Kap. 7 Strömungsmechanik

Größe: px
Ab Seite anzeigen:

Download "Kap. 7 Strömungsmechanik"

Transkript

1 Kap. 7 Stömungsmechanik. Gundbegiffe. Die Kontinuitätsgleichung 3. Die Gleichung von Benoulli 4. Laminae Stömungen 5. Auftieb und Wibelbildung M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite

2 Gundbegiffe Stomöhe: 7.. Stömungen in Flüssigkeiten (gilt auch fü Gase) v (, t) Stomlinie (Stomfaden) Stomöhe: Gesamtheit de Stomlinien duch einen Queschnitt Stömungsfeld: (, t) v ( ) ( ) v Stationäes Stömungsfeld: (zeitlich konstant) Stomlinien v entlang M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite

3 7.. Stömungen in Flüssigkeiten Stomlinie (Stomfaden) v v (, t) Laminae Stömung: ist wibelfei. Stomfäden liegen nebeneinande. Reibungskäfte beschleunigende Käfte. Tubulente Stömung: ist nicht wibelfei. Goße Reibung an Beandungen. Kleine innee Reibung. v M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 3

4 7.. Kontinuitätsgleichung Wasseohe mit veändelichem Queschnitt: Stömung ideale Flüssigkeit v v A A Inkompessible Flüssigkeit: ρ const. div v 0 Äquivalent: Wähend dt gilt dv ein dv aus Andes ausgedückt: ( v dt) A ( vdt) A const. ρva Die Massenstomstäke I M ist konstant. v A M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 4 ρ dl d t A ρ d V d t v d M d t I A M

5 7.. Kontinuitätsgleichung Annahme: Flüssigkeitsmasse wid wede ezeugt noch venichtet Massenbilanz wähend dt (nu x-richtung): dm in ( ρv ) xdt da x dm ( ) aus ρvxdt da x+ dx dm da x dv ρ, t v ( x, y,z, t) ( ) x v x x + dx, y,z, t x ( ) x + dx dm dm in aus x x 3 dv ( ρ v ) dx da dt M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 5

6 dm x 7.. Kontinuitätsgleichung dm dm in aus x x 3 dv Gesamtmassenbilanz fü dv wähend dt: dm dm + dm + dm x y z Folge: dρ d m ρ t + d t ρ t + d t ρ t + d t d V ( ρ v ) dx da dt ( ρ v ) dv dt ( ) ( ) ( ) ρ( t) ( ρ v) d t Kontinuitätsgleichung: dρ dt + ( ρv) 0 ( ρv) div( ρv) M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 6

7 7.. Kontinuitätsgleichung Kontinuitätsgleichung: dρ dt Def: Stomdichte j ρ(, t) v(, t) Folgeung: + Massenfluss duch Fläche v Kontinuitätsgleichung: dρ dt ( ρv) 0 + j 0 Wenn die Masse in dv abnimmt,... fließt Masse aus dv hinaus M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 7

8 7.3. Die Benoulligleichung Lokale Duck p (hydodynamische Duck) v ρ Annahmen:. ideale Flüssigkeit η 0 v const. entlang Rohqueschnitt. inkompessible Flüssigkeit ρ const. 3. keine Schwekaft ( kein Rohgefälle ) M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 8

9 Enegiedichten: dε p dv 7.3. Benoulligleichung ε de dv [ F( x + dx) F( x) ] [ p( x + dx) p( x) ] dp dx dv dx dx da dx F(x) da dv dadx v dx Potentielle Enegiedichte: ε p p ( Nullpunkt willkülich bei p 0 ) F(x+dx) ε kin ε dv p ρ dv v 3 dm + ε const. kin ε Kinetische Enegiedichte: Benoulli-Gleichung: p + ρv p0 kin const. ρv M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 9

10 z g 7.3. Roh mit Gefälle im Schweefeld v z(x) Potentielle Enegiedichte im Schweefeld p + ( x) ρv + ρg z const. Potentielle Enegiedichte des hydodynamischen Ducks Kinetische Enegiedichte de Stömung x M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 0

11 7.3. Anwendung: Duckveteilung im Roh h v h h h ρ p ρg h ( ) ρ v Reibung zusätzliches kontinuieliches Duckgefälle M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite

12 Luft 7.3. Anwendung: Zestäube Unteduck M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite

13 p Anwendung: Wassestahlpumpe Wasse, seh langsam bewegt Roh p < < p 0 Luft p < < p 0 Wasse, seh schnell bewegt Vakuumgefäß Ansaugstutzen Außenluftduck ( >> p) M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 3

14 7.3. Pandtlsches Stauoh Luftstömung (Fahtwind) ρ p v p 0 Flüssigkeit p 0 p ρv M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 4

15 7.3. Beispiel: Pitot-Roh p h p ρgh Statische Duck v ρ p 0 Gesamtduck ( Stauduck ) p p + 0 ρv M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 5

16 7.3. Hydodynamisches Paadoxon Luft, v Chladnische Pfeife d 0 v Unteduck übewiegt Schwekaft p ρv d v M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik (Physik I) Seite 6

Die Bernoullische Gleichung

Die Bernoullische Gleichung Semina: Gundlagen de Physik von Flüssigkeiten Die Benoullische Gleichung von Andeas Jung Institut fü Metallphysik und Nukleae Festköpephysik Gliedeung Heleitung Benoulli-Gleichung: 1 p+ ρ v = Ducksonden

Mehr

Kap. 8 Thermodynamik

Kap. 8 Thermodynamik Kap. 8 Themodynamik 1. Tempeatu und Wämeenegie 2. Wämeleitung und Diffusion 3. Hauptsätze de Themodynamik 4. Reale Gase M. zu Nedden / S. Kowaik Volesung 23 Mechanik und Themodynamik (Physik I) Seite 1

Mehr

8 Strömende Flüssigkeiten und Gase

8 Strömende Flüssigkeiten und Gase 8 Stömende Flüssigkeiten und Gase Gleiche Physik fü beide Phasen abe ρ fl >> ρ g, κ fl

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Der Zusammenhang wird im experimentell bestimmten Spannungs-Dehnungs Diagramm festgehalten (Zugversuch). = F A

Der Zusammenhang wird im experimentell bestimmten Spannungs-Dehnungs Diagramm festgehalten (Zugversuch). = F A Mechanik 2! 3 L 1. Defomationen! Spannung-Dehnung! Festköpe können duch Zug velänget weden. Die elative Velängeung Δl l heisst Dehnung ε. Sie hängt von de Zugspannung σ F und de Mateialgösse E (Elastizitätsmodul)

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

Dr.-Ing. habil. Jörg Wollnack 18.12.2008 GHY.1. Hydraulische Systeme

Dr.-Ing. habil. Jörg Wollnack 18.12.2008 GHY.1. Hydraulische Systeme GHY.1 Hydraulische Systeme GHY.2 Hydraulische Motoren GHY.3 p i const, p i Fi i F F 1 2 1 2 F 1 2 F 1 2 Hydraulische Presse I GHY.4 Energieerhaltungssatz S + s S + s 01 1 02 2 S F ds F ds 1 1 2 2 S 01

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1

Einführung in die Physik I. Mechanik deformierbarer Körper 1 Einfühung in die Physik I Mechanik defomiebae Köe O. von de Lühe und U. Landgaf Defomationen Defomationen, die das Volumen änden Dehnung Stauchung Defomationen, die das Volumen nicht änden Scheung Dillung

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) ...... (Name, Mat.-N, Unteschift) Klausu Stömungsmechanik I (Bachelo) & Technische Stömungslehe (Diplom) 1. Aufgabe (9 Punkte) 03.08.2012 Duch ein Leck füllt sich de Ballasttank (Volumen V B ) eines U-Boots

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I ...... (Name, Mat.-N, Unteschift) Klausu Stömungsmechanik I 16. 03. 2016 1. Aufgabe (9 Punkte) Die Obefläche eines Teleskopspiegels soll duch Quecksilbe ealisiet weden. Das Quecksilbe befindet sich in

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

4 Impulsgleichung. 4.1 Reibungsfreie Strömungen. Das 2. Newtonsche Gesetz in der Mechanik lautet r di dt. r 2. Newtonsches Gesetz (4.

4 Impulsgleichung. 4.1 Reibungsfreie Strömungen. Das 2. Newtonsche Gesetz in der Mechanik lautet r di dt. r 2. Newtonsches Gesetz (4. 4 Impulsgleichung Das. Newtonsche Gesetz in de Mechanik lautet di dt = F. Newtonsches Gesetz (4.) I ist de lineae Impuls (epäsentativ fü das Podukt aus Masse mal Geschwindigkeit) des Massensystems und

Mehr

Wichtige Begriffe der Vorlesung:

Wichtige Begriffe der Vorlesung: Wichtige Begiffe de Volesung: Abeit, Enegie Stae Köpe: Dehmoment, Dehimpuls Impulsehaltung Enegieehaltung Dehimpulsehaltung Symmetien Mechanische Eigenschaften feste Köpe Enegiesatz de Mechanik Wenn nu

Mehr

Versuche: Transformator, Schmelzen von Draht und Metall, Hörnetblitz

Versuche: Transformator, Schmelzen von Draht und Metall, Hörnetblitz 4.4 Gegeninduktion Pimä- Sekundä-keis Up U S Vesuche: Tansfomato, Schmelzen von Daht und Metall, Hönetblitz 1 4.5 Zusammenfassung: Elekto-/Magnetodynamik langsam veändeliche Felde a. Elektostatik: (Vakuum)

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

254 15. ORDNUNG UND UNORDNUNG

254 15. ORDNUNG UND UNORDNUNG 54 15. ORDNUNG UND UNORDNUNG 15.4 Ordnungsdomänen Da die verschiedenen Untergitter im llgemeinen gleichwertig sind, können die - oder B-tome bei einer an verschiedenen Stellen beginnenden Keimbildung das

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Vortrag von Sebastian Schreier

Vortrag von Sebastian Schreier Sloshing in LNG Tanks Fist Analyses Votag von Zum Thema Este Analysen zum Sloshingvehalten von LNG-Tanks auf Schiffen Im Rahmen de Volesungseihe 1 Gliedeung Einleitung Motivation Modellieung Modellvesuche

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Stichwote aus de 3. Volesung: inkelaße: Radiant und Steadiant die (gleichföige) Keisbewegung als beschleunigte Bewegung (Richtungsändeung von v) Dastellung de kineatischen Gößen duch die inheitsvektoen

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 215/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

Ruhende Flüssigkeiten (Hydrostatik)

Ruhende Flüssigkeiten (Hydrostatik) Ruhende lüssigkeiten (Hydostatik) lüssigkeitsshihten sind fei gegeneinande veshiebba. Keine Rükstellkäfte bei Sheung, Tosion; Reibungskäfte möglih. Nu Volumenändeung liefet Rükstellkaft. Unte Duk p efolgt

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

Felder ausgewählter Konfigurationen

Felder ausgewählter Konfigurationen Felde ausgewählte Konfiguationen Anwendung von Supepositionspinzip Gauß sche Satz Feldbeechung aus Potenzial. Feld und Potenzial innehalb und außehalb eine Vollkugel. Feld und Potenzial innehalb und außehalb

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phaazeuten und Biologen (PPh) Mechanik, Elektizitätslehe, Optik Übung : Volesung: Tutoials: Montags 13:15 bis 14 Uh, Butenandt-HS Montags 14:15 bis 15:45, Liebig HS Montags 16:00

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Übung 4 - SIMPLE-Verfahren

Übung 4 - SIMPLE-Verfahren Übung 4 - SIMPLE-Verfahren Musterlösung C. Baur, M. Schäfer Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau 27.11.2008 TU Darmstadt FNB 27.11.2008 1/26 Aufgabe 1 - Problembeschreibung Geometrie

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Lösungen zum Übungsblatt 5 zur Vorlesung Physikalische Chemie WS 2009/2010 Prof. Dr. Bartsch

Lösungen zum Übungsblatt 5 zur Vorlesung Physikalische Chemie WS 2009/2010 Prof. Dr. Bartsch 1 Lösungen zum Übungsblatt 5 zu Volesung hysikalische Chemie WS 29/21 o. D. Batsch 5.1 L (5 unkte Geben Sie die Deinition de Enthalpie an und zeigen Sie, dass die bei konstantem Duck zwischen System und

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

Technische Universität Chemnitz Professur für Hochfrequenztechnik und Theoretische Elektrotechnik Prof. Dr. rer. nat. M. Chandra

Technische Universität Chemnitz Professur für Hochfrequenztechnik und Theoretische Elektrotechnik Prof. Dr. rer. nat. M. Chandra Technische Univesität Chemnitz Pofessu fü Hochfequenztechnik und Theoetische Elektotechnik Pof. D. e. nat. M. Chanda Paktikum Gundlagen de Elektotechnik Vesuch: G5 Elektisches Stömungsfeld 1. Vesuchsziel

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik 17. Volesung EP III. Elektizität und Magnetismus 17. Elektostatik Vesuche: Reibungselektizität Alu-Luftballons (Coulombkaft) E-Feldlinienbilde Influenz Faaday-Beche Bandgeneato 17. Elektostatik 17. Volesung

Mehr

Magnetostatik. Magnetfeld eines Leiters

Magnetostatik. Magnetfeld eines Leiters Magnetostatik 1. Pemanentmagnete 2. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss mpeesches Gesetz iii. Feldbeechnungen mit mpeschen Gesetz i. Das Vektopotenzial.

Mehr

Stabile periodische Bewegungen (Grenzzyklen)

Stabile periodische Bewegungen (Grenzzyklen) Stabile periodische Bewegungen (Grenzzyklen) 1. Nichtlineare Systeme mit zwei Gleichungen Prinzipiell neu: Alle Systeme mit mindestens 2 unabhängigen DGL können als Lösungen geschlossene Kurven im Phasenraum

Mehr

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Aufgabe 1 Hook sches Gesetz für ein Federpendel Bei einer Feder, für die das Hook sche Gesetz gilt, ist die rücktreibende Kraft F F proportional

Mehr

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m)

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m) Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Nullpunkt fei wählba (abh. von Masse m) d Potential: eldstäke: bezogen auf Pobemasse (unabh. von Masse

Mehr

Zusammenfassung der Vorlesung PPh (Einführung in die Physik für Pharmazeuten und Biologen) ohne Garantie auf Vollständigkeit

Zusammenfassung der Vorlesung PPh (Einführung in die Physik für Pharmazeuten und Biologen) ohne Garantie auf Vollständigkeit Zusammenfassung de Volesung PPh (Einfühung in die Physik fü Phamazeuten und Biologen) ohne Gaantie auf Vollständigkeit Inhalt: -Mechanik -Hydodynamik -Themodynamik -Elektizitätslehe -Optik Mechanik allgemein

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

2.1 Ableitung eines Vektors nach einem Skalar

2.1 Ableitung eines Vektors nach einem Skalar Kapitel 2 Differentiation von Feldern 2.1 Ableitung eines Vektors nach einem Skalar Wir betrachten einen Vektor im Raum, der sich zeitlich verändert, d.h. a(t). Für einen Zeitpunkt t + t gilt dann a =

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 19. 12. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 05. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 05. 07. 2007 Klausur Die Klausur

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Ein Beitrag zur Elektrodynamik. Bernhard Riemann [Annalen der Physik und Chemie. Bd. 131.]

Ein Beitrag zur Elektrodynamik. Bernhard Riemann [Annalen der Physik und Chemie. Bd. 131.] Ein Beitag zu Elektodynamik. Benhad Riemann [Annalen de Physik und Chemie. Bd. 131.] Tanscibed by D. R. Wilkins Peliminay Vesion: Decembe 1998 Coected: Apil 2 Ein Beitag zu Elektodynamik. Benhad Riemann

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme

Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme Florian Krämer 27.1.2009 Anwendungen in der Physik Phasen- und Zustandsraum Hamiltonsche Systeme Integralinvarianten Anwendungen

Mehr

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral Analysis D-BAUG Dr. ornelia Busch FS 6 Serie 9. Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green das Linienintegral xy dx + x y 3 dy, D wobei D das Dreieck mit den Eckpunkten (,,

Mehr

Die Burgers Gleichung

Die Burgers Gleichung Die Burgers Gleichung Vortrag im Rahmen der Vorlesung Spektralmethoden Elena Frenkel Samuel Voit Balthasar Meyer 29. Mai 2008 1 Einfürung Ein kurzer Überblick Physikalische Motivation 2 Cole-Hopf Transformation

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 10.12.2018 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr D Castrigiano Dr M Prähofer Zentralübung 85 Oberfläche des Torus im R 4 TECHNICHE UNIVERITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis http://wwwmatumde/hm/ma924 2W/ Gegeben

Mehr

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh.

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh. Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Potential: eldstäke: Nullpunkt fei wählba (abh. von Masse m) bezogen auf Pobemasse (unabh. von Masse

Mehr