Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion"

Transkript

1 Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese gib die Zeispanne an, in der sich die beobachee Größe des beracheen Elemens jeweils halbier ha. Besiz ein Zerfallsprozess die Halbwerszei /, dann ergib sich die Funkion wie folg: f ( ) c die laufende Zei f() Inensiä oder die Menge der Größe nach der Zei c Inensiä oder Menge der Größe zu Beginn ()

2 Aufgabe : schernobyl Bei der Reakorkaasrophe in schernobyl raen große Mengen an Jod-3 aus. Dieses lager sich in großen Mengen in der Schilddrüse ab und is dafür veranworlich, dass speziell bei Kindern Krebserkrankungen ensehen. Dieses Jod-3 reduzier aufgrund des Kernbildungsprozesses seine Ausgangsmasse um bis zu 8,3 % am ag, die in Srahlungsenergie umgewandel und abgesrahl wird. a) Finde eine passende Funkionsgleichung und zeichne im Anschluss daran ihren Kurvenverlauf! b) Welche Halbwerszei besiz das Jod-3? Allgemein: f ( ) c a Variane : Durch das -Punkeeinsezungsverfahren folg: c a > c > a, 97 45,85 a f ( ), 97 45,85 Variane : Die Halbwerszei des Jod-3 beräg 8 age: Menge in mg f ( ),5 8 Radioakiver Zerfall des Jod-3 Menge des ag Jod-3 in mg, 45,85 4,4 3 38, ,35 5 3,4 6 9,73 7 7,6 8 5, 9,8,83 9, 7,37 3 5,86 4 4, Zei in agen

3 Aufgabe : Physikprakikum Nur ein kleiner Besandeil der heue bekannen radioakiven Isoope (Bezeichnung für Kerne mi gleicher Proonen-, aber verschiedener Neuronenzahl) is in der Naur vorhanden. Der überwiegende eil wird in Reakoren künslich erzeug. So auch das radioakive Isoop Rhodium-4. Während eines Physikprakikums wurden die radioakiven Zerfallsraen von Zei in s Gezähle Impulse des Zählrohrs Rhodium-4 mi Hilfe eines Zählrohrs in Abhängigkei von der Zei gemessen und in der folgenden Messwerabelle 3 7 fesgehalen: 4 5 a) Um welchen funkionalen Zusammenhang handel es sich hierbei? b) Welche Halbwerszei besiz das 8 3 radioakive Rhodium-6? c) Welchen Namen könne der Punk (9/9) ragen und wie könne er ensanden sein? d) Welche Funkionsgleichung beschreib den gegebenen Sachverhal? a) Es lieg ein exponenieller Zusammenhang vor. Begründung (freiwilliger Zusaz): Mi der Hilfe eines Regressionsverfahrens kann nun die Vermuung überprüf werden! Dabei wird die y-achse neu formaier beziehungsweise logarihmier und die x-achse behäl ihre lineare Eineilung. Das Ergebnis muss eine Gerade (lineare Regression) sein, wenn es sich um einen exponeniellen Zusammenhang handel. b) Die Halbwerszei des Rhodium-4 beräg 6 sec. Logarihmus der gezählen Impulse 6, 5,5 5, 4,5 4, Rhodium- 4: 3, Zei in Sekunden

4 c) Der Punk (9/9) wird in der Regel als Ausreißer bezeichne. Er enseh durch Messfehler (Ungenauigkeien der Apparaur, Ablesefehler oder einer Reakionsverzögerung beim Ablesen der Messwere). In diesem Fall lieg die Ursache des Ausreißers sehr wahrscheinlich beim Messenden, der den Messwer falsch abgelesen ha. d) Ermilung der genäheren Funkionsgleichung durch das -Punke-Einsezungsverfahren: f ( ) c a 37 a 37 a c > c c a > c a Durch Gleichsezen erhäl man den Wer für a: 37 a 4 a a a a 37 a 4, Einsezen von a für einen Messpunk ergib: 37 37,989 c,989 > 365, 3 c. Mi den beiden Weren laue die Funkionsgleichung: 365,3, oder 6 f ( ) 365,3,5 f ( ) 989 gezähle Impulse 3 3 Radioakiver Zerfall des Rhodium Zei in Sekunden gezähle Impulse Radioakiver Zerfall von Rhodium Zei in Sekunden

5 Aufgabe 3: C-4-Mehode Die Gesezmäßigkeien des radioakiven Zerfalls ermöglichen es den Wissenschaflern weierhin, näherungsweise das Aler von hisorischen Holzfunden und Knochen zu ermieln. Verursach durch die kosmische Srahlung wird in der Amosphäre sändig das Kohlensoffisoop C-4 gebilde. Es sell sich ein gleich bleibendes Verhälnis von C-4 : C- ein, welches ewa :,67* is. Die C-4 Isoope gelangen durch die Foosynhese in lebende Pflanzen, durch die Aufnahme pflanzlicher Nahrung auch in die iere und somi auch in den Menschen. Sirb die Pflanze, das ier oder der Mensch, so wird kein neues C-4 aufgenommen und das radioakive C-4 zerfäll mi einer Halbwerszei von 5.73 Jahren. a) 99 wurde in den özaler Alpen die Leiche eines Seinzeimenschen gefunden ( Özi ). Die Messungen der Wissenschafler sellen einen C-4-Gehal von 57 % fes. Wie al is Özi? b) Wie viel Prozen würde der C-4-Gehal von Özi heue beragen? c) In einem Knochenfund beräg das Verhälnis von C-4 : C- nur noch :,*. Wie al is dieser Knochen? d) Selle das C-4 : C- Verhälnis in Abhängigkei von der Zei graphisch dar! a) Aler von Özi f ( ) c f ( ) c f ( ) c f ( ) c 57% % ,84 Özi is Jahre al. f ( ) c b) Wir haben das Jahr 6, d. h. milerweile is Özi 5 Jahre äler geworden. f ( ) % 5.73

6 f ( ) % 4.646, ,897% Der heuige C-4-Gehal beräg nur noch 56,897 %. c) Nach den Umformungen aus Aufgabe a) gil: f ( ) c Der Knochen is ca. 4.75,63 Jahre al. f ( ), c, ,63 d) Verhälnis von C-4 zu C-: f ( ), E- Verhälnis von C-4 zu C- 6 E- 4 E- Verhälnis E- E- 8 E- 6 E- 4 E Zei in Jahren

7 Aufgabe 4: Halbwerszei Zeige: Besiz ein radioakives Präpara die Halbwerszei /, dann ergib sich seine Funkion wie folg: f ( ) () f. f ( ) c a Für folg daraus f () c. Für / folg, dass f f () gil. Daraus läss sich a wie folg berechnen: f () a ( f () a ) a. ( ) () Also: f f q.e.d.

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

3. Physikschulaufgabe. - Lösungen -

3. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse I - Lösungen - hema: Aom- u. Kernphysik, Radioakiviä. Elekrisches Feld: Alphasrahlung: Sind (zweifach) posiiv geladene Heliumkerne. Sie werden im elekrischen Feld

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

1 Grundwissen Elektrik

1 Grundwissen Elektrik 1 Grundwissen Elekrik 1.1 Elekrisches Feld Elekrische Felder exisieren in der Umgebung von Ladungen. Die Feldrichung is dabei die Richung der Kraf auf eine posiive Probeladung. Die Feldlinien verlaufen

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

- 1 - Axel Günther Claudius Knaak Gruppe 7 (DIN) Radioaktivität

- 1 - Axel Günther Claudius Knaak Gruppe 7 (DIN) Radioaktivität - - Axel Günher.0.0 Claudius Knaak Gruppe 7 (DIN) Radioakiviä Einführung: Mi Hilfe eines Szinillaionsdeekors werden γ-spekren von verschiedenen Proben gemessen, um daraus die enhalenen Isoope zu besimmen

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Radioaktivität. 1. Was sind instabile Kerne? (leicht) 2. Welche Aussagen über den Atomkern können Sie folgender Angabe entnehmen?

Radioaktivität. 1. Was sind instabile Kerne? (leicht) 2. Welche Aussagen über den Atomkern können Sie folgender Angabe entnehmen? Radioakiviä Arbeisbla Aomaufbau, Srahlung I Radioakiviä. Was sind insabile Kerne? (leich). Welche Aussagen über den Aomkern können Sie folgender Angabe ennehmen? 7 Ag 47 Das Elemen beseh in seinem naürlichen

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen Überblick Beispielexperimen: Kugelfall Messwere und Messfehler Auswerung physikalischer Größen Darsellung von Ergebnissen Sicheres Arbeien im abor Beispielexperimen : Kugelfall Experimen: Aus der saionären

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 04 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 04 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

5.6. Aufgaben zu Differentialgleichungen

5.6. Aufgaben zu Differentialgleichungen 5.6. Aufgaben zu Differenialgleichungen Aufgabe : Eineilung von Differenialgleichungen nersuche die folgenden Differenialgleichungen auf Ordnung und Lineariä a) y (x) = (y(x)) + y(x) 4 c) 0 = (y (x)) y(x)

Mehr

Lange Halbwertszeiten Stand:

Lange Halbwertszeiten Stand: Alber-Ludwigs-Universiä Freiburg Fakulä für Physik Forgeschrienen-Prakiku I Lange Halbwerszeien Sand:.. Ziel des Versuchs In diese Versuch werden die Halbwerszeien eines n-srahlers ( 47 S) und eines p-srahlers

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen Kapiel 5 Übungsaufgaben zu Kapiel 5: Erwarungen Die Grundlagen Übungsaufgabe 5-1a 5-1a) Beschreiben Sie die heoreischen Überlegungen zum Realzins. Wie unerscheide sich der Realzins vom Nominalzins? Folie

Mehr

Zwei Rechenbeispiele für die einfache lineare Regression

Zwei Rechenbeispiele für die einfache lineare Regression Einfache Regression mi Ecel Prof. Dr. Peer von der Lippe Zwei Rechenbeispiele für die einfache lineare Regression 1.1. Daen 1. Mindeslöhne Beispiel 1 Ennommen aus Rolf Ackermann, pielball des Lobbyisen,

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Aufbau von faserbasierten Interferometern für die Quantenkryptografie

Aufbau von faserbasierten Interferometern für die Quantenkryptografie Aufbau von faserbasieren nerferomeern für die uanenkrypografie - Gehäuse, Phasensabilisierung, Fasereinbau - Maserarbei im Sudiengang Elekroechnik und nformaionsechnik Veriefungsrichung Phoonik an der

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kapazitäten (C) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kapazitäten (C) Frühjahrssemester Physik-Institut der Universität Zürich nleiung zum Physikprakikum für Obersufenlehrpersonen Kapaziäen (C) Frühjahrssemeser 2017 Physik-Insiu der Universiä Zürich Inhalsverzeichnis 9 Kapaziäen (C) 9.1 9.1 Einleiung........................................

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich Regelungsechnik - Grundglieder: Analyse im Zei und Frequenzbereich Vorberachungen: Das Überragungsverhalen von linearen Regelkreiselemenen wird vorwiegend durch Sprunganworen bzw. Übergangsfunkionen sowie

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung --- Meung der Ladung Wie kann man Ladungen meen? -/Kapiel.. Formeln auf S.: Elekriche Ladung Zur Ladungmeung können wir einen au der Mielufe bekannen Zuammenhang zwichen der Ladung Q und der Sromärke I

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mahemaikaufgaben zu orienieren, benuzen Sie unbeding das Lesezeichen Ihres Acroba Readers: Das Icon finden Sie in der links sehenden

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Berich zur Prüfung i Okober 9 über Grundrinziien der Versicherungs- und Finanzaheaik (Grundwissen Peer lbrech (Mannhei 6 Okober 9 wurde zu vieren Mal eine Prüfung i Fach Grundrinziien der Versicherungs-

Mehr

Esau und Jakob 1 Einführung 2 Situation 2.1 Geschichte 2.2 Geometrische Situation

Esau und Jakob 1 Einführung 2 Situation 2.1 Geschichte 2.2 Geometrische Situation Hans Walser, [546a], [33b] Esau und Jakob Einführung Diese Sudie is ensanden aus meiner eigenen Schwierigkei, mir bei zwei gleichzeiigen Bewegungen den Weg des einen Punkes aus Sich des anderen Punkes

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr

1 Mein Wissen aus der Volksschule Beispiele

1 Mein Wissen aus der Volksschule Beispiele Mein Wissen aus der Volksschule Beispiele Löse die Rechenaufgaben und male die Felder mi den passenden Lösungen in der angegebenen Farbe an! Zum Vorschein komm ein Gegensand, der zum Schulbeginn pass.

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.4 Funkionsscharen A.4 Funkionsscharen ( ) Bemerkung: Im Buch Kurvenprobleme gib es viel Aufgaben zu Funkionen, die einen Parameer enhalen. Falls Sie hier also nich genug kriegen... A.4.0 Orskurven (

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

1 Mein Wissen aus der Volksschule Beispiele

1 Mein Wissen aus der Volksschule Beispiele Mein Wissen aus der Volksschule Beispiele Löse die Rechenaufgaben und male die Felder mi den passenden Lösungen in der angegebenen Farbe an! Zum Vorschein komm ein Gegensand, der zum Schulbeginn pass.

Mehr

Geradendarstellung in Paramterform

Geradendarstellung in Paramterform Vekorrechnung Theorie Manfred Gurner Seie Geradendarellung in Paramerform X X X - X - r r Die Punke auf einer Geraden laen ich folgendermaßen finden: Gegeben ei der Punk und der Richungvekor r. Dann ergib

Mehr

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse 4.4 Durchflussmessung Durchflussmesser Mengenmessung: esimmung es Soffvolumens oer Masse Durchfluss, olumen, Zei Durchflussmesser 3 Schwebekörperverfahren 4 Konisches Rohr Schwebekörper Für Gase un Flüssigkeien

Mehr

Formelsammlung für Investition und Finanzierung

Formelsammlung für Investition und Finanzierung Formelsammlug für Ivesiio ud Fiazierug (Sad: 3.2.22) Seie vo 8 Formelsammlug für Ivesiio ud Fiazierug INHALSVERZEICHNIS. Mahemaische Grudlage...3 a) Auflösug quadraischer Gleichuge mi der pq-formel...3

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt.

Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt. 2 Theorie der semanischen Typen 2.2.2 Semanik von TL Menge der omänen Zu jedem Typ gib es eine Menge von möglichen enoaionen der Ausdrücke dieses Typs. iese Menge wird omäne des bereffenden Typs genann.

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

1 Physikalische Grundlagen

1 Physikalische Grundlagen Qaniaive Messng der spezifischen Wärmekapaziä nd der Schmelzwärme einer eekischen Legierng (SWE) Sichwore: Innere Energie, Schmelzenergie, hasenmwandlng hysikalische Grndlagen. Wärmekapaziä nd Schmelzkrve

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2011

Prüfung Finanzmathematik und Investmentmanagement 2011 Prüfung Finanzmahemaik und Invesmenmanagemen 0 Aufgabe : (0 Minuen) a) Auf der Grundlage einer Lagrange-Opimierung ergib sich die folgende funkionale Form für die (, ) -Koordinaen der (rein riskanen) Randporfolios

Mehr

oder Masse Zeit Zeit = n oder m t t

oder Masse Zeit Zeit = n oder m t t 1. WIEDERHOLUNG GRUNDLAGEN 1.1 DEFINITIONEN Ergänze bzw. füge die ensprechenden Symbole ein: Sromsärke allgemein = z.b. Menge oder Masse Zei Zei = n oder m Ladung(smenge) Elekrische Sromsärke I = = Q Zei

Mehr

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum www.mhe-ufgben.com Aufgben us Zenrlen Klssenrbeien Mhemik 96-99 (Bden-Würemberg) zu Logrihmen und Wchsum ZK 96 ) Besimme mi Hilfe der Definiion des Logrihmus : ) 6 b) c) d) 0 000 ) Es is 0, 6. Berechne

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

IX. Lagrange-Formulierung der Elektrodynamik

IX. Lagrange-Formulierung der Elektrodynamik IX. Lagrange-Formulierung der Elekrodynamik In diesem Kapiel wird gezeig, dass die Maxwell Lorenz-Gleihungen der Elekrodynamik hergeleie werden können, wenn dem Sysem {Punkladung + elekromagneihes Feld}

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoreiche Grundlagen Phik Leiungkur Größen Größen Größen 5 m Grundgrößen abgeleiee Größen Zahl Einhei Länge, Mae, Zei, Sromärke, Temperaur, Soffmenge, Lichärke Gechwindigkei, Kraf, Ladung Änderunggrößen:

Mehr