5.6. Aufgaben zu Differentialgleichungen

Größe: px
Ab Seite anzeigen:

Download "5.6. Aufgaben zu Differentialgleichungen"

Transkript

1 5.6. Aufgaben zu Differenialgleichungen Aufgabe : Eineilung von Differenialgleichungen nersuche die folgenden Differenialgleichungen auf Ordnung und Lineariä a) y (x) = (y(x)) + y(x) 4 c) 0 = (y (x)) y(x) b) y (x) = y (x) + y(x) d) y (x) = 0,0 y(x) (5 y(x)) Aufgabe : Trennung der Variablen Gib die Lösung der folgenden Differenialgleichungen zu de gegebenen Anfangswer an und überprüfe durch Einsezen: a) y () = x y() i y(0) = f) y () = 0, y() i y(0) = b) y() = x y () i y() = g) y () = 0, y() i y(0) = c) y () = x (y()) i y() = h) y () = 0, [0 y()] i y(0) = d) x = y() y () i y(0) = i) y () = 0,00 y() [0 y()] i y(0) = e) y () y() = + i y(0) = 0 j) y () = ω y() i y(0) = und y (0) = 0 Ansaz: y() = a cos(b) Aufgabe : Radioakive Srahlung Durch den eilweisen Zerfall der srahlenden Subsanz verringer sich die Särke einer radioakiven Srahlungsquelle i der Zei. Die Änderung di der Inensiä I is für sehr kurze Zeispannen d proporional zu I und zu d: di = λ d I. Die Proporionaliäskonsane λ nenn an Zerfallskonsane der srahlenden Subsanz. Die relaive Inensiäsänderung is also Isoop λ/d 7 Cs 0,0 J 0,085 6 Ra, ,6 0 di I () = = λ I(). d Geben Sie die Lösung I() für die nebensehenden Isoope zu gegebene Anfangswer I(0) = 00 an und berechnen Sie ihre Halbwerszeien / (= Zei, nach der I auf die Hälfe abgesunken is). Aufgabe 4: Laber-Beer-Gesez Elekroagneische Srahlen wie z.b. Lich, Röngen- oder γ-srahlung wandeln sich bei Durchgang durch Maerie in andere Energieforen (größeneils Wäre) u und werden dabei abgeschwäch. Die Änderung di der Inensiä I is für sehr kurze Wegspannen dx proporional zu I und zu dx: di = β dx I. Die Proporionaliäskonsane β nenn an Absorpionskoeffizienn des absorbierenden Medius. Die relaive Inensiäsänderung is also di I (x) = = β I(x) dx Bei Arz werden Röngensrahlen je nach Körpereil bzw. Schichdicke i einer Inensiä von kev (Kiloelekronenvol) benuz. Der Absorpionskoeffizien von Blei für Röngensrahlung i 4 kev is β = 4, c. Wie dick uss eine Bleiwese sein, die 99 % dieser Srahlung absorbieren soll? I dx I di λ/n E/k.eV β/c Anwendung 0,,4 85,5 0,05 4,8 64,5 Fernsehröhre 0,0 4,0 4, Röngenappara Aufgabe 5: Baroerische Höhenforel für den Lufdruck F g Der Druck p = in der Höhe h ko durch die auf der Fläche A lasende A Gewichskraf F g = g der darübersehenden Lufsäule i der Masse zusande. g = 9,8 /s is die Schwerebeschleunigung. Da die Lufsäule (heoreisch) unendlich hoch is und ihre Diche ρ(h) i seigender Höhe h abni, läss sich ihre Masse nich direk aus = ρ V berechnen. Schneide an in der Höhe h eine sehr dünne Scheibe der Dicke dh aus dieser Lufsäule aus, so lassen sich ihre Diche ρ(h) und ihr Voluen dv = A dh berechnen und ihre Masse is d = ρ(h) dv = ρ(h) A dh. Der Druck änder sich also in der Höhe h durch den Forfall dieser Scheibe u df G dp = = d g A A = ρ(h) g dh. Die relaive Druckänderung is dai dp p (h) = = ρ(h) g. dh p A p + dp dh

2 Die Diche ρ(h) der Luf is bei T = 00 K nach de allgeeinen Gasgesez aber wiederu proporional zu Druck: kg ρ(h) = c p(h) i c =,5 bar =,5 0 5 s Besien Sie die Forel für den Lufdruck p(h) in der Höhe h uner der Annahe p(0) = bar. Wie groß is der Lufdruck in 000 und in 8000 Höhe? Aufgabe 6: Sokes-Gesez für Reibungswidersand einer Kugel bei lainarer Sröung Eine Kugel aus eine Maerial der Dich ρ i de Radius r ha das Voluen V = 4 πr und die Masse = ρv. Sie wird durch die Gewichskraf F G = g i g = 9,8 /s nach unen gezogen. Infolge ihrer Massenräghei wirk in engegen geseze Richung die Trägheiskraf F T = a() = v (). In einer Flüssigkei i der Viskosiä wirk außerde die Reibungskraf F R = 6π η r v(). Insgesa üssen sich alle drei Kräfe ausgleichen: F G + F T + F R = 0. Sez an die obigen Beziehungen in die Kräfebilanz ein, so erhäl an eine Differenialgleichung, die das beschränke Anwachsen der Sinkgeschwindigkei v() beschreib. Besie die Sinkgeschwindigkei v() einer 0 c dicken Sahlkugel i der Diche ρ = 7,8 g/c, die in Wasser i η = Ns/ versink. Aufgabe 7: Laden und Enladen von Kondensaoren Bei eine Kondensaor is das Verhälnis der aufgenoenen Ladung Q zur Q angelegen Spannung C konsan und wird Kapaziä C = genann. C F R F G F T C = Q/C Bei Laden üssen nich nur die Ladespannung c = Q C des Kondensaors, sondern auch der Innenwidersand R i der Spannungsquelle überwunden werden. Ihre axiale Kleenspannung 0 wird nur erreich, wenn kein Sro fließ. Sobald der Ladesro I() fließ, verringer sich die Kleenspannung u den Berag i () = R i I(). Die Srosärke I() beschreib die Änderung der Ladung pro Zei: I() = Q (). Insgesa üssen sich alle aufreenden Spannungen i Srokreis aufheben: 0 + C () + i () = 0. Sez an alle obigen Beziehungen in die Spannungsbilanz ein, so erhäl an eine Differenialgleichung, die das beschränke Anwachsen der Ladung Q() beschreib. Berechne die Ladung Q() und den Ladesro I() für einen Kondensaor i C = 0, F und eine Spannungsquelle i 0 = 5 V und R i = 5 Ω. Wie lange dauer es, bis eine Ladung von 4,9 C erreich is? Bei Enladen enfäll die Klespannung ( 0 = 0) und die Ladung fließ in ugekehrer Richung wieder zurück. Diesal ergib sich eine exponenielle Abnahe für Q(). Berechne Q() und I() für die obigen Zahlenangaben. Wie lange dauer es, bis nur noch 0, C vorhanden sind? Aufgabe 8: Indukionssro bei Spulen Bei einer Spule is das Verhälnis aus induzierer Spannung ind zur Sroänderung I () konsan und wird Indukiviä L = ind genann. I' Bei Anschalen der Spannungsquelle uss nich nur die Indukionsspannung ind = L I () der Spule, sondern auch der Innenwidersand R i der Spannungsquelle überwunden werden. Ihre axiale Kleenspannung 0 wird nur erreich, wenn kein Sro fließ. Sobald der Sro I() fließ, verringer sich die Kleenspannung u den Berag i () = R i I(). Insgesa üssen sich alle aufreenden Spannungen i Srokreis aufheben: 0 + ind () + i () = 0. Sez an alle obigen Beziehungen in die Spannungsbilanz ein, so erhäl an eine Differenialgleichung, die das beschränke Anwachsen des Sroes I() beschreib. Berechne den Sro I() für eine Spule i L = 5 H und eine Spannungsquelle i 0 = 5 V und R i = 5 Ω. Wie lange dauer es, bis ein Sro von 4,9 A erreich is? Bei Abschalen der Spannungsquelle enfäll die Klespannung ( 0 = 0) und die plözliche Abnahe des Sroes induzier eine Spannung ind (), die einen gedäpfen (=exponeniell abnehenden) Sro I() zur Folge ha. Berechne I() für die obigen Zahlenangaben. Wie lange dauer es, bis nur noch 0, A fließen? 0 0 C = Q/C L = L I L = L I

3 Aufgabe 9: Bakerienkolonie Eine Bakerienkolonie in einer 80 c großen Perischale bedeck zur Zei = 0 Minuen eine Fläche B(0) = c. Die Wachsusrae B () is proporional zur schon bedecken Fläche B() und zu noch zur Verfügung sehenden Plaz in der Perischale. Bei einer bedecken Fläche von 40 c wurde eine Wachsusrae von 0,6 c /in fesgesell. Wieviele Minuen nach Ansezen der Kulur fand diese nersuchung sa? Wieviel c wurden nach 4 h erreich? Aufgabe 0: echanische Schwingung Ein Gewich der Masse häng an einer Feder i der Federkonsane D. Is es u die Srecke s aus seiner Ruhelage enfern, so wirk die Rücksellkraf F D = D s(). Dabei erfähr das Gewich eine Beschleunigung a = s (), die die Trägheiskraf F = a = s () zur Folge ha. Insgesa uss F D + F = 0 gelen. Besie die Periodendauer und die Frequenz der Schwingung, die enseh, wenn an ein Gewich der Masse = 0, kg an einer Feder i D = 0, N/c = 0 N/ u s 0 = c aus seiner Ruhelage enfern und dann losläss. Aufgabe : elekrischer Schwingkreis Ein Kondensaor i der Kapaziä C und eine Spule i der Indukiviä L werden durch supraleiende Kabel ieinander verbunden, so dass R = 0. Der Kondensaor wird durch eine außen angelege Spannungsquelle auf die Ladung Q = C 0 gebrach. Nachde die Spannungsquelle wieder enfern wurde, fließ die Ladung über die Spule wieder zurück und erzeug dabei eine Indukionsspannung ind = L I () = L Q (). Die Spannung a L = L Q Kondensaor is dabei C = C Q. Insgesa uss ind + C = 0 gelen. Besie die Periodendauer und die Frequenz der Schwingung, die enseh, wenn an ein Kondensaor der Kapaziä C = 0 F i einer Spule i L = 5 H i 0 = 0 V aufgeladen und dann abgekle wurde. C = Q/C

4 5.6. Lösungen zu den Aufgaben zu Differenialgleichungen Aufgabe : Eineilung von Differenialgleichungen a) nichlineare DGL. Ordnung c) nichlineare DGL. Ordnung b) lineare DGL. Ordnung d) nichlineare DGL. Ordnung Aufgabe : Trennung der Variablen a) y() = exp( ) f) y() = e 0, b) y() = (Lineares Wachu) g) y() = e 0, (Exponenielles Wachsu) c) y() = h) y() = 0 8 e 0, (Beschränkes Wachsu) d) y() = 0 4 i) y() = 0,0 9 e (Logisische Wachsu) e) y() = 6 j) y() = cos (ω) i Aufgabe : Radioakive Srahlung I() = 00 exp( λ) i in Tagen. Halbwerszei / = ln = 0 Tage für 7 Cs, 8, Tage für J, 58444, Tage = 60 Jahre für 6 Ra und,6 0 Tage = 4,4 Milliarden Jahre für 8 Aufgabe 4: Laber-Beer-Gesez I(x) = 4 exp( 4, x) i I in kev und x in c. I(x) = 0,99 4 0,99 = exp( 4, x) x = ln 0, 99 4, = 0,000 c (!) Aufgabe 5: Baroerische Höhenforel für den Lufdruck p(h) = p(0) exp( c g h) = exp(,8 0 5 x) i p un bar und x in p(000 ) = exp( 0,8) bar 0,89 bar und p(8000 ) = 0,4 bar. Aufgabe 6: Sokes-Gesez für Reibungswidersand einer Kugel bei lainarer Sröung Der Radius der Sahlkugel is r = 5 c Masse = ρv = ρ 4 πr = 4,08 kg. F G + F T + F R = 0 g v () 6 π η r v() = 0 v () = g 6 r v() = 9,8 /s,07 /s v() i v in /s und in s v() = 0,4( exp(,07 )) i v in /s und in s Sinkgeschwindigkei 0,4 /s Aufgabe 7: Laden und Enladen von Kondensaoren (alles in SI) Ladevorgang (beschränkes Wachsu): 0 + C () + i () = 0 0 Q() C R i Q () = 0 Q () = g 6 r ( exp 6 r i 0 R i Ri ) = Q() C = 5 Q() Q() = 5 ( e ) C I() = Q () = 5 e A. 4,9 C = Q() = ln(50),9 s Enladevorgang (exponenielle Abnahe): C () + i () = 0 Q() C R Q() i Q () = 0 Q () = = Q() Q() = R C 5 e C I() = Q () = 5 e A. 0, C = Q() = ln(50),9 s Aufgabe 8: Anschalen und Abschalen von Spulen (alles in SI) Anschalen (beschränkes Wachsu): 0 + ind () + i () = 0 0 L I () R i I() = 0 I () = I() = 5 ( e ). 4,9 A = I() = ln(50),9 s Abschalen (exponenielle Abnahe(: ind () + i () = 0 L I () R i I() = 0 I () = 0, A = I() = ln(50),9 s 0 L Ri I() = 5 I() L R i L I() = 5 I() I() = 5 e 4

5 Aufgabe 9: Bakerienkolonie Logisisches Wachsu: B () = k B() [S B()] i S = 80 und 0,6 = k 40 [80 40] k = 0,000 B() = B(0) S Sk S B(0) e B(0) = 80 0,008 79e i B in c und in Minuen B(4 h) = B(440 in) = 79,9 c und 40 = B() 79 e 0,008 + = = ln 79 0, 008 Aufgabe 0: echanische Schwingung = 546 Minuen = 9, Sunden nach de Ansezen der Kulur. F D + F = 0 s () = D s() s () = D D s() s() = A cos = i Apliude A = s(0) = c, Winkelgeschwindigkei ω = D = 0 s, Frequenz f =,59 s und Periodendauer T = f = 0,6 s. Aufgabe : elekrischer Schwingkreis ind + C = 0 L Q () = Q() Q () = C LC Q() s() = A cos LC = i Apliude A = Q(0) = 0 C = 00 As, Winkelgeschwindigkei ω = LC = 0,4 s, Frequenz f = 0,0 s und Periodendauer T = f = 44,4 s. 5

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Nachklausur zu Klausur Nr. 2, WS 2010

Nachklausur zu Klausur Nr. 2, WS 2010 Physikalisches Prakikum für Sudierende der Biologie und Zahnmedizin Nachklausur zu Klausur Nr. 2, WS 2010 Name: Vorname: Mar. Nr.:......... (Bie in Blockschrif) Anschrif:......... Bie Sudienfach ankreuzen.

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

C. Abituraufgabe MV GK 2006 B1

C. Abituraufgabe MV GK 2006 B1 9.5.216 biuraufgabe MV GK 26 B1 Die bbildung zeig einen usschni einer Nuklidkare. Die Linie k wird im Bereich leicher Kerne als Sabiliäslinie bezeichne. omkerne auf oder dich neben dieser Linie sind sabil.

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Beispiele Aufladung von Kondensatoren, Berechnung von Strömen, Spannungen, Zeiten und Kapazitäten.

Beispiele Aufladung von Kondensatoren, Berechnung von Strömen, Spannungen, Zeiten und Kapazitäten. Beispiele Aufladung von Kondensaoren, Berechnung von Srömen, Spannungen, Zeien und Kapaziäen. 1. (876) Beispiel 1.1 Angaben: R 1 = 2M, R 2 = 5M, C = 2µF, U = 60V 1.2 Aufgabe: Nach wie vielen Sekunden nach

Mehr

Elektrodynamik II - Wechselstromkreise

Elektrodynamik II - Wechselstromkreise Physik A VL36 (18.1.13 Elekrodynamik II - Wechselspannung und Wechselsrom Wechselspnnung durch Indukion Drehsrom Schalungen mi Wechselsrom Kirchhoff sche h egeln Maschenregel bei Indukiviäen und Kapaziäen

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Lange Halbwertszeiten Stand:

Lange Halbwertszeiten Stand: Alber-Ludwigs-Universiä Freiburg Fakulä für Physik Forgeschrienen-Prakiku I Lange Halbwerszeien Sand:.. Ziel des Versuchs In diese Versuch werden die Halbwerszeien eines n-srahlers ( 47 S) und eines p-srahlers

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Energiespeicherelemente der Elektrotechnik Kapazität und Kondensator

Energiespeicherelemente der Elektrotechnik Kapazität und Kondensator 1.7 Energiespeicherelemene der Elekroechnik 1.7.1 Kapaziä und Kondensaor Influenz Eine Ladung befinde sich in einer Kugelschale. Auf der Oberfläche des Leiers werden Ladungen influenzier (Influenz). Das

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen 454 Erforderliche Kennnisse: Höhere Analysis Elemenare Lösungsmehoden für gewöhnliche Differenialgleichungen Was is eigenlich eine Differenialgleichung? Eine Differenialgleichung is eine Gleichung, in

Mehr

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynamik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 8. März Aufgabe (9 Punke) Ein Zahnrad 3 wird über eine Sange on einem Kolben 5 angerieben. Dieses Zahnrad greif in

Mehr

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Struktur und Verhalten I

Struktur und Verhalten I Kapiel 9 Srukur und Verhalen I Ganz allgemein gesag is das Thema dieses Kurses die Ersellung, Simulaion und Unersuchung von Modellen räumlich homogener dynamischer Syseme aus Naur und Technik. Wir haben

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Freie Schwingung - Lösungsfälle

Freie Schwingung - Lösungsfälle Freie Schwingungen Seie von 6 Peer Schüller peer.schueller@bbw.gv.a Freie Schwingung - Lösungsfälle Maheaische / Fachliche Inhale in Sichworen: Differenialgleichung.Ornung i onsanen Koeffizienen, Schwingung

Mehr

Klausur Nr. 2, WS 2009/2010

Klausur Nr. 2, WS 2009/2010 Physikalisches Prakikum für Sudierende der Biologie Klausur Nr. 2, WS 29/21 Name: Vorname: Mar. Nr.:......... (Bie in Blockschrif) Anschrif: Gruppe:............ (Unerschrif) Für die vollsändige Beanworung

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kapazitäten (C) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kapazitäten (C) Frühjahrssemester Physik-Institut der Universität Zürich nleiung zum Physikprakikum für Obersufenlehrpersonen Kapaziäen (C) Frühjahrssemeser 2017 Physik-Insiu der Universiä Zürich Inhalsverzeichnis 9 Kapaziäen (C) 9.1 9.1 Einleiung........................................

Mehr

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynaik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 7. März 05 Aufgabe (7 Punke) Das Rad (Radius r ) roll i der Winkelgeschwindigkei. I Punk A (Absand r / o Mielpunk) is

Mehr

BESCHREIBUNG VON ZERFALLSPROZESSEN

BESCHREIBUNG VON ZERFALLSPROZESSEN BESCHREIBUNG VON ZERFALLSPROZESSEN ab Ende der 1. Schulsufe Kreuze zu jedem angeführen Beispiel das richige mahemaische Modell an, begründe deine Enscheidung und beschreibe die Bedeuung der in den Modellen

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

1 Grundwissen Elektrik

1 Grundwissen Elektrik 1 Grundwissen Elekrik 1.1 Elekrisches Feld Elekrische Felder exisieren in der Umgebung von Ladungen. Die Feldrichung is dabei die Richung der Kraf auf eine posiive Probeladung. Die Feldlinien verlaufen

Mehr

4 Zeitlich veränderliche Felder 4.1 Das Faradaysche Induktionsgesetz

4 Zeitlich veränderliche Felder 4.1 Das Faradaysche Induktionsgesetz Physik TU Dorund SS8 Göz Uhrig Shauka Khan Kapiel 4 4 Zeilich veränderliche Felder 4. Das Faradaysche ndukionsgesez Michael Faraday 83 (aber auch Joseph Henry und Hans Chrisian Ørse): lekrischer Sro durch

Mehr

5c Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1

5c Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1 5c ynaik Aniaion foows he aws of physics uness i is funnier oherwise. 1 Zusaenfassung Newon 1+2 Grundegende Geseze der kassischen Mechanik werden durch die Newonschen Geseze beschrieben Trägheisprinzip,

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

i(t) t 0 t 1 2t 1 3t 1

i(t) t 0 t 1 2t 1 3t 1 Aufgabe 1: i 0 0 1 2 1 3 1 1. Eine Kapaziä werde mi einem recheckförmigen Srom gespeis (s.o.). Berechnen Sie den Verlauf der Spannung für den Anfangswer u( 0 )=0V mi 0 = 0s. 2. Skizzieren Sie den eisungsverlauf

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elekroechnik B 27.08.2007 Name: Marikelnummer: Vorname: Sudiengang: Fachprüfung Leisungsnachweis Aufgabe: (Punke) 1 (16) 2 (24) 3 (18) 4 (21) 5 (21)

Mehr

, d.h. die Zeitdauer, nach der sich jeweils der Wert des PKWs ha lbiert. Überprüfe das Ergebnis ebenfalls anhand des Graphen aus g).

, d.h. die Zeitdauer, nach der sich jeweils der Wert des PKWs ha lbiert. Überprüfe das Ergebnis ebenfalls anhand des Graphen aus g). Name: Daum: Exponenialfunkionen - Anwendungsaufgabe Gebrauchwagen Erfahrungswere zeigen, dass PKWs beginnend mi dem Kaufdaum jedes Jahr ungefähr ein Vierel ihres Weres verlieren. Bei dieser Aufgabe gehen

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

Sinus und Cosinus im rechtwinkligen Dreieck ( )

Sinus und Cosinus im rechtwinkligen Dreieck ( ) Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

mathphys-online Abiturprüfung Mathematik 13 Technik Differentialgleichungen in Anwendungen - Lösung Aufgabe 1: Abi 1999 / AI

mathphys-online Abiturprüfung Mathematik 13 Technik Differentialgleichungen in Anwendungen - Lösung Aufgabe 1: Abi 1999 / AI mahphys-online Abiurprüfung Mahemai 3 Techni Differenialgleichungen in Anwendungen - ösung Aufgabe : Abi 999 / AI Ein erhizer Körper ühl sich im aufe der Zei allmählich auf die onsane Temperaur a (in C)

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Aufgaben zu den verschiedenen Wachstumsmodellen

Aufgaben zu den verschiedenen Wachstumsmodellen Aufgaben zu den verschiedenen Wachsumsmodellen 1. Beispiel: Spezialdünger Durch den Einsaz von Spezialdünger kann der Errag von Feldfrüchen verbesser werden. Erräge können aber nich grenzenlos geseiger

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Gewöhnliche Differentialgleichungen - Abiturprüfungsaufgaben mit Anwendungen -

Gewöhnliche Differentialgleichungen - Abiturprüfungsaufgaben mit Anwendungen - Aufgabe : Abi 999 / AI Gewöhnliche Differenialgleichungen - Abiurprüfungsaufgaben mi Anwendungen - Ein erhizer Körper ühl sich im aufe der Zei allmählich auf die onsane Temperaur a (in C) seiner Umgebung

Mehr

Das Quadrupol-Massenfilter

Das Quadrupol-Massenfilter Das Quadrupol-assenfiler Idee: Ionen Ladung zu asse: Q/ werden durch zeiabhängige Elekrische Felder E so abgelenk, daß nur besimme Q/ auf der Sollbahn durch das assenspekromeer bleiben. Wolfgang Paul,

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Übersicht: Radioaktive Strahlung

Übersicht: Radioaktive Strahlung Übersich: Radioakive Srahlung Heliumkerne α ß + Posironen Nuklid Elekronen ß - Foonen Quanen γ Teilchensrahlung Elekromagn. S. Energie Wechselwirkung QF Diskree Energien um 5 MeV Koninuierliche Energien

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN Übungsbuch Physi Peer Müller, Hilar Heineann, Hellu Zier, Heinz Kräer Grundlagen Konrollfragen Beispiele Aufgaben ISBN 3-446-478-4 Leseprobe Weiere Inforaionen oder Besellungen uner hp://www.hanser.de/3-446-478-4

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme WS 8. Wechselsröme 8.1 Einleiung n Wechselsromkreisen spielen neben Ohmschen Widersänden auch Kondensaoren (Kapaziäen) und Spulen (ndukiviäen) wichige Rolle. n diesem Versuch soll am Beispiel einfacher

Mehr

4.2.5 Energie und Energiedichte im Magnetfeld

4.2.5 Energie und Energiedichte im Magnetfeld 4..5 Energie und Energiediche im Magnefeld - die magneische Energie W ui dψ ( ) i i d m ψ ψ Ψ d dw mag V dφ V V Φ Wmag V ( Φ ) dφ Tuorium jeweils Miwoch 3: Uhr Hu - die Energiediche im magneischen Feld

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

W. Stark; Berufliche Oberschule Freising

W. Stark; Berufliche Oberschule Freising 9.6 Aufellen der Bewegunggleichungen der haronichen Schwingung bei unerchiedlichen Anfangbedingungen i Hilfe eine Zeiger- und Liniendiagra 9.6. Der chwingende Körper durchläuf zu Zeinullpunk eine uhelage

Mehr

In einem linearen System können sich Schwingungen ungestört überlagern. Die Schwingungen beeinflussen sich dabei nicht gegenseitig.

In einem linearen System können sich Schwingungen ungestört überlagern. Die Schwingungen beeinflussen sich dabei nicht gegenseitig. 6_Superposiionsprinzip_B_W000.doc - /6. Sysee i ehreren Freiheisgraden. Das Superposiionsprinzip für Lineare Sysee Die Schwingungsdifferenialgleichung is eine lineare DGL. Lineare Sysee (Sysee die i linearen

Mehr

10. Wechselspannung Einleitung

10. Wechselspannung Einleitung 10.1 Einleiung In Sromnezen benuz man sa Gleichspannung eine sinusförmige Wechselspannung, uner anderem weil diese wesenlich leicher zu erzeugen is. Wie der Name es sag wechsel bei einer Wechselspannung

Mehr

Schwingungen und Wellen Teil II

Schwingungen und Wellen Teil II Shwingungen und Wellen Teil II 1.. 3. as freie, gedäpfe Feder-Masse-Syse Erzwungene Shwingungen Beispiele Prof. r.-ing. Barbara Hippauf Hohshule für Tehnik und Wirshaf des Saarlandes; Physik, SS 16 Shwingungslehre,

Mehr

(x) 2tx t 2 1, x R, t R 0.

(x) 2tx t 2 1, x R, t R 0. Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) (k )x, x R, k R b) f k

Mehr

Elektrische Antriebe Grundlagen und Anwendungen. Übung 4: Gleichspannungswandler

Elektrische Antriebe Grundlagen und Anwendungen. Übung 4: Gleichspannungswandler Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 21 D 8333 München Email: ea@ei.um.de Inerne: hp://www.ea.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.: +49

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Prüfungsaufgaben Wiederholungsklausur

Prüfungsaufgaben Wiederholungsklausur NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur

Mehr

Demonstration der Halbleiterdiode als Ventil.

Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Die Halbleierdiode Diffusion und Drif Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

1 J = 1 N. 1 m = 1Nm = 1 Wattsekunde (1 Ws) Formelzeichen SI-Einheit Abkürzung Definition. T Kelvin K. Joule pro Kilogrammkelvin.

1 J = 1 N. 1 m = 1Nm = 1 Wattsekunde (1 Ws) Formelzeichen SI-Einheit Abkürzung Definition. T Kelvin K. Joule pro Kilogrammkelvin. Forezeichen SI-Einhei bkürzung Definiion ÖNORM 6401 rbei W Joue J Energie E Jouee J Wäreenge Q Joue J W = F. 1 Joue is geich der rbei, die durch die Kraf von 1 Newon verriche wird, wenn sich der ngriffspunk

Mehr

Lösungen Test 2 Büro: Semester: 2

Lösungen Test 2 Büro: Semester: 2 Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich Anleiung zum Physikprakikum für Obersufenlehrpersonen Wechselsröme (WS) Frühjahrssemeser 2017 Physik-nsiu der Universiä Zürich nhalsverzeichnis 11 Wechselsröme (WS) 11.1 11.1 Einleiung........................................

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Coulomb - Gesetz. Elektrisches Feld. Faradayscher Käfig

Coulomb - Gesetz. Elektrisches Feld. Faradayscher Käfig Coulomb Gesez Elekrische Ladung Q: Teilchen können eine posiive () oder negaive () Ladung Q aufweisen nur ganzzahlige Vielfache der Elemenarladung e sind möglich e = 1,6 10 19 C [Q] = 1 As = 1 C = 1 Coulomb

Mehr

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften Kapiel LAPLACE Tranformaion Die Laplace Tranformaion erwei ich al nüzlich zur Löung von linearen Dgln und Dgl- Syemen mi konanen Koeffizienen Dabei werden die Anfangbedingungen gleich miberückichig Definiion

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Bitte beginnen Sie jede neue Aufgabe auf einem neuen Blatt!

Bitte beginnen Sie jede neue Aufgabe auf einem neuen Blatt! Soereeer 010 Bla 1 (on 7) Sudiengang: BT(B) / CI(B) Seeer Prüfungfach: Phyik Fachnuer: 04, 071, 07 Hilfiel: Manukrip, Lieraur, Tachenrechner Zei:10 Minuen Ingea ind 10 Punke erreichbar. Bie beginnen Sie

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elekroechnik II Übungsaufgaben 24) ransiene -eihenschalung Die eihenschalung einer Indukiviä ( = 100 mh) und eines Widersands ( = 20 Ω) wird zur Zei = 0 an eine Gleichspannungsquelle geleg.

Mehr

Übungsbuch Physik. Grundlagen - Kontrollfragen - Beispiele - Aufgaben. Bearbeitet von Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer

Übungsbuch Physik. Grundlagen - Kontrollfragen - Beispiele - Aufgaben. Bearbeitet von Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer Übungsbuch Physi Grundlagen - Konrollfragen - Beispiele - Aufgaben Bearbeie von Hilar Heineann, Heinz Kräer, Peer Müller, Hellu Zier 12., aualisiere Auflage 213. Taschenbuch. 44 S. Paperbac ISBN 978 3

Mehr

Der kinetische Ansatz zur Beschreibung von Selbstorganisationsprozessen. mögliche Variationen und Erweiterungen: diskrete Gleichungen (endliches t):

Der kinetische Ansatz zur Beschreibung von Selbstorganisationsprozessen. mögliche Variationen und Erweiterungen: diskrete Gleichungen (endliches t): Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Der kineische Ansaz zur Beschreibung von Selbsorganisaionsprozessen. Die Beschreibung von Prozessen Prozesse (Veränderungen,

Mehr

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2004 (geschrieben am )

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2004 (geschrieben am ) Thema 3: Physik des Auos. Indukive und kapaziive Widersände Abiur - Leisungskurs Physik Sachsen-Anhal (geschrieben am 5.5.). Die Aufgabe einer Zündspule is es, die vorhandene Niederspannung der elekrischen

Mehr

- 1 - Axel Günther Claudius Knaak Gruppe 7 (DIN) Radioaktivität

- 1 - Axel Günther Claudius Knaak Gruppe 7 (DIN) Radioaktivität - - Axel Günher.0.0 Claudius Knaak Gruppe 7 (DIN) Radioakiviä Einführung: Mi Hilfe eines Szinillaionsdeekors werden γ-spekren von verschiedenen Proben gemessen, um daraus die enhalenen Isoope zu besimmen

Mehr

Lösungsblatt 8 zur Experimentalphysik I

Lösungsblatt 8 zur Experimentalphysik I ösungsbla 8 zur xperimenalphysik I Sommersemeser 04 - Übungsbla 8 Aufgabe 8. eopolds ifaßsäule (Präsenzaufgabe) Der Künsler eopold Müßig möche für sein neuses Projek zwei drehbare ifaßsäulen aus Beon (ρ

Mehr

Aufgaben zu Geradenscharen

Aufgaben zu Geradenscharen Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) = (k )x, x R, k R b) f

Mehr

Unendliche Folgen und Reihen

Unendliche Folgen und Reihen . ) Zu Beginn befinde sich ein neu geborenes Kaninchenpaar K im Gehege (), ebenso zu Beginn des zweien Monas (), zu Beginn des drien Monas wird ein Kaninchenpaar K geboren (), zu Beginn des vieren Monas

Mehr

Induktionsgesetz. a = 4,0cm. m = 50g

Induktionsgesetz. a = 4,0cm. m = 50g 1. Die neenehende Aildung (Blick von vorn) zeig eine Spule mi 5 Windungen von quadraichem uerchni mi Seienlänge a = 4,cm zum Zeipunk. DieSpuleeweg ich mider Gechwindigkei v vom Berag v = 2, cm nachrech.

Mehr

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt.

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt. Regelungsechnik Seuerung Beim Seuern bewirk eine Eingangsgröße eine gewünsche Ausgangsgröße (Die nich auf den Eingang zurückwirk. Seuern is eine Wirkungskee Seuerkee (Eingahnsraße) Bsp. Boiler Regelung

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr