Grundpraktikum Physikalische Chemie V 9. Kalorimetrie: Bestimmung von Verbrennungsenthalpien. Bachelor-Studiengänge:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundpraktikum Physikalische Chemie V 9. Kalorimetrie: Bestimmung von Verbrennungsenthalpien. Bachelor-Studiengänge:"

Transkript

1 Grundpraktkum Physkalsche Cheme V 9 Kalormetre: Bestmmung von Verbrennungsenthalpen Bachelor-Studengänge: Bestmmung der Mesomereenerge aromatscher Kohlenwasserstoffe aus der Verbrennungsenthalpe Überarbetetes Versuchsskrpt, P.J. Schäfer, L.A. Kbler,

2 Theoretsche Grundlagen De Frage nach der Wärme, de man enem System zuführen muss oder de von enem System abgegeben wrd, um von enem Anfangszustand I n enen Endzustand II zu gelangen rchtet sch unmttelbar auf den ersten Hauptsatz der Thermodynamk. du =δ Q +δ W (1) In desem Zusammenhang st es zunächst unwesentlch, ob es sch be deser Zustandsänderung um ene bloße Temperaturänderung, um enen Phasenübergang oder gar um ene chemsche Reakton handelt. Egens für de Wärmeübertragung be konstantem Druck (unter der Voraussetzung, dass außer Volumenarbet kene sonstge Arbet verrchtet wrd) wurde de Enthalpe H als ene n der Cheme sehr wchtge Größe engeführt. De Enthalpe H hängt von der nneren Energe U dem Druck p und dem Volumen V ab. H U+ pv (2) Falls nur Volumenarbet ( δw = pdv) verrchtet wrd, entsprcht de be konstantem Druck ausgetauschte Wärmemenge der Änderung der Enthalpe. dh =δ Q für dp = 0, nur Volumenarbet Reaktonswärmen/-enthalpen be konstantem Volumen Für chemsche Reaktonen wrd de abgegebene Wärmemenge gemessen, ndem de Reakton n enem geschlossenen Stahlgefäß ( kalorsche Bombe ) durchgeführt wrd. De entstehende Wärmemenge kann an en umgebendes Wasserbad abgeführt werden. Dese Methode egnet sch n besonderer Art für Verbrennungsreaktonen organscher Substanzen, da dese Reaktonen praktsch vollständg ablaufen. Das Volumen blebt be der Reakton n der Bombe konstant, daher wrd kenerle Volumenarbet gelestet. Somt folgt aus dem ersten Hauptsatz du = δ Q +δ W Q V,T =Δ U (3) V,T Be deser Art von Reakton (Verbrennungsreakton) wrd de Bombe heß, de Temperatur blebt demnach zunächst ncht konstant. De fre gewordene Wärme wrd aber praktsch vollständg an das umgebende Wasserbad abgeführt, sodass de Endprodukte schlussendlch deselbe Temperatur haben we de Ausgangsstoffe. 2

3 De fre werdende Wärmemenge kann über de Temperaturänderung m äußeren Wasserbad ermttelt werden. Da für den Chemker jedoch mest Reaktonsenthalpen von Interesse snd, st es notwendg aus der ermttelten Änderung der nneren Energe ΔU de Reaktonsenthalpe Δ r H zu errechnen. Mt Hlfe der Defnton für de Enthalpe H (Vgl. Gl. (2)) kann des we folgt geschehen: dh = du + pdv + Vdp (4) Be sochorer Prozessführung folgt: dh = du + Vdp (5) Um de Reaktonsenthalpe zu erhalten, dfferenzert man nach der Reaktonslaufzahl ξ: Δ H= dh = du + V dp dξ dξ dξ (6) Da ene Veränderung des Drucks durch de Reakton m Wesentlchen von den gasförmgen Komponenten zustande kommt, folgt unter Enbezehung der Zustandsglechung für deale Gase und dem Gesetz von Dalton: d RT dn Δ H= Δ U+ V n = Δ U+ RT dξ V d ξ (7) Wegen n = n,0 +νξ folgt Δ H= Δ U+ RT ν (8) ν st herbe der stöchometrsche Koeffzent ener an der Reakton betelgten gasförmgen Komponente. Im Falle enes Edukts st ν negatv, be Produkten st ν postv. Zel deses Versuchs st, aus den Verbrennungswärmen verschedener organscher Substanzen de Verbrennungsenthalpen zu ermtteln und mt hrer Hlfe de Resonanzenthalpe (Mesomereenerge) von Benzol zu bestmmen. Es st auch möglch Reaktonsenthalpen mt Hlfe der Bldungsenthalpen der betelgten chemschen Spezes zu errechnen. Da es ncht möglch st für de nnere Energe und de 3

4 Enthalpe Absolutwerte anzugeben, müssen zunächst Standardwerte festgelegt werden. Ene solche Festlegung kann völlg wllkürlch erfolgen, da de n der Praxs gemessenen Wärmen als Energe- und Enthalpedfferenzen erhalten werden. Solche Dfferenzen snd von der Lage des Standardwertes unabhängg. Man wrd demnach den Standardwert von Fall zu Fall so festlegen, we es für das betreffende Problem am zweckmäßgsten st. Man schrebt für gewöhnlch Elementen n hrer stablsten Modfkaton be Standarddruck de Enthalpe null zu. Als Bldungsenthalpen enes Stoffes bezechnet man de molare Enthalpe (glech der Reaktonsenthalpe ΔH p,t ) de be der Bldungsreakton von 1 mol des Stoffes aus den stablen Elementen unter Normalbedngungen fre wrd und ggf. gemessen werden kann. Aus der Tatsache, dass es sch be der Enthalpe um ene Zustandsfunkton handelt, folgt, dass de Reaktonsenthalpe vom Reaktonsweg unabhängg st. Deser Satz wurde von Hess schon vor der Formulerung des ersten Hauptsatzes aufgestellt. Ene Konsequenz des Satzes von Hess st, dass sch jedwede Reaktonsenthalpe als Summe der enzelnen Bldungsenthalpen beschreben lässt: Δ H = νδh (9) 0 0 R B De stöchometrschen Faktoren ν der Edukte snd weder negatv. Der von Hess formulerte Sachverhalt ermöglcht, ohne ene enzge Messung, das Berechnen von Reaktonsenthalpen aus tabellerten Werten. Es muss ledglch en hypothetscher Reaktonsweg gefunden werden, dessen Reaktonsenthalpen bekannt snd. Auch für de n desem Versuch behandelten Verbrennungsreaktonen lassen sch derart alternatve Reaktonswege entwerfen und Verbrennungsenthalpen ermtteln. Betrachtet man bespelswese enersets dre Cyclohexenmoleküle, anderersets en Benzolmolekül und zwe Cyclohexanmoleküle, so snd n beden Fällen nsgesamt glech vele C-C, C-H und C=C-Bndungen vorhanden. Wäre das Benzolmolekül ncht mesomerestablsert, dann müssten bede Systeme energeglech sen, be der Verbrennung also de gleche Wärmemenge lefern. Tatsächlch st das Benzolmolekül aber energeärmer und damt de Verbrennungswärme des zweten Systems klener als de des ersten. De Dfferenz zwschen beden Verbrennungswärmen stellt de Mesomereenerge des Benzols dar. 4

5 Versuchsdurchführung Vorberetung des Kalormeters Zu Begnn des Versuchs müssen de Thermostaten und das Kühlwasser engeschaltet werden. Um zu gewährlesten, dass der Wassermantel des Kalormeters ene konstante Temperatur bestzt müssen de Ventle für de Zu- und Abletung des Thermostatwassers geöffnet werden. Füllen se das Kalormetergefäß sowet mt destllertem Wasser, dass der Deckel der Bombe ca. 1 cm mt Wasser bedeckt st. Des st dann der Fall, wenn de Masse des engewogenen Wassers etwa 2800 g beträgt. Bestmmen se de Masse des Wassers mt der Schnellwaage (Genaugket mndestens 1 g). Nehmen se zur Messung den Rührer aus dem Kalormetergefäß heraus. Stellen se nach der Bestmmung der Wassermenge das Kalormetergefäß ns Kalormeter und schalten se das Kalormeter (Schalter: Netz) sowe den Magnetrührer (Schalter: Pumpe) en. Zerkratzen se btte ncht de verspegelten Gefäßwände und de Spegelfläche m Kalormeter und halten se dese so sauber we möglch. Geben se ab und zu (alle zwe Messungen) en paar Tropfen Öl an den Rührer (Ol!) Feste Substanzen werden n Form von Tabletten verbrannt. Dese Pllen müssen mt der vorhandenen Presse selbst hergestellt werden. Herstellung der Benzoesäure Pllen Be der Herstellung der Benzoesäurepllen sollten se Enweghandschuhe tragen. Rengen se zunächst äußerst sorgfältg de Spndelpresse sowe de Pressform und den Mörser. Schneden se vom vorhandenen Zünddraht en etwa 60 cm langes Stück ab, messen se de Länge desselben. Legen se den Draht n der Mtte zusammen, hängen enen schweren Gegenstand n de Schlaufe und zwrbeln se den Draht auf. Wederholen se desen Vorgang und wegen den Draht anschleßend auf der Fenwaage ab. Zehen se de beden Drahtenden durch de beden Bohrungen n der Abschlussplatte der Pressform, so dass an der Obersete der Abschlussplatte noch ene klene Schlaufe blebt. 5

6 Begen se den Draht auf der anderen Sete der Abschlussplatte so, dass er n de vorhandene Nut zum Legen kommt; setzen se de Platte n de Passform en und scheben se dese auf den Tsch der Spndelpresse. Achten se darauf, dass der Zünddraht ncht geknckt und ncht gequetscht wrd, da an deser Stelle der Draht durchbrennen kann, bevor de Plle zündet. Anschleßend füllen Se de Substanz mttels enes Spatels n de Pressform en. Nach dem Pressen wrd de Spndel ene halbe Umdrehung zurückgestellt, der untere Tsch herausgeklappt und de Plle durch Weterdrehen der Spndel nach unten herausgedrückt. Wegen se de fertgen Pllen mthlfe von Wägepaper auf der Analysenwaage. (De Pllen sollten etwa g schwer sen) Legen se de fertge Plle n en dafür vorgesehenes Wägegefäß, um zu verhndern, dass de Benzoesäure zuvel Wasser zeht. Herstellung der Substanzkapseln Bem Umgang mt den Gelatnekapseln und den Substanzen (Cyclohexan, Cyclohexen und Benzol) sollte se stets Enweghandschuhe zu hrer Scherhet tragen. De Gelatnekapseln werden vor befüllen mt Substanz auf der Analysenwaage gewogen. Anschleßend werden 0,5 0,6 ml Substanz n de Kapsel gefüllt. De befüllte Kapsel wrd erneut gewogen. De Kapsel sollte unmttelbar nach dem Wegen n de Bombe verbracht werden. Beschckung der Bombe des Kalormeters Umwckeln Se de Enden der Elektroden mt dem Draht der Benzoesäureplle. Legen se de befüllte Gelatnekapsel n das Quarzglasgefäß. Danach verschleßen se de Bombe und befüllen se mt 30 bar Sauerstoff. Vor dem befüllen der Bombe mt Sauerstoff muss ene Unterwesung durch den Assstenten/anwesenden Versuchsbetreuer erfolgen. Das befüllen der Bombe mt Sauerstoff sollte aufgrund der Flüchtgket der zu vermessenden Substanzen möglchst rasch erfolgen. Nachdem de Bombe befüllt st sollte se n das Kalormetergefäß gestellt und de Elektroden kontaktert werden. Nach der Messung muss der Druck aus der Bombe abgelassen werden. Des gescheht ausschleßlch unter dem Abzug. 6

7 Aufnahme der Messwerte De n desem Versuch verwendeten Thermometer denen zur Bestmmung von Temperaturänderungen. Der Anzegeberech der Thermometer umfasst ± 4,999 K. Wr deser Anzegenberech überschrtten, so blnkt de Anzege. Es glt daher vor der Messung folgendes zu beachten: 1. Das Gerät muss mndestens ½ Stunde vor Begnn der Messung engeschaltet werden. 2. Der Messfühler muss mmer n de gleche Stellung n das Kalormeter engetaucht werden. 3. Der Startwert sollte so gewählt werden, dass der Anzegeberech für den erwarteten Temperaturansteg ausrecht. Sobald der Messfühler n das Kalormetergefäß engetaucht st kann mt dem Messen begonnen werden. Nach acht Mnuten wrd dr Benzoesäure gezündet. Versuchsdurchführung Step by Step 1. Kalormetergefäß mt 2,800 kg Wasser (demn.) befüllen 2. Rührer starten 3. Drahtstück abschneden, Länge messen (ca. 60 cm) 4. Draht wckeln und wegen 5. Pastlle pressen 6. Pastlle wegen, n Wägegefäß lagern 7. Kapsel wegen 8. Kapsel befüllen (0,5 0,6 ml) 9. Kapsel wegen 10. Bombe mt Pastlle und ggf. Kapsel befüllen 11. Bombe verschleßen 12. Langsam 30 bar Sauerstoff n de Bombe füllen 13. Bombe n das Kalormetergefäß stellen 14. Bombe kontakteren 15. Messung starten 16. nach ca. 8 mn de Pastlle zünden 17. Messung beenden 18. Bombe entnehmen 19. Druck m Abzug entwechen lassen 20. Bombe öffnen und Drahtrest wegen 21. Kalormetergefäß mt 2,800 kg Wasser befüllen 7

8 Versuchsauswertung Im Folgenden soll ergänzend zu den theoretschen Grundlagen beschreben werden, welche Aufgaben von hnen m Rahmen der Versuchsauswertung zu erledgen snd. Das Lesen deses Kaptels ersetzt kenesfalls en ausführlches Gespräch mt dem Versuchsbetreuer über sene Erwartungen den Versuch und das Versuchsprotokoll betreffend. Oberstes Versuchszel st de Ermttlung der Verbrennungsenthalpe organscher Verbndungen. Des Weteren soll de Mesomereenerge von Benzol bestmmt werden. De Messungen mt Benzoesäure denen der Ermttlung der spezfschen Wärmekapaztät des benutzten Kalormeters. Folgende Werte snd gegeben: Brennwert Benzoesäure: f Benzoesäure = J/g Brennwert Draht: f Draht = 4 J/cm Brennwert Kapsel: f Kapsel = J/g De Temperaturunterschede sollen mttels der Tangentenmethode aus der Auftragung der abgelesenen Temperatur (T) gegen de Zet (t) ermttelt werden. De Dagramme sollten m Hochformat ausgedruckt werden, um ene bessere Genaugket zu erzelen. Zur Ermttlung der Kalormeterkonstanten K snd folgende Sachverhalte zu beachten: Q zu = Q ab Q = c Δ T = (c m + K) Δ T zu Kal H2O H2O Q = f m = f m + f m ab Benzoesäure Benzoesäure Draht Draht Dabe snd: c = Wärmekapaztäten m = Massen K = Kalormeterkonstante f = Brennwert Ermttlung der Brennwerte und der spezfschen Verbrennungswärmen der Substanzen (Cyclohexan, Cyclohexen und Benzol) Q zu = Q ab Qzu = c Δ T Qab = f m 8

9 Zu berechnende Größen auf enen Blck: 1. Ermttlung der Kalormeterkonstanten (Kalbrerung mt Benzoesäure) 2. Bestmmung der spezfschen Brennwerte der enzelnen Substanzen (Cyclohexan, Cyclohexen und Benzol). 3. Bestmmung molaren Verbrennungswärme der enzelnen Substanzen (Cyclohexan, Cyclohexen und Benzol). 4. Bestmmung der molaren Verbrennungsenthalpen (flüssg und gasförmg) für de enzelnen Substanzen (Cyclohexan, Cyclohexen und Benzol). 5. Berechnung der Verbrennungsenthalpen für de enzelnen Substanzen (Cyclohexan, Cyclohexen und Benzol) mthlfe der Standardbldungsenthalpen. 6. Bestmmung der Mesomereenthalpe von Benzol, zum enen aus den gemessenen Verbrennungsenthalpen, zum anderen aus den theoretsch ermttelten Verbrennungsenthalpen. Fehlerrechnung: Folgende Größen werden als Fehlerbehaftet angenommen: Δm Analysenwaage : 0, g Δm Schnellwaage : 0,1 g ΔT: 0,01 K Für de Kalormeterkonstanten, Verbrennungswärmen und Verbrennungsenthalpen sollen Fehlerrechnungen durchgeführt werden. 9

10 Themen für de Versuchsvorbesprechung Grundlagen der Thermodynamk Defntonen von Systemen, ntensven und extensven Größen, Zustandsfunktonen und Zustandsgrößen Hauptsätze der Thermodynamk Chemsches Potental Beschrebung ener Reakton mt der Reaktonslaufzahl Chemsche Thermodynamk Kalorsche Zustandsglechung Defntonen für Enthalpe und nnere Energe Wärmekapaztät C, Zusammenhang zwschen c p und c V Temperaturabhänggket von c p und c V Zusammenhang zwschen Enthalpe und nnerer Energe Temperaturabhänggket der Enthalpe; Krchhoffscher Satz Satz von Hess Knetsche Gastheore und Gasthermodynamk Zustandsglechung für deale und reale Gase Herletung der Wärmekapaztät mt Hlfe der knetschen Gastheore Mesomere Was st Mesomere? Wo trtt se auf? Was snd Aromaten? Hückelregel 10

11 5.Lteraturlste zu V8/9 Bücher: Gerd Wedler, Lehrbuch der physkalschen Cheme, VCH P. W. Atkns, Physkalsche Cheme, VCH Walter J. Moore, Grundlagen der physkalschen Cheme, de Gruyter W. Hemmnger, G. Höhne, Kalormetre, Verlag Cheme Allnger, Cava, De Jong.., Organsche Cheme, de Gruyter Chrsten, Vögtle, Grundlagen der organschen Cheme, Salle + Sauerländer Bayer, Walter, Organsche Cheme, S. Hrzel Verlag Stuttgart Zetschrftenartkel: Journal of chemcal educaton: Cheme n unserer Zet: Physk n unserer Zet: Vol. 58 (1981), S. 21 Vol. 58 (1981), S. 620 Vol. 65 (1988), S. 123 Vol. 69 (1992), S. 500 Vol. 73 (1996), S. 411 Vol. 73 (1996), S. 717 Vol. 74 (1997), S. 132 Vol. 74 (1997), S Jhrg. (1986), S Jhrg. (1992), S Jhrg. (1976), S

12 12

13 13

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung Grundraktkum Physkalsche Cheme Versuch 22 Bestmmung des Aktvtätskoeffzenten mttels Damfdruckernedrgung Überarbetetes Versuchsskrt, 27..204 Grundraktkum Physkalsche Cheme, Versuch 22: Aktvtätskoeffzent

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Thermodynamik der Verbrennung

Thermodynamik der Verbrennung hermodynamk der Verbrennung Chemsche Reakton 1.0 Verbrennung Exotherme Reakton Endotherme Reakton Reversble Reakton: A+B C+D Z.B. Säure Base Glechgewchte Irreversble Reakton A+B C+D Z.B. Verbrennungsreaktonen

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Oszillierende Reaktionen

Oszillierende Reaktionen 1 F 42 Oszllerende Reaktonen Grundlagen Unter ener oszllerenden, chemschen Reakton versteht man en Reaktonssystem, be dem de Konzentraton enger oder aller auftretenden Spezes oszllatorsches Zetverhalten

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Wenn 1 kg Wasser verdampft, leistet es gegen den Atmosphärendruck eine Arbeit von 169 kj.

Wenn 1 kg Wasser verdampft, leistet es gegen den Atmosphärendruck eine Arbeit von 169 kj. A. (Bespel) Welce Arbet wrd gelestet, wenn kg Wasser be o C (n der Küce) verdampft? ( l (H O) = 953,4 kg/m³, g (H O) =,5977 kg/m³ ) Der Vorgang läuft be dem konstanten Druck p =,3 bar ab. Da der Druck

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Analytische Chemie. LD Handblätter Chemie. Bestimmung der chemischen Zusammensetzung. mittels Röntgenfluoreszenz C3.6.5.2

Analytische Chemie. LD Handblätter Chemie. Bestimmung der chemischen Zusammensetzung. mittels Röntgenfluoreszenz C3.6.5.2 SW-214-3 Analytsche Cheme Angewandte Analytk Materalanalytk LD andblätter Cheme Bestmmung der chemschen Zusammensetzung ener Messngprobe mttels Röntgenfluoreszenz Versuchszele Mt enem Röntgengerät arbeten.

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamk Thermodynamk Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamk 1 Enletung 2 Grundbegrffe 3 Systembeschrebung 4 Zustandsglechungen 5 Knetsche

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Eva Hoppe Stand: 2000

Eva Hoppe Stand: 2000 CHECKLISTE ARBEITSSCHUTZ A. Rechtsgrundlagen der Arbetgeberpflchten Ist der Arbetgeber/de Behördenletung mt der Rechtssystematk und dem modernen Verständns des Arbetsschutzes vertraut? Duale Rechtssystematk

Mehr

1. Klausur in "Technischer Thermodynamik I" (WiSe2013/14, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik I (WiSe2013/14, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Apl. Professor Dr.-Ing. K. Spndler 1. Klausur n "Technscher Thermodynamk I" (WSe2013/14, 12.12.2013) - VERSION 1 - Name: Fachr.: Matr.-Nr.:

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

WÄRMEÜBERTRAGUNG - Doppelrohr

WÄRMEÜBERTRAGUNG - Doppelrohr WÄRMEÜBERTRAGUNG - Doppelrohr Dpl.-Ing. Eva Drenko 1. Voraussetzungen Für de Durchführung deses Übungsbespels snd folgende theoretsche Grundlagen erforderlch: a. Gesetzmäßgketen von Transportprozessen;

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Messtechnik/Qualitätssicherung

Messtechnik/Qualitätssicherung Name, Vorname Matrkel-Nr. Studenzentrum Studengang Wrtschaftsngeneurwesen Fach Messtechnk/Qualtätsscherung Art der Lestung Prüfungslestung Klausur-Knz. WI-MQS-P 08053 Datum 3.05.008 Hnwes zur Rückgabe

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

SS 2011 Versuch 3 Seite 1 von 9 Reaktionsenthalpie und entropie eines heterogenen Systems

SS 2011 Versuch 3 Seite 1 von 9 Reaktionsenthalpie und entropie eines heterogenen Systems SS Versuch 3 Sete von 9 eaktonsenthalpe und entrope enes heterogenen Systems Aufgabe Im ahmen deser Versuche soll de Glechgewchtstemperatur ener heterogenen eakton als Funkton des Drucks des betelgten

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Versuchsanleitungen. Physikalisch-Chemischen Praktikum. Biologen

Versuchsanleitungen. Physikalisch-Chemischen Praktikum. Biologen Versuchsanletungen zum Physkalsch-Chemschen Praktkum für Bologen Insttut für Physkalsche Cheme Georg-August-Unverstät Göttngen Tammannstr. 6 3777 Göttngen Letzte Bearbetungszet: 3.1.6 9:17-2 - Inhaltsverzechns

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Basel III Kontrahentenrisiken

Basel III Kontrahentenrisiken Basel III Kontrahentenrsken Chrstoph Hofmann De Fnanzkrse hat gezegt, dass das aus ncht börsengehandelten (OTC) Dervaten hervorgehende Kontrahentenrsko von entschedender Bedeutung für de Stabltät des Bankensystems

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

SH SK S..LL. BPW ECO Disc Trailerscheibenbremsen TSB 3709 / 4309 / 4312. Servicemaßnahme BPW BERGISCHE ACHSEN. Trailerscheibenbremsen

SH SK S..LL. BPW ECO Disc Trailerscheibenbremsen TSB 3709 / 4309 / 4312. Servicemaßnahme BPW BERGISCHE ACHSEN. Trailerscheibenbremsen Servcemaßnahme BPW ECO Dsc Tralerschebenbremsen BPW BERGISCHE ACHSEN BPW ECO Dsc Tralerschebenbremsen TSB 3709 / 4309 / 4312 Servcemaßnahme SH SK S..LL BPW ECO Dsc Servcemaßnahme Inhalt BPW Servce-Kt BPW

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells Versuch C2: Monte-Carlo Smulatonen enes Ferromagneten m Rahmen des Isng-Modells 15. November 2010 1 Zelstellung Es glt de Temperatur des Phasenüberganges zwschen dem ferro- und paramagnetschen Verhalten

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Fähigkeitsuntersuchungen beim Lotpastendruck

Fähigkeitsuntersuchungen beim Lotpastendruck Fakultät Elektrotechnk und Informatonstechnk Insttut für Aufbau- und Verbndungstechnk der Elektronk Fähgketsuntersuchungen bem Lotpastendruck Dr.-Ing. H. Wohlrabe Ottobrunn, 2. Februar 2009 Qualtätsmerkmale

Mehr

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung 3 Lösungen 3. Mschungen und Lösungen Homogene Phasen, n denen alle Komonenten glechartg behandelt werden, heßen Mschungen. Wenn ene Komonente m Überschuß vorlegt, kann man von Lösungen srechen. Sezfsche

Mehr

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren! Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Prof. Dr. Axel Brehm Universität Oldenburg - Praktikum der Technischen Chemie Rektifikation. 1 Einleitung. f =

Prof. Dr. Axel Brehm Universität Oldenburg - Praktikum der Technischen Chemie Rektifikation. 1 Einleitung. f = Prof. Dr. Axel Brehm Unverstät Oldenburg - Praktkum der Technschen Cheme Rektfkaton Enletung Berechnung von Phasenglechgewchten realer Systeme Be der Rektfkaton werden Flüssgketen mt zwe oder mehr Komponenten

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

InfoTerminal Touch Gebrauchsanweisung

InfoTerminal Touch Gebrauchsanweisung Gebrauchsanwesung Bestell-Nr.: 2071 xx 1. Scherhetshnwese Enbau und Montage elektrscher Geräte dürfen nur durch Elektrofachkräfte erfolgen. Dabe snd de geltenden Unfallverhütungsvorschrften zu beachten.

Mehr

Transistor als Schalter

Transistor als Schalter Elektrotechnsches Grundlagen-Labor II Transstor als Schalter Versuch Nr. 5 Erforderlche Geräte Anzahl Bezechnung, Daten GL-Nr. 1 Doppelnetzgerät 198 1 Oszllograph 178 1 Impulsgenerator 153 1 NF-Transstor

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken!

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken! SEMINARPROGRAMME Abenteuer Führung Der Survval Gude für den ersten Führungsjob De erste Führungsaufgabe st ken Zuckerschlecken! Junge Hgh Potentals erkennen das schnell. Her taucht ene unangenehme Überraschung

Mehr

1. Änderungstarifvertrag (TV Tariferhöhung2012 AWO Hamburg) vom 25. Mai 2012

1. Änderungstarifvertrag (TV Tariferhöhung2012 AWO Hamburg) vom 25. Mai 2012 1. Änderungstarfvertrag (TV Tarferhöhung2012 AWO Hamburg) vom 25. Ma 2012 zum Tarfvertrag für de Beschäftgten der Arbeterwohlfahrt Hamburg (V AWO Hamburg) vom 19. Februar 2009 zum Tarfvertrag zur Überletung

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

Konditionenblatt. Erste Group Bank AG. Daueremission Erste Group Reale Werte Express II. (Serie 211) (die "Schuldverschreibungen") unter dem

Konditionenblatt. Erste Group Bank AG. Daueremission Erste Group Reale Werte Express II. (Serie 211) (die Schuldverschreibungen) unter dem Kondtonenblatt Erste Group Bank AG 24.04.2012 Daueremsson Erste Group Reale Werte Express II (Sere 211) (de "Schuldverschrebungen") unter dem Programm zur Begebung von Schuldverschrebungen an Prvatkunden

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr