschindigkeit übe aithmetische Mittelng γ& ij γ γ γ & & & Vegleiche mit : Mati d ij Mati ij d : enthält Dehnng nd Scheng Tenso de Defomation Teme ij ij γ ε & & ˆ

27 Spannngstenso ij in de Implsehaltng Zsammenhang ischen ij nd d & ij dch Netonschen Reibngsansat : Tangentiale Spannng ~ Schegeschindigkeit nd mittels Isotopie des Elements & ε & ε, & ε di, nd iskositätsbedingte Nomalspannngen Ansat: p ηε& λ di p ηε& λ di p ηε& λdi η & γ η & γ η & γ

28 Die Gößen η nd λ sind Popotionalitätsfaktoen Die Nomalspannngen eden i. a. mfomliet p η& ε p η& ε p η& ε di ˆ η di di ˆ η di di ˆ η di η : dnamische Viskosität ˆ η λ η 3 : Volmeniskosität Stokes sche Hpothese : ˆ η λ η 3 inkompessible Stömngen : 0 mittlee Nomalspannng : 3 di ( ) p ˆ η di 0

29 Naie- Stokes Gleichngen Einseten de Nomal- nd Tangentialspannng di p g d di p g d η η η η η η 3 3 di p g d η η η 3

30 Naie- Stokes Gleichngen fü ein ink. Flid inkompessible Stömng, η konst 0 di Veeinfachng de. Ableitngen η η η p g d p g d p g d η η η

31 Enegiegleichngen. Haptsat de Themodnamik : dq de dw Q : Wäme; E : Enegie; W : Abeit Volmenelement : V m V Wämeleitng nach Foie : A dq T T q λ n λ : Wämeleitfähigkeit Betachtng fü die Fläche (-Richtng) afgenommene Wäme: abgegebene Wäme: T λ T λ T λ T λ

32 Nettoämestom in -, - nd -Richtng dq V T λ T λ T λ

33 eitliche Ändeng de Gesamtenegie: de de d V ( ) e : massenbeogene innee Enegie Abeit po Zeit anhand on : dw V ( )

34 analoge Vogehenseise fü den gesamten Spannngstenso : dw V ( ) ( ) ( ) Mittels Implsehaltng (.B. -Impls) : d de dw Umfomng de nd -Theme : de de d d d V

35 K K K V dw de V dw de V

36 Einfühng de Spannngen egibt die Enegiegleichng mitφ fü ηˆ 0 Φ η λ λ λ T T T p di de Φ mechanische Enegie themische Enegie Φ Dissipatio nsfnktion 0 3 >

37 Enegiegleichngen fü ideale Gase kaloische Zstandsgleichngen: ) ( ), ( T f p e h T f e dt c dt T h dh dt c dt T e de p p pd dp dt p d dh de Kontinitätsgleichng: di d pd dp dt c dh de p Φ η λ λ λ T T T dp dt c p

38 Fom de Enegiegleichng in CFD-Unteschngen ( ) [ ] ( ) [ ] ( ) [ ] [ ] [ ] [ ] q q q p E p E p E t E b. mit laten die ämlichen. Ableitngen de linken Seite h H E p e p H ( ) ( ) ( ) H H H

39 Fomen de Ehaltngsgleichngen Vektoscheibeise nte Beücksichtigng des Nabla-Opeatos Masse: Impls: ode ( ) 0 t d 0 Spannngstenso p η& ε p p 3 di ˆ ηdi

40 ode: ode: mit Fomen de Naie-Stokes Gleichngen: d g p ( ) g p t ( ) ( ) g p t inkompessibles Flid mit η konstant: stationä d g p η ( ) g p η

41 Enegie : Gesamtenegie pls Kontinitätsgleichng e E ) ( ) ( ) ( p q g E t E ) ( ) ( p q g e d E p H : Gesamtenthalpie ) ( ) ( p t p dh e d q t p g dh

42 mit : innee Enegie p q de e h : innee Enthalpie b. bei idealem Gas: Φ η dp q dh dp q dt c p

Festkörper, Flüssigkeiten, Gase

Festkörper, Flüssigkeiten, Gase Festköpe, Flüssigkeiten, Gase Unteschied Festköpe Flid sche efomba leichte efomba goße intemolek. Käfte Flüssigkeit Gas Fom nahe neändet nte Kafteinikng. goße Beegngsfeiheit d. Mol. seh goße Beegngsfeiheit

Mehr

Potentialströmungen. ρ = konst., reibungsfrei, 2D. dω dt

Potentialströmungen. ρ = konst., reibungsfrei, 2D. dω dt Potentialstömngen Potentialstömngen ρ konst., eibngsfei, D dω dt idealisiete Stömng ν ealistische Stömng Reibngseffekte n in dünnen Wandschichten inteessant. Afteilng : - Aßenbeeich Stömng wid eibngsfei

Mehr

Zur Erinnerung. dw dt dw dt. A u. Stichworte aus der 16. Vorlesung: Mittlere freie Weglänge. Streuung: Diffusion: Wärmeleitung: Wärmeübergangszahl

Zur Erinnerung. dw dt dw dt. A u. Stichworte aus der 16. Vorlesung: Mittlere freie Weglänge. Streuung: Diffusion: Wärmeleitung: Wärmeübergangszahl Z Einneng Stichwote as de 6. Volesng: Steng: Diffsion: Wämeleitng: Mittlee feie Weglänge j D gad n dw dt dw dt d dx n B Wämeübegangsahl Wämeleitfähigkeit [] m Kontinitätsgleichng: div A A t I = const.

Mehr

Vorlesung Finite-Elemente Prof. Rieg. Elastizitätstheorie I. wieso?? Definition!

Vorlesung Finite-Elemente Prof. Rieg. Elastizitätstheorie I. wieso?? Definition! Vorlesng Finite-lemente Prof. Rieg lastiitätstheorie I wieso?? Definition! lastiitätstheorie II lim A B A B A B A B A Dehnng am Pnkt A ) ( ) ( ) ( ) ( A A ( B ) ( A ) lastiitätstheorie III A B A B ( )

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre Einführng in die Meteorologie (met211) - Teil VI: Dnamik der Atmosphäre Clemens Simmer VI Dnamik der Atmosphäre Dnamische Meteorologie ist die Lehre on der Natr nd den Ursachen der Bewegng in der Atmosphäre.

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Standardbeispiele der Quantenmechanik

Standardbeispiele der Quantenmechanik Standadbeispiele de Quantenmechanik Visualisieung von Zuständen im Potenzialkasten hamonischen Oszillato Standadbeispiele de Quantenmechanik Folie 1 Gundlagen de Quantenmechanik De Zustand eines physikalischen

Mehr

Ruhende Flüssigkeiten (Hydrostatik)

Ruhende Flüssigkeiten (Hydrostatik) Ruhende lüssigkeiten (Hydostatik) lüssigkeitsshihten sind fei gegeneinande veshiebba. Keine Rükstellkäfte bei Sheung, Tosion; Reibungskäfte möglih. Nu Volumenändeung liefet Rükstellkaft. Unte Duk p efolgt

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1

Einführung in die Physik I. Mechanik deformierbarer Körper 1 Einfühung in die Physik I Mechanik defomiebae Köe O. von de Lühe und U. Landgaf Defomationen Defomationen, die das Volumen änden Dehnung Stauchung Defomationen, die das Volumen nicht änden Scheung Dillung

Mehr

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0 Fomelsammlung - Glagen de Elektotechnik II Elektische Ladung Coulumbsches Geset F12 = 1 q1 q 2 4π 12 2 ê 12 = 1 q 1 q 2 4π 2 1 2 2 1 2 1 Elektisches Feld d E ( ) = 1 4π dq 2 ê Elektostatische Kaft F =

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

Zur Erinnerung. Volumenintegrale in unterschiedlichen Koordinatensystemen. Stichworte aus der 10. Vorlesung:

Zur Erinnerung. Volumenintegrale in unterschiedlichen Koordinatensystemen. Stichworte aus der 10. Vorlesung: Zu Einneung Stichote aus de 10. Volesung: Volumenintegale in unteschiedlichen Koodinatensstemen Beegung eines staen Köpes: Tanslation und Rotation Tägheitsmoment Steinesche Sat Momentane Dehachse Zusammenhang

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Formelsammlung Felder und Wellen WS11/12

Formelsammlung Felder und Wellen WS11/12 . Otsvektoen Fosalung Fde und Wlen WS/ Katesische Koodinaten Zlindekoodinaten Kugkoodinaten = cos = sincos = sin = sinsin = = cos + = = sin actan = = = = cos + + = + = + actan = actan = actan = =. Koponenten

Mehr

Zusammenfassung der Vorlesung PPh (Einführung in die Physik für Pharmazeuten und Biologen) ohne Garantie auf Vollständigkeit

Zusammenfassung der Vorlesung PPh (Einführung in die Physik für Pharmazeuten und Biologen) ohne Garantie auf Vollständigkeit Zusammenfassung de Volesung PPh (Einfühung in die Physik fü Phamazeuten und Biologen) ohne Gaantie auf Vollständigkeit Inhalt: -Mechanik -Hydodynamik -Themodynamik -Elektizitätslehe -Optik Mechanik allgemein

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum:

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum: b) Dehimpuls De Bewegungszustand eines otieenden Köpes wid duch seinen Dehimpuls L beschieben. Analog zum Dehmoment nimmt de Dehimpuls mit dem Impuls p und dem Bahnadius zu. Fü Massenpunkt auf Keisbahn:

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

Lösungen zum Übungsblatt 5 zur Vorlesung Physikalische Chemie WS 2009/2010 Prof. Dr. Bartsch

Lösungen zum Übungsblatt 5 zur Vorlesung Physikalische Chemie WS 2009/2010 Prof. Dr. Bartsch 1 Lösungen zum Übungsblatt 5 zu Volesung hysikalische Chemie WS 29/21 o. D. Batsch 5.1 L (5 unkte Geben Sie die Deinition de Enthalpie an und zeigen Sie, dass die bei konstantem Duck zwischen System und

Mehr

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung.

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung. Vektoaddition Vektozelegung Vektoaddition Vektozelegung N F Α Α F mg F s 25 26 Vektoaddition Vektozelegung Kaftwikung bei Dehungen Dehmoment Eine im Schwepunkt angeifende Kaft bewikt nu eine Beschleunigung

Mehr

Inhalt. 1 Modellierung. 2 Zustandsrückführung. 3 Polvorgabe 4 LQR. 5 Zustandsrückführung: Berücksichtigung des Führungsverhaltens

Inhalt. 1 Modellierung. 2 Zustandsrückführung. 3 Polvorgabe 4 LQR. 5 Zustandsrückführung: Berücksichtigung des Führungsverhaltens hma h1 Q1 h2 T ank Q2 12 12 30 h3 Zstandsückfühng in lineaen Mehgößenegelkeisen Zstandsegleentwf fü ein Deitanksstem Paktikm Mehgößenegelssteme, WS 2009/2010 Stephanie Geist 1 Modellieng 2 Zstandsückfühng

Mehr

Experimentalphysik I TU Dortmund WS2011/12 Shaukat TU - Dortmund. de Kapitel 9

Experimentalphysik I TU Dortmund WS2011/12 Shaukat TU - Dortmund. de Kapitel 9 eimentalhsik I TU otmnd WS/ Shakat Khan @ TU - otmnd. de Kaitel 9 9 Stömende lide 9. le- nd Naie-Stokes-Gleichn Käfte af Massenelement m = - ckadient - Schwekaft - eibn - elektomanetische Käfte bewiken

Mehr

Lagebeziehungen. Titel Beschreibung Allgemeine Vorgehensweise Beispiel. Lage zwischen Geraden. g und h gleichsetzen. LGS lösen.

Lagebeziehungen. Titel Beschreibung Allgemeine Vorgehensweise Beispiel. Lage zwischen Geraden. g und h gleichsetzen. LGS lösen. Lagebeziehngen Titel Bescheibng Allgemeine Vogehensweise Beispiel Lage zwischen Geaden Zwei Geaden g nd h im Ram können......sich schneiden. Sie besitzen einen einzigen gemeinsamen Pnkt...zeinande paallel

Mehr

Analysis II für M, LaG/M, Ph

Analysis II für M, LaG/M, Ph Fachbereich Mathematik Prof Dr M Hieber Robert Haller-Dintelmann Horst Heck TECHNISCHE UNIVERSITÄT DARMSTADT ASS 008 195008 Analysis II für M, LaG/M, Ph 7 Übng mit Lösngshinweisen G 1 Grppenübngen Af der

Mehr

Wasserstoff-Atom Lösung der radialen SGL

Wasserstoff-Atom Lösung der radialen SGL Wassestoff-Atom Lösung de adialen SGL Die adiale SGL des H-Atoms lautet: d R d + dr d + ηr + α R ( + 1) R = mit μee η= μ Ze α= e 4 πε Lösungsansatz: 1) Auffinden de Lösung fü (Asymptotische Lösung: R ())

Mehr

T T T T. Wärmeleitung. Zwei Reservoirs mit unterschiedlicher Temperatur werden in Kontakt gebracht. Die Gesamtentropien ändert sich wie: T 1 T 2

T T T T. Wärmeleitung. Zwei Reservoirs mit unterschiedlicher Temperatur werden in Kontakt gebracht. Die Gesamtentropien ändert sich wie: T 1 T 2 Wämeleitung Zwei Resevois mit unteschieliche empeatu ween in Kontakt gebacht. Die Gesamtentopien änet sich wie: S S + 1 S 1 Die Äneung e Entopie S 1 ist Q S 1 integieen liefet: C m 1 ΔS1 C C ln 1 m 1 m

Mehr

Experimentalphysik II

Experimentalphysik II Expeimentalphysik II (Kompendium) Heausgegeben von Jeffey Kelling Felix Lemke Stefan Majewsky Stand: 23 Oktobe 2008 1 Inhaltsvezeichnis Elektizität und Magnetismus 3 Elektisches Feld 3 Magnetisches Feld

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

Einführung in die Meteorologie (met210) - Teil IV: Dynamik der Atmosphäre

Einführung in die Meteorologie (met210) - Teil IV: Dynamik der Atmosphäre Einführng in die Meteorologie (met20) - Teil IV: Dnamik der Atmosphäre Clemens Simmer IV Dnamik der Atmosphäre Dnamische Meteorologie ist die Lehre on der Natr nd den Ursachen der Bewegng in der Atmosphäre.

Mehr

3 Das kanonische und das großkanonische Ensemble

3 Das kanonische und das großkanonische Ensemble 3 Das kanonische und das goßkanonische Ensemble 3. Definition kanonisches Ensemble Wie in de Themodynamik entspechen die Bedingungen des abgeschlossenen Systems, nämlich vogegebene E, V und N, nicht de

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

Wichtige Begriffe der Vorlesung:

Wichtige Begriffe der Vorlesung: Wichtige Begiffe de Volesung: Abeit, Enegie Stae Köpe: Dehmoment, Dehimpuls Impulsehaltung Enegieehaltung Dehimpulsehaltung Symmetien Mechanische Eigenschaften feste Köpe Enegiesatz de Mechanik Wenn nu

Mehr

8 Strömende Flüssigkeiten und Gase

8 Strömende Flüssigkeiten und Gase 8 Stömende Flüssigkeiten und Gase Gleiche Physik fü beide Phasen abe ρ fl >> ρ g, κ fl

Mehr

Ebene und räumliche Koordinatentransformationen

Ebene und räumliche Koordinatentransformationen Inhalte Mathematische Gundlagen Koodinatensysteme Ebene und äumliche Koodinatentansfomationen Zentalpespektive HS BO Lab. fü Photogammetie: Ebene und äumliche Koodinatensysteme 1 Veschiebung (Tanslation)

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

= 0. Wert von C hängt von den Anfangsbedingungen. (abb33.cw2)

= 0. Wert von C hängt von den Anfangsbedingungen. (abb33.cw2) 5. Genzzlen Schwingungen sind uns aus de Mechani beannt. Die Gleichung fü den haonischen Oszillato & = lässt sich in zwei lineae Diffeentialgleichungen. Odnung übefühen. Jacobi-Mati: = & = 0 A = 0 = &

Mehr

Physik 1+2 Sommer 2007 Prof. G.Dissertori Klausur. Aufgabe 1: Gekoppelt Oszillatoren (10 Punkte)

Physik 1+2 Sommer 2007 Prof. G.Dissertori Klausur. Aufgabe 1: Gekoppelt Oszillatoren (10 Punkte) Physik + Somme 007 Po. G.Dissetoi Klausu Lösungen Augabe : Gekoppelt Oszillatoen 0 Punkte a Die Bewegungsgleichungen de beiden Massen egeben sich aus de Gleichung ü einen hamonischen Oszillato und einem

Mehr

Klausur. Strömungsmechanik

Klausur. Strömungsmechanik Klasr Strömngsmechanik 4. Jli 006 Name, Vorname: Matrikelnmmer: Fachrichtng: Unterschrift: Bewertng: Afgabe 1: Afgabe : Afgabe 3: Afgabe 4: Gesamtpnktzahl: Formelsammlng: Naier-Stokes-Gleichngen: = = =

Mehr

Impulssatz und Impulsmomentensatz. Bestimmung der Kräfte der Strömung auf die Umgebung

Impulssatz und Impulsmomentensatz. Bestimmung der Kräfte der Strömung auf die Umgebung Imulatz und Imulmomentenatz nwendung: Betimmung de Käfte de Stömung auf die Umgebung Imulatz Imul : bzw. Imul de Sytem :. Newtonche Geetz I m di dv I d dt y dv dv y y zum Zeitunkt t ei KSKV y anhand de

Mehr

Turbulente Rohrströmung

Turbulente Rohrströmung Trblente ohrströmng Strömng laminar transitionell trblent zeitliches Verhalten im Pnt P trblent transitionell laminar laminar : transitionell : & p onst p, v 0 [ t t ] V tr Vlam ; p f ( t), t l, i, r,

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

[( r. = dv. Für D = 0 muss folglich die Klammer verschwinden. Die Differentialgleichung WS 2008/ PDDr.S.Mertens

[( r. = dv. Für D = 0 muss folglich die Klammer verschwinden. Die Differentialgleichung WS 2008/ PDDr.S.Mertens PDD.S.Metens Theoetische Physik I Mechanik J. Untehinninghofen, M. Hummel Blatt 7 WS 28/29 2.2.28. Runge-enz-Vekto.EinMassenpunktdeMassemmitdemDehimplus bezüglichdes (4Pkt. Kaftzentums bewege sich in einem

Mehr

Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye 27.

Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye   27. Formelsammlung Experimentalphysik II Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester 2003 Pascal Del Haye www.delhaye.de 27. Juli 2003 Inhaltsverzeichnis Thermodynamik 3. Ideale Gasgleichung........................

Mehr

Physikspezifische mathematische Methoden: Anwendungen der Differentialrechnung

Physikspezifische mathematische Methoden: Anwendungen der Differentialrechnung Phsikspeifische mathematische Methoden: Anwendngen de Diffeentialechnng 23. Mai 2013 Inhalt 1 Kvendiskssion 2 1.1 Nllstellen............................... 2 1.2 Extemwete.............................

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Formelsammlung Felder und Wellen WS15/16

Formelsammlung Felder und Wellen WS15/16 . Otsvektoen = cos = sincos = sin = sinsin = = cos + = = sin actan = = = = cos + + = + = actan actan Fosalung Fde und Wlen WS5/6 Katesische Koodinaten Zlindekoodinaten Kugkoodinaten + = actan = = =. Koponenten

Mehr

Seminarvortrag Hamiltonsches Chaos. Daniel Lahrmann ( ), 2. Dezember 2015

Seminarvortrag Hamiltonsches Chaos. Daniel Lahrmann ( ),   2. Dezember 2015 Seminarvortrag Hamiltonsches Chaos 404 204, E-Mail: d_lahr01@wwu.de 2. Dezember 2015 1 Inhaltsverzeichnis 1 Hamiltonsche Systeme 3 1.1 Allgemeines.................................................. 3 1.2

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut fü Expeimentelle Kenphysik, KIT Übungen zu Klassischen Physik II (Elektodynamik) SS 216 Pof. D. T. Mülle D. F. Hatmann Blatt 3 Beabeitung: 11.5.216 1. 3D Integation (a) Einfache Ladungsveteilung

Mehr

7. Kinematik in der Mechatronik

7. Kinematik in der Mechatronik 7. Kinematik in de Mechatonik Ein tpisches mechatonisches Sstem nimmt Signale auf, veabeitet sie und gibt Signale aus, die es in Käfte und Bewegungen umsett. Mechanische Stuktu Leistungsteil phsikalische

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

4.2 Biegetheorie der Rotationsschalen

4.2 Biegetheorie der Rotationsschalen Flächentagweke - WS 05/06 4. Biegetheoie de Rotationsschalen 4.. Voaussetzungen und Annahmen 4.. Spannungen und Schnittgößen in Schalen 4..3 Gleichgewichtsbedingungen 4..4 Kinematik de Schalen 4..5 Wekstoffgesetz

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh.

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh. Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Potential: eldstäke: Nullpunkt fei wählba (abh. von Masse m) bezogen auf Pobemasse (unabh. von Masse

Mehr

Quantenmechanik II Musterlösung 8.

Quantenmechanik II Musterlösung 8. Quantenmechanik II Mustelösung 8. FS 7 Pof. Thomas Gehmann Übung. Vowätssteuung in Dipol-äheung Betachte die Amplitude fω) fü Vowätssteuung in Dipol-äheung: fω) = p ɛα k) A m E E A + ω) iγ / + p ɛα k)

Mehr

(Der Festkörper als Riesenmolekül)

(Der Festkörper als Riesenmolekül) AFP-Semina, CR Bandstuktuen I: LCAO-Ansat (De Festköpe als Riesenmolekül) AFP-Semina, CR Bandstuktuen I: LCAO-Ansat. 0-dimensionale Fall: Atome und Moleküle =.. Atomobitale =.2. Molekülobitale = 2. -dimensionale

Mehr

Der Drehimpuls von Licht

Der Drehimpuls von Licht De Dehils vo Licht Qelle: htt://www.otiqe-igeie.og/e/coses/opi_ag_m_c3/co/cote_4.htl htt://load.wikiedia.og/wikiedia/coos/7/77/cicla.polaiatio.ciclal.polaied.light_with.cooets_right.haded.svg 3..3 Fachbeeich

Mehr

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I)

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I) Lösungen zu II Klausu in Theoie D Quantenmechanik I) Aufgabe 1 Teil a) 15 P) Die Komponenten des Opeatos A genügen den gleichen Vetauschungselationen, wie die Komponenten des Dehimpulsopeatos J mit = 1)

Mehr

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M. Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)

Mehr

Geometrische Methoden zur Analyse dynamischer Systeme

Geometrische Methoden zur Analyse dynamischer Systeme Geometrische Methoden zur Analyse dynamischer Systeme Markus Schöberl markus.schoeberl@jku.at Institut für Regelungstechnik und Prozessautomatisierung Johannes Kepler Universität Linz KV Ausgewählte Kapitel

Mehr

Gradientwindgleichung. Strömungsverhältnisse bei gekrümmten Isobarenverlauf

Gradientwindgleichung. Strömungsverhältnisse bei gekrümmten Isobarenverlauf Nächste Abschnitt => Gadientwindgleichung Stömungsvehältnisse bei gekümmten Isobaenvelauf Das geostophische Gleichgewicht zwischen Duckgadientkaft und Coioliskaft gilt nu fü Luftstömung entlang geadlinige

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 09. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

1./2. Klausur der Diplomvorprüfung

1./2. Klausur der Diplomvorprüfung ./. Klausu de Diplomvopüfung fü ae, autip, vef, wewi Aufgabe ( Punkte) (a) Fü das zugehöige chaakteistische Polynom ehält man λ + 5λ + = (λ + )(λ + ) mit den Nullstellen λ = / und λ =. Damit egibt sich

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r =

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r = Volesung 9 Die elastische Steuung, optisches Theoem, Steumatix Steuexpeimente sind ein wichtiges Instument, das uns elaubt die Eigenschaften de Mateie bei kleinsten Skalen zu studieen. Ein typisches Setup

Mehr

Experimentalphysik E1

Experimentalphysik E1 Expeimentalphysik E1 Hyoynamik viskose Flüssigkeiten, hyoynamische Wiestan, Wibel, eynolszahl Alle Infomationen zu Volesung unte : http://www.physik.lmu.e/lehe/volesungen/inex.html 30. Jan. 016 8 Stömene

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Graphische Datenverarbeitung

Graphische Datenverarbeitung Egänungen u Gaphiche Datenveabeitung Euleinkel und Quatenionen Pof. D.-Ing. Detlef Köke Goethe-Univeität, Fankfut Gaphiche Datenveabeitung Übeicht. Da Poble: Rotationen u beliebige Achen. Die Eule Tanfoation

Mehr

6 Der Fixpunktsatz von Banach

6 Der Fixpunktsatz von Banach 6 Der Fixpunktsatz von Banach Es sei (V, ) ein vollständiger NLR Satz 24 (Fixpunktsatz von Banach) Ist A V abg und nicht leer, und g : A A eine Abbildung mit g(x) g(y) q x y (x, y V ) für ein 0 q < 1 Dann

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale Vorlesng: Analsis II für Ingeniere Wintersemester 9/ Michael Karow Themen: lächen nd lächenintegrale Parametrisierte lächen I Sei 2 eine kompakte Menge mit stückweise glattem and (d.h. der and ist as glatten

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter 25.06.2008 Inhaltsangabe Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma Die p-form Sei P ein Punkt in E n. Der n-dimensionale lineare Raum L = L p wird dann gebildet von n a i

Mehr