Berechnungen zur Ringwelt von Larry Niven

Größe: px
Ab Seite anzeigen:

Download "Berechnungen zur Ringwelt von Larry Niven"

Transkript

1 Auto: Wlte Bislin 1 von 10 Beechnungen zu Ringwelt von Ly Niven Donnestg, 4. Oktobe 01-19:10 Auto: wbis Themen: Wissen, Physik, Kuioses Die Ringwelt ist eine fiktive Welt im Known Spce-Univesum des Science-iction Schiftstelles Ly Niven. Sie htte ih Debüt in dem 1970 eschienen Science-iction-Romn Ringwold (deutsch: Ringwelt). Ds Buch gilt heute ls eine de Klssike de Science-iction. In diesem Beitg stelle ich ein p Beechnungen zu Ringwelt n. Die ge ist, ob eine solche Welt gebut weden könnte ode ob ds physiklisch nicht möglich ist. [1] Aufbu de Ringwelt Die Ringwelt ist eine künstliche Welt, die einen Sten ingfömig umgibt. Ih Rdius ist ungefäh gleich dem Abstnd de Ede von de Sonne, etw 150 Millionen km. Ihe Beite betägt 1.6 Millionen km, etw dem Duchmesse des Zentlgestins entspechend, und n den Ränden befinden sich zwei km hohe Aussenwälle, die die Atmosphäe innehlb des Ringes hlten. Ihe Obefläche betägt etw ds Deimillionenfche de Edobefläche. Im Vehältnis zu ihen gigntischen Ausmssen besteht die Ringwelt us seh wenig Mteil. Die Gesmtmsse entspicht etw 350 Edmssen (so viel wie die Summe lle Plneten unsees Sonnensystems). Die duchschnittliche Dicke des Ringmteils betägt nu etw 30 m. Auf de Aussenseite des Ringes befindet sich noch eine zusätzliche schumähnliche Schutzschicht von etw 300 m Dicke, die Meteooiden und ndee Himmelsköpe beim Einschlg bbemsen soll. [1] Physiklische Bedenken Im Wikipedi-Atikel zu Ringwelt stehen zum Aufbu folgende Bedenken: Eine de Punkte, in denen die Ringwelt-Romne eine wissenschftlichen Gundlge entbehen, betifft ds Mteil, Scith gennnt, us dem de Ring gefetigt ist. Ds Mteil müsste unglublich dicht sein und eine unelistisch hohe Zugfestigkeit (in de Gössenodnung de stken Kenkft) besitzen, um die duch die Rottion des Ringes entstehenden inneen Zugkäfte ushlten zu können. Um die gigntische Ringwelt in Rottion zu vesetzen, musste ds iesige Enegieäquivlent von etw 0. % de Edmsse ufgewendet weden. Ich möchte in diesem Beitg konkete Beechnungen dzu vonehmen und diese ekläen, dmit mn nchvollziehen und beuteilen knn, ob diese Bedenken begündet sind. Dten zu Ringwelt

2 Auto: Wlte Bislin von 10 Zunächst liste ich einige Dten zu Ringwelt uf, die ich nchhe fü meine Beechnungen [] benötige : Msse de Sonne M = kg S 30 Rdius de Sonne R = m S 6 Msse de Ringwelt m =.1 10 kg 7 Rdius de Ringwelt Beite de Ringwelt Dicke de Ringwelt Queschnittsfläche Beschleunigung (Gvittion) uf de Ringwelt = m b = m d = 30 m A = b d = m 9 9 = 9.73 m/s 9 Winkelgeschwindigkeit ω = d/s 6 Rottionspeiode Tngentilgeschwindigkeit 3 T = s (c. 9.1 Tge) 6 v = m/s 11 3 Gvittionskonstnte G = m /kg/s Beechnung de Dehgeschwindigkeit ü die Beechnung de Dehgeschwindigkeit und de dus esultieenden Beschleunigung Z und de Zugkäfte T die uf einen Queschnitt de Ringwelt wiken, zelege ich den Ring gednklich in Segmente, die duch den Winkel ufgespnnt weden und untesuche die Käfte die uf dieses Segment wiken: Lssen wi zunächst ml die Sonne veschwinden. Auf die Bewohne de Ringwelt wikt dnn nu die Zentipetlbeschleunigung Z, welche dfü ventwotlich ist, dss ds Ringsegment sich uf eine keisfömigen Bhn um ds Zentum bewegt. Diese Beschleungigung spüt de Bewohne ls Gewichtskft. Die Zentipetlbeschleunigung Z ist nu vom Rdius de Ringwelt und de Dehgeschwindigkeit bhängig:

3 Auto: Wlte Bislin 3 von 10 (1) Z = De Rdius de Ringwelt ist gegeben. Die Dehgeschwindigkeit wid nun so eingestellt, dss gede de gewünschten Edbeschleunigung von in unseem ll = 9.73 m/s entspicht. Nun ht be die Sonne mit ihe Gvittion uch einen Einfluss uf ds System. Sie veinget die gespüte Beschleunigung um einen Betg S ufgund ihe Anziehungskft: Z () S = G M S wobei S = Beschleunigung uf einen Köpe duch die Gvittion de Sonne G M S = Gvittionskonstnte = Msse de Sonne = Entfenung von de Sonne Dmit die Bewohne totzdem die Beschleunigung von = 9.73 m/s zu spüen bekommen, muss die Zentipetlbeschleunigung um S vegösset weden: (3) Z = S + = wobei Z = Zentipetlbeschleunigung de Ringwelt S = Beschleunigung duch die Gvittion de Sonne = Beschleunigung, welche die Bewohne spüen sollen Die notwendige Winkelgeschwindigkeit knn nun wiefolgt beechnet weden: (4) s G M = S + 3 mit = T $ T = wobei = Winkelgeschwindigkeit de Ringwelt T M S = Rottionspeiode = Msse de Sonne

4 Auto: Wlte Bislin 4 von 10 G = Gewünschte Schweebeschleunigung de Bewohne = Rdius de Ringwelt = Gvittionskonstnte v Die Tngentilgeschwindigkeit knn us seh leicht beechnet weden: (5) v = Konkete Dten fü Beschleunigung und Dehung Beschleunigung duch Sonne () = m/s S 3 Zentipetlbeschleunigung (3) = m/s Z Winkelgeschwindigkeit (4) ω = d/s 6 Rottionspeiode (4) 3 T = s Beechnung de Mteil-Zugbelstung Wi kennen nun die Zentipetlbeschleunigung Z, welche unse Ringsegment uf de Umlufbhn um die Sonne hält. Nch Newtons = m knn nun die Zentipetlkft Z beechnet weden, die dzu nötig ist: (6) Z = d m Z dm Die Msse des Ringsegmentes knn us de gesmten Msse de Ringwelt wiefolgt beechnet weden: m (7) dm = m d = A dm wobei = Msse des Ringsegmentes m A = Gesmtmsse de Ringwelt = Winkelusschnitt des Ringsegmentes = Mteildichte = Queschnittsfläche = Ringdius

5 Auto: Wlte Bislin 5 von 10 Wohe stmmt nun die notwendige Zentipetlkft Z, die ds Ringsegement uf de Umlufbhn hält? Betchten wi ds folgende Bild, in dem lle Käfte eingezeichnet sind: Ein Teil de Zentipetlkft Z wid von de Anziehungskft S de Sonne ufgebcht. De Rest R muss von den Tngentilkäften T ufgebcht weden, welche im Mteil wiken. (8) Z = S + R $ R = Z S Die Tngentilkäfte lssen sich in hoizontle und vetikle Komponenten zelegen. Die hoizontlen Komponenten sind sich entgegengesetzt und gleich goss, heben sich lso uf und hben keinen Einfluss uf die Bewegung. Die vetiklen Komponenten summieen sich zu R und können us T wiefolgt geometisch beechnet weden: (9) = = T sin(=) R ü die folgenden Beechnungen nehmen wi n, dss kleine Winkel gilt: beliebig klein gewählt weden knn. ü (10) sin() Dduch veeinfcht sich (9) zu: (11) R = = T d = ) R = T Dmit können wi die Zugkäfte T im Mteil beechnen, wenn wi die Kft R kennen: (1) T = R = Z S Hie nochmls zusmmengestellt, wie die Zentipetlkft Z und die Anziehungskft de Sonne

6 Auto: Wlte Bislin 6 von 10 S uf ds Ringsegment beechnet wid: (13) m m Z = d = d Z (14) S = d m G M S = dm S In omel (1) eingesetzt ehlten wi: (15) T = Z S = dm Z dm S = dm ( Z S ) Aus omel (3) wissen wi dss ist, welches die fü die Bewohne spübe Beschleunigung ist. Aussedem können wi fü die omel (7) vewenden. Dies in (15) eingesetzt egibt: Z S = dm (16) T = m = m m V = A Die Msse de Ringwelt können wi noch duch die Dichte ml ds Volumen esetzen, womit wi schliesslich die folgende omel fü die Zugkäfte ehlten: (17) T = m = A wobei T = Zugkäfte im Ringmteil veteilt uf den Queschnitt m A = Msse de Ringwelt = Beschleunigung (Gvittion) uf de Ringwelt = Dichte des Mteils Scith = Queschnitt de Ringwelt = Rdius de Ringwelt A Bei Mteilien wid die mximle Zugfestigkeit ngegeben. Um beuteilen zu können, ob ein Mteil eine bestimmte Spnnung (Kft po läche) ushält, gebe ich noch die omel zu Beechnung de Spnnung n: (18) = A T = m A =

7 Auto: Wlte Bislin 7 von 10 Diskussion Inteessnt ist, dss die Zugkäfte T nu von de Msse de Ringwelt und de gewünschten Beschleunigung (Gvittion) bhängen. Die Gösse und die om des Queschnitts hben keinen Einfluss, solnge die Msse des Rings die selbe bleibt Duch Vegössen des Queschnitts könnte mn die Belstungsspnnung im Mteil senken. In gleichem Msse nimmt be dbei ds Volumen und dmit die Gesmtmsse des Ringes zu und dmit uch die Zugkäfte. Die Belstung lässt sich lso nicht duch buliche Mssnhmen änden Die Gvittion de Sonne ht keinen Einfluss uf die Zugkäfte. Lediglich die zu eeichende Gvittionsbeschleunigung fü die Bewohne de Ringwelt geht in die omeln ein. Je stäke die Sonne sich uswikt (sie veinget die gewünschte Gvittion ), umso schnelle muss de Ring otieen, um die Sonne zu kompensieen. Dies wüde die Zugkäfte zw ehöhen, be die Sonne wikt uch uf die Ringsegmente und eduziet dmit die Zugkäfte um genu den Betg, de duch die schnellee Rottion entsteht Die Belstungsspnnung des Ringmteils hängt von de Mtieldichte, dem Ringdius und de Beschleunigung b. Wenn die Ringwelt nu gede so schnell otiet, dss die esultieende Beschleunigung (Gvittion) de Bewohne gede Null wid, so teten keine Zugkäfte im Mteil uf, weil die Segmente des Ringes gede so schnell otieen, wie ein Plnet uf diese Umlufbhn im feien ll fliegen wüde. Mn sieht uch, dss de Rdius de Ringwelt nicht beliebig goss weden knn, d igendwnn die Belstungsgenze mx übeschitten wid. Je leichte ds Mteil ist (je kleine die Dichte ), umso gösse knn de Rdius weden. A m Konkete Wete fü die Ringwelt Tngentile Zugkäfte in de Ringwelt = N Zugspnnung im Mteil σ = N/m = N/mm T Zugfestigkeit von Sthl R = N/m = 510 N/mm St 6 Zugfestigkeit von Kohlenstoffnnoöhchen R = N/m = 63'000 N/mm Wie mn sieht übescheitet die Zugspnnung Kohlenstoffnnoöhchen um den kto eine Million KNR 9 in de Ringwelt sog die Zugfestigkeit von Beechnung des mximl möglichen Rdius de Ringwelt Aus de omel (18) knn eine omel zu Beechnung des mximl möglichen Rdius eine Ringwelt bgeleitet weden, wenn die Eigenschften des Ringmteils wie Dichte Zugfestigkeit beknnt sind: und

8 Auto: Wlte Bislin 8 von 10 (19) Je stäke ds Mteil (gosses ) und je leichte (kleines ), umso gösse knn de Rdius de Ringwelt sein. Auch die gewünschte Schwekft wikt sich uf den Rdius us. ü Schweelosigkeit ( = 0 ) knn de Rdius beliebig goss weden. Mximle Rdien fü beknnte Mteilien Mteil mx Sthl N/m kg/m m = 6.67 km Kohlenstoff Nno N/m kg/m m = 4'800 km Dies eicht bei Weitem nicht ml us, die Sonne mit einem Rdius von 680'000 km zu umunden Beechnung de Rottionsenegie Um die Ringwelt in Rottion zu vesetzen muss Enegie ufgewendet weden, z.b. in Rketentiebweken. Es spielt keine Rolle, in welche Zeitdue die Rottion ufgebut wid. Mn knn übe lnge Zeit mit wenig Enegie ode übe kuze Zeit mit viel Enegie beschleunigen. Am Ende ist die benötigte Enegie die selbe. Die Rottionsenegie ist eine kinetische Enegie (Bewegungsenegie) und knn wiefolgt beechnet weden: (0) Ekin = 1 m v 1 = m ( ) E wobei kin = Kinetische Enegie, die in de Rottion steckt m v = Msse de Ringwelt = Tngentilgeschwindigkeit de Ringwelt = Rdius de Ringwelt = Winkelgeschwindigkeit de Ringwelt Rottionsenegie de Ringwelt Rottionsenegie de Ringwelt E = J Dies ist eine ungeheue Enegie Um zu beechnen, wieviel Msse kin m ot 39 vollständig in Enegie

9 Auto: Wlte Bislin 9 von 10 umgewndelt weden müsste um diese kinetische Enegie zu ezeugen knn die omel E = m c vewendet weden: (1) m E kin ot = c Benötigte Msse fü E m = kg kin Msse de Ede m = kg Anteil de Edmsse fü E m / m = 0.94 % ot kin ot E E 4 1 Weitee Bemekungen Im Wikipedi-Atikel steht de folgende Abstz ( ): Die Ringwelt befindet sich jedoch nicht in einem echten Obit um die Sonne, ihe Position ist vielmeh in Reltion zum Zentlgestin instbil. Weil die Anziehungskft de Sonne in de Ringebene in llen Richtungen uf den Ring gleich goß wikt, fehlt eine stbilisieende Wikung, die in einem ntülichen Plnetenobit gegeben ist. Wenn de Ring innehlb de Rottionsebene um einen beliebig geingen Betg veschoben wüde, wikte uf den sonnennäheen Teil des Ringes eine stäkee Kft ls uf den sonnenfeneen Teil. Nch einige Zeit wüde de Ring deshlb unweigelich mit dem Zentlgestin kollidieen. Zu Stbilisieung de Ringweltposition sind die Rndmuen de Ringwelt deshlb mit Koektutiebweken (englisch ttitude jets) usgeüstet. Wenn die Ringwelt stbil genug gebut ist, knn mn sich die Msse de Ringwelt ls Punkt im Zentum vostellen. Wenn diese Mssepunkt nicht exkt im Zentum de Sonne läge, wüde e und dmit die gnze Ringwelt einfch um ds Sonnenzentum eien. Ds Ringwelt-Obit wäe lso nicht instbil. Es gibt be einige Bedenken, dss die Ringwelt stbil genug gebut weden könnte. Sie wüde wohl ehe die Stbilität eines Stoffbndes hben. In diesem ll wüden sich kleinste Stöungen ktstophl uswiken. Die 300 m Schutzschicht gegen Meteooiden ist ein Witz. Diese könnten mit de selben Whscheinlichkeit uch uf de Innenseite de Ringwelt ufteffen, welche keinen Schutz ht. Die Dicke de Schutzschicht spielt uch kum eine Rolle, denn sie muss die Bewegungsenegie des Meteooiden uf jeden ll vollständig ufnehmen. Ob sie ds nun übe 300 m in einem Schum mcht ode übe eine dicke feste Schicht ist egl. Die Aufschlgenegie wid uf jeden ll n den Ring weite geleitet und wüde sich uch dnn ktstophl uswiken, wenn es kein Loch im Ring gibt. Die Aufschlgwelle wüde sich übe den gnzen Ring usbeiten und ihn destbilisieen.

10 Auto: Wlte Bislin 10 von 10 Quellen 1.. Ringwelt; Wikipedi (de) Ly Nivens Ringwelt: Rollenspiel-Abenteue unte den goßen Bogen; John Hewitt und Shemn Khn; Chosium Inc.

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

B Figuren und Körper

B Figuren und Körper B Figuen und Köpe 1 Keis und Keisteile Ein Keis mit dem Rdius ht den Flächen inhlt A = p 2 und den Umfng U = 2p. Die Keiszhl p = 3,14159 ist eine itionle Zhl. Als Nähe ungswete fü p benutzt mn oftmls p

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

= 45 erreicht? c. Welche Gesamtbeschleunigung a. hat das Motorrad in diesem Punkt?

= 45 erreicht? c. Welche Gesamtbeschleunigung a. hat das Motorrad in diesem Punkt? Fchhochschule Hnnove Klusu MA 9.6. Fchbeeich Mschinenbu Zeit: 9 min Fch: Physik im SS Hilfsmittel: Fomelsmmlung zu Volesung. Motoäde fhen Kuven mit Schäglge (chkteisiet duch den Winkel α im ild echts,

Mehr

Analysis II. Uneigentliche Integrale

Analysis II. Uneigentliche Integrale Pof D H Benne Osnbück SS 204 Anlysis II Volesung 3 In diese Volesung entwickeln wi die Integtionstheoie weite, und zw untesuchen wi die Fge, ws pssiet, wenn wi in einem Integl b die Intevllgenzen gegen

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

Archimedische Spirale 4

Archimedische Spirale 4 Aufgbenbltt-Achimedische Spile +Lösungen.doc Achimedische Spile Aufgbe An einem Holzpflock mit qudtischem Queschnitt (Seitenlänge z.. cm) ist im unkt eine Schnu befestigt, die von nch S eicht. Die Schnu

Mehr

N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2

N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2 Kpitel 5 Gvittionstheoie Ausgebeitet von G. Knup und H. Wlitzki 5. Gvittionskft - Gvittionsfeld Die Gundidee zu Gvittionstheoie stmmt von Newton (643-727): Die Kft, die einen Apfel fllen lässt, ist die

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt Rigoose Behndlung des Kontktpoblems Hetzsche Kontkt In diesem Kpitel weden Methoden zu exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

Von der Kraft, welche die Satelliten auf Kreisbahnen hält

Von der Kraft, welche die Satelliten auf Kreisbahnen hält Illustieende Aufgben zu LehplnPLUS Fch- und Beufsobeschule, Physik, Jhgngsstufe Von de Kft, welche die Stelliten uf Keisbhnen hält Jhgngsstufen FOS, BOS Stnd: 4.09.08 Fch/Fäche Physik Übegeifende Bildungsund

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Klausur 2 Kurs Ph11 Physik Lk

Klausur 2 Kurs Ph11 Physik Lk 26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN Mtemtik: Mg. Wolfgng Smid beitsbltt 11 6. Semeste BEITSBLTT 11 EXTEMWETUFGBEN In diesem beitsbltt befssen wi uns mit ufgben, bei denen einem gegebenen Köpe ein ndee Köpe eingesieben ode umsieben wid. Beispiel:

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Gradientwindgleichung. Strömungsverhältnisse bei gekrümmten Isobarenverlauf

Gradientwindgleichung. Strömungsverhältnisse bei gekrümmten Isobarenverlauf Nächste Abschnitt => Gadientwindgleichung Stömungsvehältnisse bei gekümmten Isobaenvelauf Das geostophische Gleichgewicht zwischen Duckgadientkaft und Coioliskaft gilt nu fü Luftstömung entlang geadlinige

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich.

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich. Püfungsufgben Köpebeecnungen Aufgbenbltt 6 Püfungsufgben Klssenstufe 0 Alle Lösungen uf CD Dtei N. 6 Ausduck nu von de CD us möglic Fiedic Buckel Juni 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Köpebeecnungen

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

Induktivität und Energie des Magnetfeldes

Induktivität und Energie des Magnetfeldes Induktivität und Enegie de Mgnetfelde 1. D CMS (Compct Muon Solenoid) m CERN it ein ieige Teilchendetekto fü den HC (ge Hdon Collide). D Kentück de CMS it ein upleitende Elektomgnet de änge = 13m und mit

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Trägheitsmoment - Steinerscher Satz

Trägheitsmoment - Steinerscher Satz 91 Cl von Ossietzky Univesität Oldenbug - Fkultät V- Institut fü Physik Modul Gundpktikum Physik Teil I Tägheitsmoment - Steinesche Stz Stichwote: Rottionsbewegung, Winkelgeschwindigkeit, Winkelbeschleunigung,

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

Abschlussprüfungen an den Bezirksschulen 2001 Mathematik 1.S

Abschlussprüfungen an den Bezirksschulen 2001 Mathematik 1.S bschlusspüfungen n den eziksschulen 00 Mthemtik.S ) Veeinfche soweit ls möglich: n + 4n + 4 : n + 4 - n b) Löse die folgende Gleichung nch uf: + + ) estimme die vie gössten gnzzhligen Lösungen: 0 4 7 +

Mehr

n n n

n n n mthbu.ch9+ Repetition mthbu.ch9+ LU 901 1. Die Route de Steetpde in Züich ist 3.8 km lng. Wie lnge ist sie uf eine Kte mit dem Mssstb 1 : 5 000? 15. cm. Auf eine Kte des Mssstbs 1 : 5 000 misst du einen

Mehr

Mathematik Name: Vorbereitung KA2 K1 Punkte:

Mathematik Name: Vorbereitung KA2 K1 Punkte: Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie

Mehr

Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels:

Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels: Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Übungen zur Vorlesung Elementre Geometrie Sommersemester 1 Musterlösung zu Bltt 1 vom 5. Juli

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

Technische Mechanik B WS 2010/11

Technische Mechanik B WS 2010/11 Technische Mechnik WS / Ein Täge wid mit einem Loslge und wei Stäben sttisch bestimmt gelget De Täge ist us einem U-Pofilsthl gefetigt und wid mit eine Linienlst konstnte Intensität belstet Die Stäbe sind

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mthemtik Olympide 1. Stufe (Schulolympide) Klsse 12 Sison 1961/1962 Aufgben und Lösungen 1 OJM 1. Mthemtik-Olympide 1. Stufe (Schulolympide) Klsse 12 Aufgben Hinweis: Der Lösungsweg mit Begründungen

Mehr

9.2.3 Durchbiegen eines Balkens ******

9.2.3 Durchbiegen eines Balkens ****** 9.2.3 ****** 1 Motivtion Ein einseitig eingespnnter Blken wird m offenen Ende belstet. Die Durchbiegung hängt von der Orientierung und dmit vom Flächenträgheitsmoment des Blkens b. 2 Experiment b b s 1

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

ÜBUNG 4.: GEKRÜMMTE STÄBE

ÜBUNG 4.: GEKRÜMMTE STÄBE ÜUG 4: GEKÜTE STÄE ufgbe 1: Schnittgößen und Spnnungveteilung gekümmte Stäbe y Löung: K Gegeben: bmeungen und eltung eine im ild dgetellten m uechnitt eingepnnten Stbe mit Keiquechnitt: d ufgbe: ) etimmung

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! hysik 1 / Klausu Ende SS 0 Heift / Kutz Name: Voname: Matikel-N: Unteschift: Fomeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenechne! Heftung nicht lösen! Kein zusätzliches

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Vordiplom ET Mechanik/Physik WS 2004/2005

Vordiplom ET Mechanik/Physik WS 2004/2005 Vodiplom ET Mechanik/Phsik WS 4/5 ufgabe a) Ein allgemeines Käftesstem besteht aus folgenden Käften: F =5 N α =4 nsatzpunkt: (x,) = (3,7) F =38 N α =9 nsatzpunkt: (x,) = (-,) F 3 = N α 3 = nsatzpunkt:

Mehr

Q12 * Mathematik m4 * Klausur am * Gruppe A

Q12 * Mathematik m4 * Klausur am * Gruppe A Q * Mthemti m4 * Klusur m..0 * Gruppe A. Berechnen Sie die beiden bestimmten Integrle. ) d b) 0,5 d. Ds Bild zeigt den Grphen der Funtion f mit 5 f () ; R. ) Zeigen Sie, dss der Grph von f genu drei Wendepunte

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

0.6.4) Lineare Regression Wenn wir fliegen könnten und den Greifvögeln ähnlich

0.6.4) Lineare Regression Wenn wir fliegen könnten und den Greifvögeln ähnlich VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 0.6.4) Linee Regession Wenn wi fliegen könnten und den Geifvögeln ähnlich Msse m [kg] Spnnweite s [m] Bussd 1 1,3 Fischdle,0 1,6 S n ( y i 1

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Elektronische Bandstruktur und elektrische Leitfähigkeit

Elektronische Bandstruktur und elektrische Leitfähigkeit ExpeimentlPhysik IV SS15-1 - (3. July 015) Wiedeholung k h ikx π Feies Elektonen Gs: E =, ψ ( x ) = Ce, k = ( nx, ny, nz ) m L V Zustndsdichte im k-rum: ρ( k ) = 3 (π) WICHTIG: k -Vektoen sind NICHT uf

Mehr

d) Was ist an dieser Form des Vergleiches nicht korrekt?

d) Was ist an dieser Form des Vergleiches nicht korrekt? Im Banne de Dunklen Mateie - die ätselhafte Rotation de Galaxien - Vesion "light" fü zweistündige Astonomiekuse (übeabeitet von Hemann Hamme) Die im Kosmos vohandene Dunkle Mateie einnet an den Täge de

Mehr

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h.

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h. Analysis Anwendungen Wi 1. Das Konsevendosen-Poblem Ein Konsevendosenhestelle will zylindische Dosen mit einem Inhalt von einem Lite, das sind 1000 cm 3, hestellen und dabei möglichst wenig Mateial vebauchen.

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld. 28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld

Mehr

Übungen zur Mechanik Lösungen Serie 7

Übungen zur Mechanik Lösungen Serie 7 Übungen zu Mechanik Lösungen Seie 7. Edumundung im Space Shuttle (a) De Obite (Masse m) wid duch die Gavitation zu Ede auf de Umlaufbahn gehalten. F G ist die einzig wikende Kaft und muss somit gleich

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Repetition: Kinetische und potentielle Energie, Zentripetalkraft

Repetition: Kinetische und potentielle Energie, Zentripetalkraft Us Wyde CH-4057 Basel Us.Wyde@edubs.ch Repetition: Kinetische und entielle negie, Zentipetalkaft. in Kindekaussell deht sich po Minute viemal im Keis. ine auf dem Kaussell stehende Peson elebt dabei die

Mehr

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze Rolnd Meissner Bodestrße 7, D-06122 Hlle, E-Mil: rolndmeissner@gmx.de Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der reltivistischen Krftgesetze Abstrct The reltivistic term of Force

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Pof. Anes Hez, D. Stefn Häusle emil: heusle@biologie.uni-muenchen.e Deptment Biologie II Telefon: 89-8-748 Goßhenest. Fx: 89-8-7483 85 Plnegg-Mtinsie

Mehr

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen Mthemtik in eigenen Woten Abeitsblätte und Kopievolgen Abeitsblätte und Kopievolgen stehen unte www.klett.ch/spektumschule kostenlos ls Downlod zu Vefügung. Ihe Vewendung fü den eigenen Unteicht wid vom

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

4.2 Allgemeine ebene Bewegung. Lösungen

4.2 Allgemeine ebene Bewegung. Lösungen 4. Allgemeine ebene Bewegung Lösungen Aufgabe 1: a) Massentägheitsmoment: Fü das Massentägheitsmoment eine homogenen Kugel gilt: J= 5 m Zahlenwet: J= 5 8 kg 0,115 m =0,0405 kgm b) Gleitstecke: Schwepunktsatz:

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Ferienkurs Experimentalphysik Übung 1-Musterlösung

Ferienkurs Experimentalphysik Übung 1-Musterlösung Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen

Mehr

Besondere Leistungsfeststellung Mathematik

Besondere Leistungsfeststellung Mathematik Sächsisches Sttsministerium Geltungsbereich: für Kultus Schüler der Klssenstufe 10 Schuljhr 01/13 n llgemeinbildenden Gymnsien Besondere Leistungsfeststellung Mthemtik N A C H T E R M I N Mteril für Schüler

Mehr

Aufgaben zu Kräften zwischen Ladungen

Aufgaben zu Kräften zwischen Ladungen Aufgaben zu Käften zwischen Ladungen 75. Zwei gleich geladenen kleine Kugeln sind i selben Punkt an zwei langen Isoliefäden aufgehängt. Die Masse eine Kugel betägt g. Wegen ihe gleichen Ladung stoßen sie

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Mathematik III - Blatt 3

Mathematik III - Blatt 3 Mthemtik III - Bltt 3 Christopher Bronner, Frnk Essenberger FU Berlin 7.November 6 Aufgbe Die Länge der Kurve, deren Bhn die Lösung der Gleichung ist, lutet x 3 + y 3 3 L( γ ds π γ γ(t dt. Abbildung :

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr