Elektrodynamik II - Wechselstromkreise

Größe: px
Ab Seite anzeigen:

Download "Elektrodynamik II - Wechselstromkreise"

Transkript

1 Physik A VL36 ( Elekrodynamik II - Wechselspannung und Wechselsrom Wechselspnnung durch Indukion Drehsrom Schalungen mi Wechselsrom Kirchhoff sche h egeln Maschenregel bei Indukiviäen und Kapaziäen Komplexe Darsellung von Wechselsromgrößen Der elekrische Schwingkreis 1

2 Wechselspannung Umkehrung des Elekromoors: mechanische Flächenänderung im Magnefeld es wird Indukionsspannung und somi Srom erzeug: Sromgeneraor periodische Flächenänderung Wechselspannung wird induzier r r Φ B A U B ind B A cosα Φ cos( ω dφ B A Fluss A cosα Φ Φ α ω cos( ω U ind U sin( ω Dynamoprinzip: Werner von Siemens

3 Wechselspannung und Wechselsrom Wechselspannung erzeug über Ohm sches Gesez auch Wechselsrom U ind U sin( ω I I sin( ω I ind allgemeine Formulierung von Spannung, Srom und Leisung U ( U cos( ω + ϕ I ( I cos( ω + φ I P( U ( I( U cos( ω I cos( ω ϕ, φ: Phasenwinkel/-Verschiebungen cos ( ω ϕ und φ sind Phasen bezüglich einer beliebigen eferenz Srom und Spannung müssen nich gleichzeiig ihr Maximum haben Beispiel: Ohm scher Widersand die Phasen zwischen Srom und Spannung sind wegen U ( I( gleich. Ohm sches Gesez In diesem Fall kann ϕ φ gesez werden. bei Wechselsrom U U 3

4 Wechselspannung und Wechselsrom Vergleich Gleichsrom / Wechselsrom Lampen sollen im zeilichen Miel gleich hell leuchen Leisung bei Gleichspannung und bei Wechselspannung P U P ( U cos ( ω P 1 U U U eff U eff Gleichspannung Wechselspannung P U I P ( U ( I ( U eff I eff Sromnez liefer effekive Spannung von U eff 3 V Spizenspannung U U eff 3 V 35 V 4

5 Wechselspannung und Wechselsrom Drehsrom Dreiphasenwechselsrom Generierung eines Dreiphasenwechselsroms: 3 Spulen um einen roierenden Sabmagneen die drei Spannungen werden mi vier Adern (drei Phasen und ein Nullleier überragen. Spannung zwischen einer Phase und Nullleier: 3 V (früher: V im Miel Spannung zwischen zwei Phasen: 3V 3 4V (früher: 38 V im Miel Wechselspannung mi drei Phasen höhere Spannungen für särkere Lasen 5

6 Frage: Ändern sich egeln für Schalungen mi Wechselsrom? Wechselsrom gib im Miel einen Wer für Srom dieselben Geseze gelen egel 1: Knoenregel In jedem Knoen verschwinde die Summe aller N Sröme (1. Kirchhoff sche egel egel : Maschenregel In jeder geschlossenen Masche verschwinde die Summe aller Spannungen (. Kirchhoff sche egel N i 1 I i N i 1 U i Zunächs: Güligkei nur für Ohm sche Widersände im Schalkreis! 6

7 in einem Wechselsromkreis können auch Spulen und Kondensaoren eingebau sein: außer Widersänden noch Indukiviäen L und Kapaziäen C Maschenregel bei Indukiviäen und Kapaziäen wenn Indukionsspannungen und kapaziive Spannungen mi berücksichig werden, gil die Maschenregel weierhin!! U ind L di Indukionsspannung ( VL33 U C Q C kapaziive Spannung ( u.a. VL34 7

8 Kondensaoren Kapaziäen C der Zusammenhang zwischen Spannung und Srom beim Kondensaor is dq I( C du ( Q CU mi der Wechselspannung U ( U cos( ω U( I( C folg für den Wechselsrom: π I ( ω CU sin( ω ω CU cos( ω + 1 ( C C ω ( I U / Am Kondensaor läuf der Srom der Spannung um π/ 9 voraus 8

9 Kondensaoren Kapaziäen C Am Kondensaor läuf der Srom der Spannung um π/ 9 voraus, da sich zunächs Ladungen auf den Plaen ansammeln müssen U(, I( U( I( T T/ U ( U cos( ω I π I cos( ω + ( am Kondensaor wird im Miel keine elekrische Leisung aufgenommen! zeiabhängige Leisung: Scheinleisung oder Blindleisung 9

10 Spulen Indukiviäen L der Zusammenhang zwischen Spannung und Srom bei der Spule is U ( + Uind ( (Maschenregel I( U ( L di( U( L Inegraion ergib den Wechselsrom: U U π I ( sin( ω cos(ω ω L ω L L ω L L ( I U / An einer Spule läuf der Srom der Spannung um π/ 9 nach 1

11 Spulen Indukiviäen L bei der Spule läuf der Srom der Spannung nach, da die Indukionsspannung ihrer Ursache engegenwirk U(, I( U( I( I π I cos( ω + ( T U ( U cos( ω Kondensaor T/ Phasenverschiebung um π/ zwischen Srom und Spannung eine ideale Spule zeig keine milere Leisung: Blindleisung 11

12 Komplexe Darsellung der Wechselsromgrößen nur der Ohm sche Widersand ha eine Wirkleisung Kondensaor und Spule haben eine Blindleisung Darsellung in der komplexen Zahlenebene: Wechselsromwidersand (Impedanz i Im(Z Z Z e ϕ Z indukive Achse Blindwid dersand ϕ Z e(z Ohm sche Achse: Wirkwidersand 1

13 Komplexe Darsellung der Wechselsromgrößen Ohm scher Widersand: reelle Impedanz Z ϕ Z Impedanz am Kondensaor is rein imaginär: Kapaziä Z C 1 1 π Z C ϕ iωc ωc Impedanz an der Spule is rein imaginär: Indukiviä Z L iω L Z ω L Z L π ϕ + Die Widersände von Kondensaor und Spule sind frequenzabhängig! 13

14 Komplexe Darsellung der Wechselsromgrößen Impedanzen und Phasenverschiebung zwischen Spannung und Srom eines Ohm schen Widersandes (, einer Indukiviä (L und einer Kapaziä (C Z ϕ Z C 1 ωcc Z ωl L π + ϕ L Z ϕ ω π ω ϕc 14

15 Der elekrische Schwingkreis eihenschalung aus Spule, Kondensaor und Ohm schem Widersand: Schwingkreis Die Maschenregel und Einsezen der jeweiligen Spannungen ergib nach Differeniaion eine Differenialgleichung für das Verhalen der Spannung und durch Einsezen der Widersände des Sroms in der Zei U UC + U L + U U Q di U L L U I Alle Gleichungen nach ableien und einsezen: C C I ( C + L d I ( + di ( I ( LC + d I ( + L di ( Differenialgleichung in I L 1 γ ω LC 15

16 Der elekrische Schwingkreis Diskussion der Differenialgleichung g ( LC d I( I + + mi γ und ω d I L di( ( L di( + γ + ω I( Differenialgleichung eines gedämpfen harmonischen Oszillaors 1 LC x( ( - Widersand ensprich eibung (Dämpfung γ - Masse m ensprich der Indukiviä L - Federkonsane D ensprich Kapaziä C mx&& 1 - Die Eigenfrequenz ω des Schwingkreises is: ω LC D γ x& - Das Verhälnis von eibung γ zu Eigenfrequenz ω besimm die Ar der Schwingung - Schwingfall für ω > γ LC > C 16

17 Der elekrische Schwingkreis Schwingungsfälle g in Abhängigkei gg der Dämpfung ungedämpfe Schwingung Schwingfall aperiodischer Grenzfall Ki Kriechfall hfll 17

18 Der elekrische Schwingkreis Analogie des Schwingkreises zum mechanischen Pendel: Energievereilung g aus Haren: Physik 18

19 Drah als elekrischer Schwingkreis Ein einfacher Drah ha einen Widersand, eine Kapaziä, und eine Indukiviä Ein Drah is ein Schwingkreis! Oszillaion der Absrahlung zwischen magneischer und elekrischer Energie Absrahlungscharakerisik h ik des Herz schen Dipolsl Energiediche 1 1 w ε E + μ B 19

20 Schalungen mi Wechselsrom Drah als elekrischer Schwingkreis Srahlungsrichung des Dipols: Der Dipol srahl in ichung des Vekors S: Poyning-Vekor der Berag von S gib die Srahlungsleisung an, die durch die Fläche da ri die ichung is die des Energieflusses Poyning-Vekor r S r r r S E B 1 μ r c 1 B ε ce μ EB μ r ichungsabhängigkei Dipol: p( des Poyning-Vekors: maximale Absrahlung erfolg senkrech zur Dipolachse John Henry Poyning ( da r S r

21 Zusammenfassung Wechselspannung und srom ensehen durch Indukion bei bewegen Flächen im Magnefeld sinusförmige Änderung der Indukionsspannung Verhalen von Lasen im Wechselsromkreis: ( ω ϕ ( ω φ U ( Ucos + I ( I cos + Widersand : Srom und Spannung phasengleich, reeller Leisungsverbrauch Indukiviä: Srom läuf Spannung um π/ nach: Blindwidersand Kapaziä: Srom läuf Spannung um π / vor: Blindwidersand Die Kombinaion von, L, C ergib einen Schwingkreis: Srom schwing analog zur Auslenkung im Federpendel: harmonischer Oszillaor Dämpfung Widersand, Masse Indukiviä, Federkraf Kapaziä erzwungene Schwingung: esonanz bei,l,c, Hoch- und Tiefpass bei C und L-Kombinaionen Ein Drah besiz ebenfalls Widersand, Kapaziä und Indukiviä is ein Schwingkreis - Oszillaion der Absrahlung zwischen magneischer und elekrischer Energie Absrahlungscharakerisik h ik des Herz schen Dipols Poyning-Vekor Vk 1

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Experimenalphysik II (Kip SS 9) Inhal der Vorlesung Experimenalphysik II Teil 1: Elekriziäslehre, Elekrodynamik 1. Elekrische Ladung und elekrische Felder. Kapaziä 3. Elekrischer Srom 4. Magneosaik 5.

Mehr

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme WS 8. Wechselsröme 8.1 Einleiung n Wechselsromkreisen spielen neben Ohmschen Widersänden auch Kondensaoren (Kapaziäen) und Spulen (ndukiviäen) wichige Rolle. n diesem Versuch soll am Beispiel einfacher

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Wechselstromlehre. (Lothar Melching) 1 Komplexe Zahlen Arithmetik Polarkoordinaten... 2

Wechselstromlehre. (Lothar Melching) 1 Komplexe Zahlen Arithmetik Polarkoordinaten... 2 Wechselsromlehre (Lohar Melching) Inhalsverzeichnis Komplexe Zahlen 2. Arihmeik.............................. 2.2 Polarkoordinaen........................... 2 2 Widersände 3 2. Ohmscher Widersand........................

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich Anleiung zum Physikprakikum für Obersufenlehrpersonen Wechselsröme (WS) Frühjahrssemeser 2017 Physik-nsiu der Universiä Zürich nhalsverzeichnis 11 Wechselsröme (WS) 11.1 11.1 Einleiung........................................

Mehr

i(t) t 0 t 1 2t 1 3t 1

i(t) t 0 t 1 2t 1 3t 1 Aufgabe 1: i 0 0 1 2 1 3 1 1. Eine Kapaziä werde mi einem recheckförmigen Srom gespeis (s.o.). Berechnen Sie den Verlauf der Spannung für den Anfangswer u( 0 )=0V mi 0 = 0s. 2. Skizzieren Sie den eisungsverlauf

Mehr

HÖHERE TECHNISCHE BUNDESLEHRANSTALT SAALFELDEN Höhere Abteilung für Elektrotechnik und Informationstechnik. Angewandte Elektrotechnik AET

HÖHERE TECHNISCHE BUNDESLEHRANSTALT SAALFELDEN Höhere Abteilung für Elektrotechnik und Informationstechnik. Angewandte Elektrotechnik AET HÖHEE EHNSHE BNDESEHANSA SAAFEDEN Höhere Abeilung für Elekroechnik und nformaionsechnik Angewande Elekroechnik AE Formelsammlung Wechselsromechnik Komplexe Wechselsromrechung eil Michael WASE nhalsverzeichnis

Mehr

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen Physik A VL1 (7.11.1) Schwingngen g nd Wellen II Wellen, Gedämpfe Schwingngen Wellen Gedämpfe Schwingngen schwache Dämpfng aperiodischer Grenzfall Kriechfall 1 Ei Erinnerng: Beschreibng von Schwingngen

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Coulomb - Gesetz. Elektrisches Feld. Faradayscher Käfig

Coulomb - Gesetz. Elektrisches Feld. Faradayscher Käfig Coulomb Gesez Elekrische Ladung Q: Teilchen können eine posiive () oder negaive () Ladung Q aufweisen nur ganzzahlige Vielfache der Elemenarladung e sind möglich e = 1,6 10 19 C [Q] = 1 As = 1 C = 1 Coulomb

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elekroechnik II Übungsaufgaben 24) ransiene -eihenschalung Die eihenschalung einer Indukiviä ( = 100 mh) und eines Widersands ( = 20 Ω) wird zur Zei = 0 an eine Gleichspannungsquelle geleg.

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung KW /15 Prof. Dr. R. Reifarh, Dr. J. Glorius Übungen zur Experimenalphysik II Aufgabenbla 3 - Lösung Aufgabe 1: a) Die Laung q im Volumen V beräg: q = ρ(r) V = ρ(r)4πr r = 4πAr 3 r Für ie Laung Q erhalen

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

5 Stromrichter. (Gl. (5.1)) Beispiel 5.2: An den gezeigten Diodenkennlinien sind folgende Berechnungen anzustellen:

5 Stromrichter. (Gl. (5.1)) Beispiel 5.2: An den gezeigten Diodenkennlinien sind folgende Berechnungen anzustellen: 5 Sromricher Sromricher haben beim Seuern und egeln von Elekroenergiesysemen eine große Bedeuung. Sie werden zum Gleich- wie auch zum Wechselrichen eingesez. In Sromrichern werden Dioden, ransisoren (IGBs

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elekroechnik B 27.08.2007 Name: Marikelnummer: Vorname: Sudiengang: Fachprüfung Leisungsnachweis Aufgabe: (Punke) 1 (16) 2 (24) 3 (18) 4 (21) 5 (21)

Mehr

Einführung. in die. Theoretische Physik. Der elektrische Strom Wesen und Wirkungen. Teil III: Elektrische Stromkreise.

Einführung. in die. Theoretische Physik. Der elektrische Strom Wesen und Wirkungen. Teil III: Elektrische Stromkreise. Einführung in die Theoreische Physik Der elekrische Srom Wesen und Wirkungen Teil III: Elekrische Sromkreise Siegfried Pery Fassung vom 3. Januar 3 I n h a l : Zählpfeile Gleichsromkreise 3. Elekrische

Mehr

10. Wechselspannung Einleitung

10. Wechselspannung Einleitung 10.1 Einleiung In Sromnezen benuz man sa Gleichspannung eine sinusförmige Wechselspannung, uner anderem weil diese wesenlich leicher zu erzeugen is. Wie der Name es sag wechsel bei einer Wechselspannung

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Vielseitige Darstellungen von Drehstromsignalen

Vielseitige Darstellungen von Drehstromsignalen Vielseiige Darsellungen von Drehsromsignalen Die Leisungs- und Energie-Analysaoren Qualisar+ dienen zur soforigen Darsellung aller wesenlichen Eigenschafen eines Drehsromnezes. Zeiliche Darsellung Die

Mehr

7 Grundzüge der Lehre von den sinusförmigen Wechselspannungen und

7 Grundzüge der Lehre von den sinusförmigen Wechselspannungen und Grndlagen der Elekroechnik I - 7 07003 7 Grndzüge der Lehre von den sinsförmigen Wechselspannngen nd Wechselsrömen 7 Beschreibngsgrößen Sinsförmige Wechselspannngen bzw -sröme haben eine spezielle Zeiabhängigkei

Mehr

4.2.5 Energie und Energiedichte im Magnetfeld

4.2.5 Energie und Energiedichte im Magnetfeld 4..5 Energie und Energiediche im Magnefeld - die magneische Energie W ui dψ ( ) i i d m ψ ψ Ψ d dw mag V dφ V V Φ Wmag V ( Φ ) dφ Tuorium jeweils Miwoch 3: Uhr Hu - die Energiediche im magneischen Feld

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik Prof. Dr.-Ing. Joachim Böcker. Grundlagen der Elektrotechnik B

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik Prof. Dr.-Ing. Joachim Böcker. Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Grundlagen der Elekroechnik B 06.10.2016 Name: Marikel-Nr.: Sudiengang: Fachprüfung Leisungsnachweis Aufgabe: 1 2 3 4 5 Tess Σ Noe Punke: 20 20 20 20 20 6 100 Bearbeiungszei:

Mehr

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum:

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum: Vorbereitung Resonanz Stefan Schierle Versuchsdatum: 17. 01. 2012 Inhaltsverzeichnis 1 Drehpendel, freie Schwingung 2 1.1 Der Versuchsaufbau.............................. 2 1.2 Trägheitsmoment des Pendelkörpers.....................

Mehr

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten Wechselstromtransformation Idee: Anwendung der Induktion und der Feldführung in einem Eisenkern zur verlustarmen Transformation der Amplitude von Wechselspannungen Anwendung (n >>n 1 ): Hochspannungserzeugung

Mehr

2. Grundlagen Schwingungslehre

2. Grundlagen Schwingungslehre Zusammenfassung Harmonische Anregung (5) Zusammenfassung Harmonische Anregung (6) .4 Akive Schwingungsisolaion (1) a) Schuz der Umgebung von Maschinen, die Schwingungen erzeugen (akiv) b) Schuz eines Geräes,

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Inhalt dieses Vorlesungsteils - ROADMAP

Inhalt dieses Vorlesungsteils - ROADMAP AKUSTISCHE WELLEN Inhalt dieses Vorlesungsteils - ROADMAP MECHANISCHE SCHWINGUNGEN ELEKTRO- MAGNETISCHE WELLEN WECHSELSTROM KREISE E Elemente E11 Mechanische Schwingungen E12 Akustische Schwingungen E13

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik

Ferienkurs Experimentalphysik II Elektrodynamik Ferienkurs Experimentalphysik II Elektrodynamik Lennart Schmidt 07.09.2011 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 3 1.1 Induktion.................................... 3 1.2 Die Maxwell-Gleichungen...........................

Mehr

15 Erzwungene Schwingungen

15 Erzwungene Schwingungen 11 Unwuchen in elasischen Rooren oder Fahrbahnunebenheien bei Fahrzeugen führen auf erzwungene Schwingungen. Berache werden soll im Folgenden der Fall der Schwingungserregung durch eingepräge Kräfe. Bei

Mehr

Energiespeicherelemente der Elektrotechnik Kapazität und Kondensator

Energiespeicherelemente der Elektrotechnik Kapazität und Kondensator 1.7 Energiespeicherelemene der Elekroechnik 1.7.1 Kapaziä und Kondensaor Influenz Eine Ladung befinde sich in einer Kugelschale. Auf der Oberfläche des Leiers werden Ladungen influenzier (Influenz). Das

Mehr

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06 RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Versuch 241 Wechselstromeigenschaften von RLC-Gliedern

Versuch 241 Wechselstromeigenschaften von RLC-Gliedern Versuch 241 Wechselsromeigenschafen von L-Gliedern Niederfrequenz- Versärker mi Nezeil Langdrahanenne, Erdleiung Zwei Kopfhörer mi unerschiedlicher Impedanz ompuer mi Drucker II Lieraur Alle für diesen

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand

Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand 1 Spannungsquelle Belastete und unbelastete Spannungsquelle: Unbelastete Spannungsquelle Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand R i der

Mehr

4 Zeitlich veränderliche Felder 4.1 Das Faradaysche Induktionsgesetz

4 Zeitlich veränderliche Felder 4.1 Das Faradaysche Induktionsgesetz Physik TU Dorund SS8 Göz Uhrig Shauka Khan Kapiel 4 4 Zeilich veränderliche Felder 4. Das Faradaysche ndukionsgesez Michael Faraday 83 (aber auch Joseph Henry und Hans Chrisian Ørse): lekrischer Sro durch

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Beispiele Aufladung von Kondensatoren, Berechnung von Strömen, Spannungen, Zeiten und Kapazitäten.

Beispiele Aufladung von Kondensatoren, Berechnung von Strömen, Spannungen, Zeiten und Kapazitäten. Beispiele Aufladung von Kondensaoren, Berechnung von Srömen, Spannungen, Zeien und Kapaziäen. 1. (876) Beispiel 1.1 Angaben: R 1 = 2M, R 2 = 5M, C = 2µF, U = 60V 1.2 Aufgabe: Nach wie vielen Sekunden nach

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Aufgabe (5 Punke) Aufgabe : Koninuierliche und diskree Signale. a) Zeichnen Sie jeweils den geraden Aneil v g ( ) und den ungeraden Aneil v u ( ) des in Abb.. dargesellen Signals v (). b) Es gelen folgende

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophysik Tutorübungen zu Elektromagnetische Feldtheorie Prof. Wachutka Wintersemester 08/09 Lösung Blatt 0 Allgemeines zum Thema komplexe Wechselstromrechnung

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Grundlagen der Elekroechnik 3 Kapiel 3. Schalvorgänge - Die aplace Transformaion Prof. Dr.-Ing. I. Willms Grundlagen der Elekroechnik 3 S. Fachgebie Nachrichenechnische Syseme 3.. Einführung Nuzung einer

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

1. Einführung und Grundlagen

1. Einführung und Grundlagen . Einführung und Grundlagen. Srom und Spannung. Der Ohmsche Widersand.3 Widersandsnezwerke.4 Kondensaoren und -Nezwerke.5 ndukiviäen und -Nezwerke.6 Komplexe Widersände, mpedanzen.7 - und -Nezwerke.8 Fourier-eihen.9

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Elektrische Schwingungen und Wellen. Wechselströme. Elektrischer Schwingkreis i. Wiederholung Schwingung ii. Freie Schwingung iii. Erzwungene Schwingung iv. Tesla Transformator 3. Elektromagnetische Wellen

Mehr

Übungen zur Physik II PHY 121, FS 2017

Übungen zur Physik II PHY 121, FS 2017 Übungen zur Physik II PHY, FS 07 Serie Abgabe: Dienstag, 3. Mai 00 Impedanz = impedance Phasenlage = phasing Wirkleistung = active power Blindleistung = reactive power Scheinleistung = apparent power Schaltung

Mehr

Amateurfunkkurs. Themen Übersicht. Leistung. Erstellt: Landesverband Wien im ÖVSV. 1 Was ist Leistung? 2 Anpassung. 3 Fragen.

Amateurfunkkurs. Themen Übersicht. Leistung. Erstellt: Landesverband Wien im ÖVSV. 1 Was ist Leistung? 2 Anpassung. 3 Fragen. Was is? Amaeurfunkkurs Landesverband Wien im ÖVSV Ersell: 010-011 Leze Bearbeiung: 4. März 016 Themen Was is? 1 Was is? 3 Energie und Was is? Definiion Wechselsrom is der Energieumsaz pro benöiger Zei.

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

MR - Mechanische Resonanz Blockpraktikum Herbst 2005

MR - Mechanische Resonanz Blockpraktikum Herbst 2005 MR - Mechanische Resonanz, Blockpraktikum Herbst 5 7. September 5 MR - Mechanische Resonanz Blockpraktikum Herbst 5 Assistent Florian Jessen Tübingen, den 7. September 5 Vorwort In diesem Versuch ging

Mehr

Homogene Gleichungssysteme, Gausscher Algorithmus

Homogene Gleichungssysteme, Gausscher Algorithmus HTW Mhemik MST Prof.Dr.B.Grbowski e-mil: grbowski@hw-srlnd.de Tel.: 7- Lösungen zu Übung Homogene Gleichungssyseme, Gusscher lgorihmus u ufgbe Besimmen Sie mi Hilfe des Gusschen lgorihmus die jeweilige

Mehr

5.6. Aufgaben zu Differentialgleichungen

5.6. Aufgaben zu Differentialgleichungen 5.6. Aufgaben zu Differenialgleichungen Aufgabe : Eineilung von Differenialgleichungen nersuche die folgenden Differenialgleichungen auf Ordnung und Lineariä a) y (x) = (y(x)) + y(x) 4 c) 0 = (y (x)) y(x)

Mehr

Schwingungen und Wellen Teil II

Schwingungen und Wellen Teil II Shwingungen und Wellen Teil II 1.. 3. as freie, gedäpfe Feder-Masse-Syse Erzwungene Shwingungen Beispiele Prof. r.-ing. Barbara Hippauf Hohshule für Tehnik und Wirshaf des Saarlandes; Physik, SS 16 Shwingungslehre,

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen

Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen Musterlösung William Hefter - 10/09/009 1. Elektromagnetische Schwingungen 1. Die dafür benötigte Zeit ist t = T 4, wobei

Mehr

1 Gesetz von Biot-Savart

1 Gesetz von Biot-Savart 1 1 Gesetz von Biot-Savart d l: Längenelement entlang der Stromrichtung für eine beliebige Anordnung von Strömen gilt: L I = B( r 2 ) = µ 4π I L A I d l = j d A L ( B( r 2 ) = µ 4π A d l r 12 r12 3 dv

Mehr

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe:

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe: Versuch III Drehpendel Oliver Heinrich oliver.heinrich@uni-ulm.de Bernd Kugler berndkugler@web.de 12.10.2006 Abgabe: 03.11.2006 Betreuer: Alexander Berg 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

4. Zeitabhängige Spannungen und Ströme in Netzwerken

4. Zeitabhängige Spannungen und Ströme in Netzwerken 86 4 Zeiabhängige Spannungen und Sröme 4 Zeiabhängige Spannungen und Sröme in Nezwerken m vorigen Abschni wurde dargeleg, wie durch zeiliche Änderung des magneischen Flusses Spannungen in Leiern induzier

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elekroechnik B 24.9.215 Name: Marikelnummer: Vorname: Sudiengang: Fachprüfung Leisungsnachweis Aufgabe: (Punke) 1 (16) 2 (2) 3 (24) 4 (2) 5 (2) Punke Klausur

Mehr

Nachklausur zu Klausur Nr. 2, WS 2010

Nachklausur zu Klausur Nr. 2, WS 2010 Physikalisches Prakikum für Sudierende der Biologie und Zahnmedizin Nachklausur zu Klausur Nr. 2, WS 2010 Name: Vorname: Mar. Nr.:......... (Bie in Blockschrif) Anschrif:......... Bie Sudienfach ankreuzen.

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Prüfungsaufgaben Wiederholungsklausur

Prüfungsaufgaben Wiederholungsklausur NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Muserlösung Grundlagen der Elekroechnik B 22.08.207 22.08.207 Muserlösung Grundlagen der Elekroechnik B Seie von 3 Aufgabe : Gleichsromseller (20 Punke) u u i T L i 2 T i

Mehr

Das Quadrupol-Massenfilter

Das Quadrupol-Massenfilter Das Quadrupol-assenfiler Idee: Ionen Ladung zu asse: Q/ werden durch zeiabhängige Elekrische Felder E so abgelenk, daß nur besimme Q/ auf der Sollbahn durch das assenspekromeer bleiben. Wolfgang Paul,

Mehr

Versuch EP2 Elektrische Schwingkreise (RCL)

Versuch EP2 Elektrische Schwingkreise (RCL) BERGISCHE UNIVERSITÄT WUPPERTAL FACHBEREICH C - PHYSIK ELEKTRONIKPRAKTIKUM Versuch EP2 Elektrische Schwingkreise (RCL) I. Zielsetzung des Versuches Im diesem Versuch des Elektronikpraktikums sollen die

Mehr

Elektrische Schwingungen

Elektrische Schwingungen E05 Elektrische Schwingungen Elektrische Schwingungen am Serien- und Parallelschwingkreis werden erzeugt und untersucht. Dabei sollen Unterschiede zwischen den beiden Schaltungen und Gemeinsamkeiten mit

Mehr

Grundlagenvertiefung zu PW11. A. Biedermann Updated by W. Markowitsch 21. Mai 2019

Grundlagenvertiefung zu PW11. A. Biedermann Updated by W. Markowitsch 21. Mai 2019 Grundlagenvertiefung zu A. Biedermann Updated by W. Markowitsch 21. Mai 2019 Inhaltsverzeichnis Inhaltsverzeichnis 1 Analogie zwischen mechanischen und elektrischen Schwingungen 1 2 2.1 Serienresonanz..................................

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK. 1. Einführung

GRUNDLAGEN DER WECHSELSTROMTECHNIK. 1. Einführung Einührung - GNDAGEN DE WEHETOMTEHNK. Einührung n der Elekroechnik spielen Wechselspannungen und -sröme in as allen Bereichen eine bedeuende olle. Wechselspannungen haben gegenüber Gleichspannungen einige

Mehr

1 Übungen zum Sto der Donnerstagsvorlesung

1 Übungen zum Sto der Donnerstagsvorlesung TU München Experimentalphysik 2 Ferienkurs WS 08/09 Felicitas Thorne Lösungsvorschlag zu den Übungsaufgaben für Donnerstag, den 26.2.2008 1 Übungen zum Sto der Donnerstagsvorlesung 1.1 Aufgabe 1 Magnetischer

Mehr

Physik III - Anfängerpraktikum- Versuch 354

Physik III - Anfängerpraktikum- Versuch 354 Physik III - Anfängerpraktikum- Versuch 354 Sebastian Rollke (03095) und Daniel Brenner (05292) 2. September 2005 Inhaltsverzeichnis Einleitung und Zielsetzung 2 2 Theorie 2 2. Gedämpfte Schwinungen................................

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Vorlesung 10+11: Roter Faden:

Vorlesung 10+11: Roter Faden: Vorlesung 10+11: Roter Faden: Heute: Harmonische Schwingungen Erzwungene Schwingungen Resonanzen Gekoppelte Schwingungen Schwebungen, Interferenzen Versuche: Computersimulation, Pohlsches Rad, Film Brücke,

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung)

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) 20. Vorlesung III Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) Versuche: Aluring (Nachtrag zur Lenzschen Regel, s.20)

Mehr