Formelsammlung für das berufliche Gymnasium Niedersachsen Mathematik

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung für das berufliche Gymnasium Niedersachsen Mathematik"

Transkript

1 Bohner Ott Deusch Formelsmmlung ür ds eruliche Gymnsium Niederschsen Mthemtik Merkur M Verlg Rinteln

2 irtschtswissenschtliche Bücherei ür Schule und Pris Begründet von Hndelsschul-Direktor Dipl.-Hdl. Friedrich Hutkp Die Versser: Kurt Bohner Lehrutrg Mthemtik m Berulichen Schulzentrum ngen (BS) Studium der Mthemtik und Physik n der Universität Konstnz Rolnd Ott Studium der Mthemtik n der Universität Tüingen Ronld Deusch Lehrutrg Mthemtik m BSZ Bietigheim-Bissingen Studium der Mthemtik n der Universität Tüingen Ds erk und seine Teile sind urheerrechtlich geschützt. Jede Nutzung in nderen ls den gesetzlich zugelssenen Fällen edr der vorherigen schritlichen Einwilligung des Verlges. Hinweis zu 5 UrhG: eder ds erk noch seine Teile düren ohne eine solche Einwilligung eingescnnt und in ein Netzwerk eingestellt werden. Dies gilt uch ür Intrnets von Schulen und sonstigen Bildungseinrichtungen. Umschlg: Kreis oen: Syd Productions - * * * * * * * * * *. Aulge 8 8 y MERKUR VERLAG RINTELN Gesmtherstellung: MERKUR VERLAG RINTELN Hutkp GmH & Co. KG, 75 Rinteln E-Mil: ino@merkur-verlg.de Internet: ISBN

3 Formelsmmlung zur Mthemtik Gnzrtionle Funktion höheren Grdes Gnzrtionle Funktionen (Polynomunktionen). Grdes (kuische Funktion): mit () = + + c + d;. Grdes: mit () = + + c + d + e; n-ten Grdes: mit () = n n + n n + n n ; n ; R. Grdes: ht höchstens drei Nullstellen Verlu vom III. in den I. Qudrnten vom II. in den IV. Qudrnten 5 () > 5 () <. Grdes: ht höchstens vier Nullstellen Verlu vom II. in den I. Qudrnten > () vom III. in den IV. Qudrnten () < Symmetrie zum Ursprung O: Symmetrie zur Ordintenchse: Bedingung: ( ) = () Bedingung: ( ) = () Grph einer gnzrtionlen Funktion. Grdes mit () = + c. Grdes mit () = + c + e nur ungerde Hochzhlen nur gerde Hochzhlen () ()

4 Formelsmmlung zur Mthemtik Polynomgleichung Polynomgleichung: n n + n n + n n = Gleichungstyp linere Gleichung qudrtische Gleichung ( ) Lösungsverhren + = ; ulösen nch + c = ulösen nch. urzel ziehen + p + q = pq-formel = p ± p ( ) q + = usklmmern Stz vom Nullprodukt + + c = ; c-formel = ± c Gleichung. Grdes ( ) + d = Aulösen nch. urzel ziehen + + c = + = Höchste gemeinsme Potenz von usklmmern Stz vom Nullprodukt Gleichung. Grdes ( ) + d = Aulösen nch. urzel ziehen + + c + d = + + c = + = Höchste gemeinsme Potenz von usklmmern Stz vom Nullprodukt + c + e = Sustitution = u u + c u + e = Aulösen nch u Rücksustitution ergit Polynomzerlegungsstz Ist Pn () ein Polynom vom Grd n und eine Lösung der Gleichung P ( ) =, dnn git es n ein Polynom P n vom Grd (n ), so dss gilt: P n () = ( ) P n (). ( ) heißt Linerktor.

5 Formelsmmlung zur Mthemtik Dierenzilrechnung Änderungsrte Durchschnittliche (mittlere) Änderungsrte Δy von u [; ]: Δ = () () (Dierenzenquotient; Steigung der Seknte; Steigung der Strecke PQ) Durchschnittliche (mittlere) Änderungsrte u [ ; + h]: Δy Δ = ( + h) ( ) h Momentne Änderungsrte: Grenzwert des Dierenzenquotienten Dierentilquotient ( ) = lim Δy Δ Δ = lim ( + h) ( ) h h oder ( ) = lim () ( ) y = P( ()) y P( ( )) Q( ()) Tngente = h Seknte y = () () Seknte y + h Aleitungsregel Funktion Aleitungsunktion Fktorregel () = k g() () = k g () Summenregel () = g() ± h() () = g () ± h () Potenzregel () = n () = n n Kettenregel () = g(u()) () = g (u()) u () Produktregel () = u() v() () = u () v() + u() v () Quotientenregel () = u() v() u() v () v() () = u () v () Spezielle () = e () = e Aleitungen () = e () = e () = e k + c () = k e k + c () = e () = e () = () = () = =,5 () =,5,5 = () = sin(k) () = k cos(k) () = cos(k) () = k sin(k) () = ln() () =

6 Formelsmmlung zur Mthemtik 5 Stetigkeit und Dierenzierrkeit Eine Funktion ist stetig u einem Deinitionsereich D, wenn mn ds Schuild ohne Asetzen durchzeichnen knn. Eine Funktion ist n einer Stelle D stetig, wenn lim () = ( ) ist stetig in ist nicht stetig in ist nicht stetig in () () 8 () Eine Funktion ist dierenzierr u einem Deinitionereich, wenn mn n ds Schuild von n jeder Stelle des Deinitionsereichs eine Tngente nlegen knn. Ds Schuild einer dierenzierren Funktion ht keinen Knick. Eine Funktion ist n einer Stelle dierenzierr, wenn ( ) = lim () ( ) eistiert. heißt dnn in = dierenzierr. ist dierenzierr in () 8 Näherungsverhren ist nicht dierenzierr in () Näherungsweise Lösung von Gleichungen mit dem Newtonverhren: Gleichung in Nullorm ringen: = Austellen der Funktion h: h() = Rekursionsormel: n + = n h( ) n h ( n ) ; n =,,,,... ; h ( ) n Anwendung der Rekursionsormel is die verlngte Genuigkeit erreicht ist. Hinweis: h muss u [; ] stetig und dierenzierr sein. Der Strtwert sollte nhe ei der vermuteten Nullstelle von h liegen.

7 Formelsmmlung zur Mthemtik Tngente und Normle Tngente n den Grphen von im Punkt P(u (u)): Tngentensteigung: (u) Tngentengleichung: y = (u) + oder y = (u) ( u) + (u) Normlengleichung: y = ( u) + (u) (u) () Tngente Normle P 5 Kurvenuntersuchung Monotonie Gilt ür lle I = (; ) (), so ist monoton wchsend, (), so ist monoton llend u I. () H T wchsend llend wchsend Etrempunkte Hochpunkt H( ( )) ( ) = ( ) < oder VZ von () von + nch in Tiepunkt T( ( )) ( ) = ( ) > oder VZ von () von nch + in Reltive und solute Etrem () Mögliche Miml-(Miniml-)stellen von mit Deinitionereich D() = [ ; ]: solutes Mimum Rndstellen, von D Stellen mit () = reltives Minimum reltives Mimum D solutes Minimum Rndwert

8 Formelsmmlung zur Mthemtik 7 Krümmung Der Grph von ist linksgekrümmt u I = (; ), wenn () > ür lle I. Der Grph von ist rechtsgekrümmt u I = (; ), wenn () < ür lle I. endepunkte endepunkt ( ( )) ( ) = ( ) oder VZ von () in Links-Rechts-endepunkt: ( ) = ( ) < () p N () p N Linkskrümmung Rechtskrümmung Linkskrümmung Rechtskrümmung Zuwchs m stärksten in Rückgng m geringsten in Rechts-Links-endepunkt: ( ) = ( ) > K() K () Rechtskrümmung Linkskrümmung Rechtskrümmung Linkskrümmung Zuwchs m geringsten in Rückgng m stärksten in endetngente: Tngente n den Grphen von im () endetngente endepunkt Sttelpunkt: endepunkt mit wgrechter Tngente

9 8 Formelsmmlung zur Mthemtik Integrlrechnung Stmmunktion: Eine Funktion F heißt Stmmunktion von u dem Intervll I, wenn u I gilt: F () = (). Unestimmtes Integrl: () d = F() + C; C R Menge ller Stmmunktionen von Grundintegrle: d = + C d = + C n d = n + n + + C (n ) ( )d = C e d = e + C e + d = e + + C; sin() d = cos() + C; cos() d = sin() + C d = ln + C Bestimmtes Integrl: Integrtionsregeln: Fktorregel: ()d = [ F()] = F() F() F ist eine Stmmunktion von (k ()) d = k ()d; k R Summenregel: c () d ± g() d = (() ± g()) d Änderung der Grenzen: () d = () d + () d Prtielle Integrtion () d = () d c u() v () d = u() v() u () v() d (Produktintegrtion) u () v() d = u() v() u() v () d Spezielle Aleitungen/Stmmunktionen mit C R () = k k () = k F() = k + k + + C; k () = e k () = k e k F() = k e k + C; k

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1)

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1) Mthemtik für die Physik II, Sommersemester 28 Lösungen zu Serie 5 2) Berechnen Sie die uneigentlichen Riemn-Integrle ln d und d +. Für jedes < < gilt ln t dt = t ln t t = ln und nch I. 2.Lemm 4 und I..Stz

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

Bohner Ott Rosner Deusch. Arbeitsheft Mathematik für berufliche Gymnasien Jahrgangsstufen 1 und 2 Analysis und Stochastik. Merkur Verlag Rinteln

Bohner Ott Rosner Deusch. Arbeitsheft Mathematik für berufliche Gymnasien Jahrgangsstufen 1 und 2 Analysis und Stochastik. Merkur Verlag Rinteln Bohner Ott Rosner Deusch Arbeitsheft Mathematik für berufliche Gmnasien Jahrgangsstufen und Analsis und Stochastik Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Prais Begründet

Mehr

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1. Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :

Mehr

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt:

Mathematik LK 12 M1, 1. Kursarbeit Integration Lösung f (x)dx=lim S n. a I. Dann heißt. a, x I. Dann gilt: Mthemtik LK M,. Kursrbeit Integrtion Lösung..3 Aufgbe :. Erkläre mit Hilfe der Definition des Integrls den Unterschied zwischen dem Integrl einer Funktion und dem Flächeninhlt der Fläche zwischen dem Grphen

Mehr

2012 A I Angabe. 1.0 f sei eine ganzrationale Funktion mit der Ableitungsfunktion

2012 A I Angabe. 1.0 f sei eine ganzrationale Funktion mit der Ableitungsfunktion 0 A I Angbe.0 sei eine gnzrtionle Funktion mit der Ableitungsunktion und ID ID IR.. Geben Sie die Nullstellen der Funktion n, skizzieren Sie den Grphen von und ermitteln Sie die mimlen Monotonieintervlle

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

für beliebige Mengen A, B, C

für beliebige Mengen A, B, C 1.1 Mengenlehre A A A B B A A B B C A C für elieige Mengen A, B, C (Reflexivität) (Symmetrie) (Trnsitivität) (1) (2) (3) A B = B A A B = B A (Kommuttivgesetze) (4) (A B) C = A (B C) (A B) C = A (B C) (Assozitivgesetze)

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2013 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2013 Mathematik Seite von 0 Unterlgen für die Lehrkrft Zentrle Klusur m Ende der Einführungsphse 0 Mthemtik. Aufgbenrt Anlysis. Aufgbenstellung Aufgbe : Untersuchung gnzrtionler Funktionen Aufgbe : Persönliche Leistungskurve

Mehr

Arbeitsheft. Merkur. Lineare Algebra Mathematische Beschreibung von Prozessen durch Matrizen. Bohner Ott Rosner Deusch

Arbeitsheft. Merkur. Lineare Algebra Mathematische Beschreibung von Prozessen durch Matrizen. Bohner Ott Rosner Deusch Bohner Ott Rosner Deusch Arbeitsheft Mathematik für berufliche Gymnasien Lineare Algebra Mathematische Beschreibung von Prozessen durch Matrizen Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

Mündliche Prüfung LK. Fragen zur differentialrechnung

Mündliche Prüfung LK. Fragen zur differentialrechnung Mündliche Prüfung LK Diese Seite enthält Frgen zu : Differentilrechnung Integrlrechnung Exponentil und Logrithmusfunktionen Linere Alger Prozessmtrizen Frgen zur differentilrechnung Ws sind Nullstellen?

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 7 Unterlgen für die Lehrkrft Abiturprüfung 2010 Mthemtik, Leistungskurs 1 Aufgbenrt Anlysis 2 Aufgbenstellung siehe Prüfungsufgbe 3 Mterilgrundlge entfällt 4 Bezüge zu den Vorgben 2010 1 Inhltliche

Mehr

\W 1;1 und ist in seiner

\W 1;1 und ist in seiner 44 Arkusunktionen 44 Die Umkehrun der Winkelunktionen - Arkusunktionen Die Funktion : sin ; ist in ID IR nicht umkehrbr Eine Umkehrunktion ibt es erst dnn, wenn mn die Deinitionsmene u ein Intervll einschränkt,

Mehr

f(x) = x F(x) = f(x) dx b n x dx = x a b ( ) n 1 b a +

f(x) = x F(x) = f(x) dx b n x dx = x a b ( ) n 1 b a + Mthemtik 7 Integrlrechnung Prolemstellung: Lösungsidee: Die Berechnung einer Fläche unter einer Funktion zwischen zwei äußeren Grenzen. Zerlegung der Gesmtfläche in rechteckige Bänder (Ausschöpfungsmethode),

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

Bitte denken Sie daran, erklärenden Text zu schreiben.

Bitte denken Sie daran, erklärenden Text zu schreiben. Mthemtik Nme: Lösungen Vorbereitung Nr. Kursstufe K Punkte: / Note: Schnitt:.0. Bitte denken Sie drn, erklärenden Tet zu schreiben. Pflichtteil (etw 0..40 min) Ohne Tschenrechner und ohne Formelsmmlung

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

Mathematik für das Berufskolleg

Mathematik für das Berufskolleg Michel Buhlmnn Mthemtik für ds Berufskolleg Dten- und Aufgbenblätter zur Mthemtik Version Essen 5 Vorwort Diese Smmlung us Dten- und Aufgbenblättern geht us einer jhrelngen Tätigkeit ls Nchhilfelehrer

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

1 Differentialrechnung

1 Differentialrechnung 1 Differentilrechnung 1.1 Ableitungen und Ableitungsregeln Nützliche Ableitungen 1. ( ) 1 = 1 x x 2 = x 2 2. Trigonometrische Funktionen: ( x) = 1 2 x [sin(x)] = cos(x) [cos(x)] = sin(x) 3. f(x) = e x

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Analysis (1. Semester)

Analysis (1. Semester) Fchhochschule Wiesbden Pro. Dr. M. Götz Fchbereich 8 MNDU Anlysis. Semester ür den Studiengng Interntionles Wirtschtsingenieurwesen Foliensmmlung* ls Ergänzung zur Mitschrit im Unterricht *Hinweis: Der

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 0 Grundwissensktlog G8-Lehrplnstndrd Bsierend uf den Grundwissensktlogen des Rhöngymnsiums Bd Neustdt und des Kurt-Huber-Gymnsiums Gräfelfing J O H A N N E S - N E P O M U K - G

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

Formelsammlung für die Klausur: Mathematik für Chemiker I

Formelsammlung für die Klausur: Mathematik für Chemiker I Universität-Duisburg-Essen / Cmpus Essen 15. 1. 2004 FB 6 - Mthemtik Prof. Dr. D. Lutz / Dr. G. Wolf Formelsmmlung für die Klusur: Mthemtik für Chemiker I Binomilkoezienten, binomische Formel: n! = 1 2

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

lokales Maximum lokales u. globales Minimum

lokales Maximum lokales u. globales Minimum 6 Extrempunte Deinition: Eine Funtion : x (x) ht n der Stelle x ID ein loles (reltives) Mximum/Minimum, wenn die Funtionswerte in einer beliebig leinen Umgebung von x leiner/größer ls n dieser Stelle sind

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

9.5. Uneigentliche Integrale

9.5. Uneigentliche Integrale 9.5. Uneigentliche Integrle Bestimmte und unestimmte Integrle hängen zwr eng zusmmen, er die Existenz des einen grntiert nicht immer die des nderen: Eine integrierre Funktion muß keine Stmmfunktion esitzen,

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel)

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel) Etrkpitel für M. Integrtion durch Substitution (Umkehrung der Kettenregel Beispiel : Berechnen Sie ds Integrl I = + d D die Wurzel eine innere Funktion ht, substituieren wir diese und leiten dnn b... z

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Abbildung 1: Achilles und seine Schildkröte.

Abbildung 1: Achilles und seine Schildkröte. PROBEKLAUSUR II MATHEMATIK STUDIENGANG MB THEMA I: FOLGEN UND REIHEN (5 Minuten) Augbe 1 (Grenzwertig)**: Prdoon des ZENO: Achilles läut mit einer Schildkröte um die Wette. Weil Achilles zehnml so schnell

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

10 Integrationstechniken

10 Integrationstechniken Integrtionstechniken. Wichtige Stmmfunktionen α d = α + α+, d = log e d = e cos d = sin sin d = cos d = rcsin d = rctn + cosh d = sinh sinh d = cosh + d = sinh d = cosh α R, α. Linerität der Integrtion

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mthemtik und Nturwissenschften Fchrichtung Mthemtik, Institut für Numerische Mthemtik GRUNDLAGEN MATHEMATIK 5. Integrlrechnung Prof. Dr. Gunr Mtthies Wintersemester 2015/16 G. Mtthies Grundlgen Mthemtik

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

Inhaltsverzeichnis Integralrechnung f

Inhaltsverzeichnis Integralrechnung f Inhltsverzeichnis 4 Integrlrechnung für f : D(f R R 4. Bestimmtes und unbestimmtes Integrl........ 4.. Ds bestimmte Integrl............. 4..2 Ds unbestimmte Integrl, Stmmfunktion.. 3 4.2 Integrtionsregeln....................

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Teil mit Taschenrechner (ohne CAS)

Teil mit Taschenrechner (ohne CAS) Sächsisches Sttsministerium ür Kultus Schuljhr 0/05 Schritliche Abschlussprüung n Fchoberschulen/ Zustzprüung zum Erwerb der Fchhochschulreie in berulichen Bildungsgängen Mthemtik nichttechnische Richtungen

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Mathematik im Berufskolleg

Mathematik im Berufskolleg Bohner Ott Deusch Mathematik im Berufskolleg Gesamtband Merkur M Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Prais Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhlb der c. 50.000 Mthemtikufgben zu orientieren, benutzen Sie unbedingt ds Lesezeichen Ihres Acrobt Reders: Ds Icon finden Sie in der links stehenden Leiste.

Mehr

Arbeitsheft. Merkur Verlag Rinteln. Lineare Algebra Vektorgeometrie. Bohner Ott Rosner Deusch. Mathematik für berufliche Gymnasien

Arbeitsheft. Merkur Verlag Rinteln. Lineare Algebra Vektorgeometrie. Bohner Ott Rosner Deusch. Mathematik für berufliche Gymnasien Bohner Ott Rosner Deusch Arbeitsheft Mathematik für berufliche Gymnasien Lineare Algebra Vektorgeometrie Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mthemtik für Wirtschftsinformtik Wintersemester 202/3 Stefn Etschberger Hochschule Augsburg Existenz von bestimmten Integrlen Mthemtik 2 Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt:

Mehr

Analysis. Abitur. Intensivkurs Mathematik. Die optimale Vorbereitung auf das Abitur: Intensivkurs. Florian Timmermann

Analysis. Abitur. Intensivkurs Mathematik. Die optimale Vorbereitung auf das Abitur: Intensivkurs. Florian Timmermann Intensivkurs Mthemtik Anlsis Florin Timmermnn Intensivkurs Mthemtik Anlsis Die optimle Vorbereitung uf ds Abitur: Erklärung des gesmten Stoffes Aufgben uf llen Niveustufen mit llen Lösungswegen Abitur

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen Friedrich-Schiller-Universität Jen Institut für Physiklische Chemie BC 1.2 Mthemtik PD Dr. Thoms Bocklitz BC 1.2 Mthemtik Zusmmenfssung Kpitel III: Funktionen einer Veränderlichen 1 Konzept Funktionen

Mehr

13-1 Funktionen

13-1 Funktionen 3- Funktionen 3 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten eine stetige Funktion f : I R und ds zugehörige Integrl f() d (dies ist

Mehr

Integralrechnung 29. f(x) dx = F (x) + C

Integralrechnung 29. f(x) dx = F (x) + C Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der

Mehr