Struktur und Verhalten I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Struktur und Verhalten I"

Transkript

1 Kapiel 9 Srukur und Verhalen I Ganz allgemein gesag is das Thema dieses Kurses die Ersellung, Simulaion und Unersuchung von Modellen räumlich homogener dynamischer Syseme aus Naur und Technik. Wir haben in den bisherigen Kapieln (abgesehen von einer allgemeinen Beschreibung in Kapiel und 2) einige wichige und ineressanae Phänomenbereiche kennengelern, für die wir Compuer-Modelle des eben genannen Typs ersell und auch simulier haben. In diesem Kapiel wollen wir zum ersen Mal bewusser die Gleichungen, die bei der mahemaischen Modellierung ensehen, anschauen, zusammenragen und eilweise auch algebraisch umformen. Wir werden auf diese Weise die allgemeine Srukur der Gleichungen oder Gleichungssyseme kennen lernen, die hiner den homogenen dynamischen Modellen secken. Diese Srukur zu kennen lohn sich auf vielfälige Weise: man kann versehen, wie man die Gleichungen numerisch (und falls möglich auch analyisch) und qualiaiv lösen kann, und was uns diese Lösungen über ypische Verhalsmuser der von uns ersellen Modelle sagen. 9. Die Srukur dynamischer Modelle In Abschni 2.2 haben wir zum ersen Mal die Srukur der Modelle, die wir ersellen, ewas allgemeiner beschrieben. Wir wiederholen hier, was dor schon gesag wurde und fügen noch die Beobachung hinzu, dass zu einer ansändigen Dynamik immer Rückkopplungssrukuren gehören. Ein Modell eines koninuierlichen dynamischen Sysems ha eine immer wiederkehrende Srukur. Koninuierlich bezieh sich auf die Zei und heiss, dass sich die Grössen, mi denen wir das Modell aufbauen, koninuierlich und nich sprunghaf mi der Zei ändern. (Allerdings gil das Wesenliche, was wir hier sagen, auch für zeilich diskree, d.h. diskoninuierliche Modelle; dor reen einfach zusäzliche Bedingungen auf, die man beachen muss.) Sysemdynamische Modelle enhalen ein paar grundlegende Besandeile: () Bilanzen, die aus der Beziehung zwischen Änderung einer Speichergrösse und Prozessgrössen (Srömen und Produkionsraen) besehen. (2) Konsiuive Beziehungen, lezlich für die Prozessgrössen. (3) Parameer und Anfangsbedingungen. (4) Feedback-Loops (Rückkopplungsschleifen).

2 96 Srukur und Verhalen I Die Bilanzbeziehungen haben immer die gleiche allgemeine Form einfach die Zahl der Prozessgrössen, die für die Änderung einer Speichermenge veranworlich sind, variier. Die konsiuiven Geseze machen dann die Vielfal der Erscheinungsformen in Modellen aus, Parameer besimmen eine konkree Lösung, und Feedback-Loops sorgen für ansändige Dynamik. Quellen Srukur dynamischer Modelle Lecure noes and books Fuchs H. U. (2002): Modeling of Uniform Dynamical Sysems. Orell Füssli, Zürich. hps://home.zhaw.ch/~fusa/muds/muds_top.hml, Chaper 3, pp Formulierung von Anfangswerproblemen Quellen Formulierung von Anfangswerproblemen in einer Dimension Lecure noes and books Fuchs H. U. (2002): Modeling of Uniform Dynamical Sysems. Orell Füssli, Zürich. hps://home.zhaw.ch/~fusa/muds/muds_top.hml, Chaper 3.9, pp Fuchs H. U. (20): Lecure Noes for NT S: Anfangswerprobleme in RC-, RL- und RCL-Sysemen. Course Websie. pp Numerische Lösung von Anfangswerproblemen Quellen Numerische Mehoden Lecure noes and books Fuchs H. U. (2002): Modeling of Uniform Dynamical Sysems. Orell Füssli, Zürich. hps://home.zhaw.ch/~fusa/muds/muds_top.hml, Chaper , pp

3 9.4 Analyische Lösung von Anfangswerproblemen Analyische Lösung von Anfangswerproblemen Analyische Lösungen von D Anfangswerproblemen Quellen Lecure noes and books Fuchs H. U. (20): Lecure Noes for NT S: Anfangswerprobleme in RC-, RL- und RCL-Sysemen. Course Websie. p.3, Verhalen von eindimensionalen Modellen Bisher haben wir fas ausschliesslich Modelle von Sysemen ersell, die in Physik und Technik RC-Syseme heissen: Syseme, deren Komponenen Speicher mi Kapaziä C und Tansporelemene mi Widersandswer R sind. Deshalb werden wir uns bei der Beschreibung des Verhalens der Modelle haupsächlich auf diese Beispiele konzenrieren. Erse Beschreibungen dieser Ar haben wir in den Abschnien 3.4, 4.5 und 8.5 schon gesehen Die erzeugende Funkion In diesem Abschni wollen wir uns zuers eine qualiaive Mehode zur Beschreibung der Lösung, das heiss des Verhalens des Modells, vor Augen führen. Wir haben die reche Seie einer Anfangswer-Differenialgleichung die erzeugende Funkion des Modells genann. Sie erzeug die Dynamik, oder anders gesag, sie besimm die konkree Lösung und dami das Verhalen des Modells von einem Anfangswer ausgehend für die Zukunf. Lineare Beispiele. In Abschni 9.2 haben wir die allgemeine Form von Anfangswerproblemen in einer Dimension konsruier. Wir kriegen bei diesen Beispielen eine einzige Anfangswergleichung (Differenialgleichung) mi ihrer Anfangsbedingung. Wenn wir uns auf Modelle von Sysemen mi linearen Speicher- und Transporelemenen beschränken (oder auf solche, die zwar nichlinear sind, deren Kombinaion aber linear wird), dann ha das Anfangswerproblem die Form d () = a + b () (9.) d (0) = 0 (9.2) wobei a ein konsaner Koeffizien is, und die Inhomogeniä b von der Zei abhängen kann. Physisch is a bei einfachen RC Sysemen der (negaive) Kehrwer des Produkes aus Widersands- und Kapaziäswer a = RC (9.3) b () rühr von einem äusseren Einfluss oder Anrieb des Sysems her, zum Beispiel, wenn man bei einem Gefäss einen irgendwie durch die Umwel geregelen Zufluss ha. In Abschni 9.4 wurde gesag, dass die analyische Lösung von Gleichungen wie in Gl.(9.) eine zerfallende Exponenialfunkion is, wenn a < 0 (solange b nich von

4 98 Srukur und Verhalen I der Zei abhäng, das Anfangswerproblem also auonom is). Sie is eine wachsende Exponenialfunkion für posiive a. Wenn man diese erzeugende Funkion F ( ) in einem Diagramm als Funkion der abhängigen Variablen darsell, dann kann man visuell erkennen, was die erzeugende Funkion mach, d.h., wie sich die gesuche Lösung () für verschiedene Were von veränder (Abb.9.). (a) F( ) a2 a (b) F( ) (c) c c2 F( ) Fixed poins Fixed poins Abbildung 9.: Die erzeugende Funkion eines linearen eindimensionalen Anfangswerproblems is eine Gerade im F- Diagramm. (a) F ( ) = a und F ( ) = a + b führen auf wachsende Exponenialfunkionen. (b) F ( ) = a führ auf eine auf Null zerfallende Exponenialfunkion. (c) F ( ) = a + b führen auf zu verschiedenen Fixpunken (Gleichgewichspunken) hin zerfallenden Exponenialfunkionen. Nehmen wir zuers das Beispiel (b) aus Abb.9. für eine Beschreibung, wie man diese Diagramme verwende (Abb.9.2). Wir sind also mi einem Anfangswerproblem der Form d/d = a, (0) = 0 konfronier. Beginnen wir die Enwicklung der gesuchen Funkion () mi einem posiiven Anfangswer 0 > 0 (als Beispiel können wir uns einen Behäler mi Ausfluss mi einer anfänglich posiiven Menge darin vorsellen; () könne die Füllhöhe als Funkion der Zei darsellen). Aufgrund des mileren Diagramms in Abb.9. schliessen wir, dass die erzeugende Funkion negaiv is, dass also abnimm (d/d < 0). Wenn gross is, so is der Berag der Änderungsrae auch gross, nimm also schnell ab. Die gesuche Funkion nimm also von 0 ausgehend anfangs schnell, späer immer langsamer ab, bis sie gegen Null geh und sich dann nich mehr veränder; Null is hier der Gleichgewichspunk. Das is genau das, was wir von unseren bisherigen Unersuchungen kennen. F( ) () 0 0 Fixed poin d/d(0) Abbildung 9.2: Von der erzeugenden Funkion (links) zu einer Lösung des Anfangswerproblems ausgehend von einem besimmen Anfangswer (rechs). Wenn wir bei unserem Beispiel von einem negaiven Anfangswer ausgehen, so wird die Funkion () zunehmen und gegen den Wer Null hin wachsen, anfänglich schnell, späer dann langsamer. Im Beispiel c gehen wir ensprechend vor. Saren wir mi einem Anfangswer, der grösser als der Fixpunk is ( 0 ); der Fixpunk oder Gleichgewichswer is selber posiiv (Abb.9.3). Dann is die Änderungsrae der gesuchen Funkion wieder negaiv, die Funkion nimm ab. Die Abnahme is wieder schnell, sie verlangsam sich, und sie wird beim Fixpunk Null. Das heiss, dass die gesuche Funkion zu unserem posiiven Gleichgewichswer hin exponeniell zerfäll. Wenn man sadessen mi

5 9.5 Verhalen von eindimensionalen Modellen 99 einem Anfangswer 02 beginn, der kleiner als der Fixpunk is (wobei 02 auch negaiv sein darf), dann wächs die Funkion gegen den Fixpunk, wie in Abb.9.3 rechs gezeig. F( ) () Fixed poin Abbildung 9.3: Von der erzeugenden Funkion (links) zu einer Lösung des Anfangswerproblems ausgehend von einem besimmen Anfangswer (rechs). Logisisches Wachsum. Diese qualiaive Mehode zur Beureilung des Sysemverhalens funkionier auch bei nichlinearen dynamischen Sysemen in einer Dimension. Ein für uns ineressanes Beispiel is das des logisischen oder S-förmigen Wachsums (Abschni 2..3). Es führ auf ein Anfangswerproblem der Form d d () = a b 2 (9.4) (0) = 0 (9.5) wobei die Parameer a und b posiiv sein sollen. Die erzeugende Funkion die reche Seie der Differenialgleichung Gl.(9.4) is also F ( ) = a b 2 (9.6) und sieh wie in Abb. gezeig aus; F ( ) is eine nach unen offene Parabel, ha also möglicherweise zwei Fixpunke (wie in der Abbildung gezeig). F( ) F 0 () F2 F2 0 F Fixed poins Abbildung 9.4: Von der erzeugenden Funkion des logisischen Wachsums (links) zu einer Lösung des Anfangswerproblems ausgehend von verschiedenen Anfangsweren (rechs) Analyische Form von Exponenialfunkionen Wir bleiben bei den linearen auonomen Anfangswerproblemen (wo also a und b in Gl.(9.) konsan sind) und wollen nun lernen, wie man die Lösungsfunkionen formal schreib. WIe schon öfer bemerk, sind dies Exponenialfunkionen. In einem Sysem mi negaivem Feddback gib das zerfallende Exponenialfunkionen. Die einfachse Form einer zerfallenden Exponenialfunkion, wie wir sie of gesehen haben, is () = 0 exp ( a ) (9.7) also eine zum Wer Null zerfallende Funkion (Abb.9.5). 0 is der Anfangswer der Funkion für = 0. Der Wer von a > 0 leg fes, wie schnell der Zerfall vor sich geh.

6 200 Srukur und Verhalen I Grösseres a bedeue, dass sich die Funkion schneller an den Endwer angleich. Andere Fälle der Grundform lassen sich durch verschiedene Transformaionen der ursprünglichen Form besimmen. Zur Funkion in Abb.9.5 (f) zum Beispiel gehör die Gleichung () = 0 + ( max 0 ) ( exp ( a )) (9.8) (a) (b) (c) (d) (e) (f) max 0 Abbildung 9.5: Transformaionen der ursprünglichen einfachen zerfallenden Exponenialfunkion (a) mi 0 = und a =. In (f) sieh man eine mehrfach gespiegele, verschobene, gesauche und gesrecke Exponenialfunkion. Zerfallskonsane, Zeikonsane und Halbwerszei. Der Fakor a in exp ( a ) ha die Bedeuung einer Zerfallskonsane sowohl geomerisch als auch physikalisch. Seine Einhei is der Kehrwer der Einhei der Zei, also /s. Wenn man den Kehrwer von a nimm, τ = a (9.9) so erhäl man eine Grösse mi der Einhei der Zei: [τ] = s; man nenn sie Zeikonsane. Diese Gösse miss, wie lange es dauer, bis der Wer der Funkion auf einen besimmen Brucheil des Anfangsweres zerfallen is. Wenn man in Gl.(9.7) a durch τ ersez, ( () = 0 exp ) (9.0) τ und für die Zei den Wer der Zeikonsane einsez, = τ, so sieh man, dass (τ) / 0 = exp ( ) = In einer Zeikonsane zerfäll eine Exponenialfunkion mi der Form Gl.(9.7) oder Gl.(9.0) also auf ewa 37% des ursprünglichen Weres (d.h. des Weres am Anfang einer Periode der Länge der Zeikonsane). Bemerkenswer an den Exponenialfunkionen is, dass diese Aussage für jedes Inervall der Länge τ gil, gleichgülig, wo man anfäng zu zählen. Man kann auch mehrere ananeinander hängende Inervalle nehmen. Im ersen Inervall zerfäll die Funkion auf 37% des Angangsweres, im zweien auf 37% des Weres am Anfang des zweien Inervalles, ec. Insbesondere bei Radioakiven Zerfällen, wo gemessene Zeireihen sehr schön durch zerfallende Exponenialfunkionen angenäher werden können, ha es sich eingebürger, die Halbwerszei anselle der Zeikonsanen zu benüzen. Die Halbwerszei is die Dauer, in der eine Exponenialfunkion auf 50% des ursprünglichen Weres

7 9.5 Verhalen von eindimensionalen Modellen 20 sink. Für die Halbwerszei /2 gil /2 = ln (2) τ (9.). Die Enropie-Kapaziä von Wasser is umgekehr proporional zur absoluen Temperaur, also nich linear. Falls man für ein Modell der Abkühlung den Enropieleiwer für die Wand des Gefässes auch umgekehr proporional zur Temperaur mach (was in gewissen Fällen durchaus so sein kann), dann wird das Modell linear. Zeigen Sie diesen Sachverhal. Aufgaben 2. Wie enwickel sich die Lösung des Anfangswerproblems nach Beispiel a (Abb.9.) für einen Anfangswer gleich Null? Skizzieren Sie eine Lösung für a2 für einen Anfangswer, der kleiner als der Fixpunk is. 3. Wie sieh die Lösung des Anfangswerproblems nach Beispiel c2 (Abb.9.) für einen posiiven Anfangswer aus? 4. Wieso wächs die Lösungsfunkion für das logisische Wachsum vom eingezeichneen Anfangswer ausgehend zuers immer schneller, späer dann aber immer langsamer? 5. Wieso Schreiben Sie nacheinander die Funkionsgleichungen für die Kurven in Abb.9.5, (a)-(f). Von (c) nach (d) wurde der Wer von a vergrösser. 6. Beweisen Sie die Beziehung zwischen Halbwerszei und Zeikonsane in Gl.(9.). 7. Die Temperaur Ihres Kaffees sink exponeniell von 92 C auf einen Gleichgewichswer von 27 C mi einer Zeikonsane von 0 Minuen. Schreiben Sie die Funkionsgleichung für den Verlauf der Temperaur in Kelvin. 8. Ein Kondensaor ha anfänglich eine Spannung von 2.0 V. Sie änder sich exponeniell zu einem Gleichgewichswer von 5.0 V mi einer Zeikonsane von 5.0 s. Schreiben Sie die Funkionsgleichung für die Spannung des Kondensaors. Aufgaben

8 202 Srukur und Verhalen I

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

2 Messsignale. 2.1 Klassifizierung von Messsignalen

2 Messsignale. 2.1 Klassifizierung von Messsignalen 7 2 Messsignale Messwere beinhalen Informaionen über physikalische Größen. Die Überragung dieser Informaionen erfolg in Form eines Signals. Allerdings wird der Signalbegriff im äglichen Leben mehrdeuig

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil.

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Diffusion und Drif Die Halbleierdiode Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2)

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2) Unerschied : kurzfrisige vs langfrisige Zinssäze Inermediae Macro - Uni Basel 10 Arbirage implizier: (1) () Es gib eine klare Beziehung zwischen langfrisigen Zinsen und erwareen künfigen Kurzfriszinsen

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Schalten wie von Geisterhand

Schalten wie von Geisterhand Technisches Daenbla Ee102P Generelle Beschreibung Mi dem Ee102P erweier die EDISEN SENSOR SYSTEM GmbH & Co. KG das Einsazspekrum ihrer digialen kapaziiven Bewegungssensoren. Der anwendungsspezifische inegriere

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Energietechnisches Praktikum I Versuch 11

Energietechnisches Praktikum I Versuch 11 INSI FÜR HOCHSPANNNGSECHNIK Rheinisch-Wesfälische echnische Hochschule Aachen niv.-prof. Dr.-Ing. Armin Schneler INSI FÜR HOCHSPANNNGS ECHNIK RHEINISCH- WESFÄLISCHE ECHNISCHE HOCHSCHLE AACHEN Energieechnisches

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Elementare RC- und RL-Glieder

Elementare RC- und RL-Glieder ANGEWANDTE ELEKTRONIK EINFÜHRNG WS 09/0 Elemenare RC- und RL-Glieder. Der Sromluß durch einen Kondensaor Abb.. veranschaulich einen Kondensaor, der durch Anschalen an eine Spannungsquelle geladen und anschließend

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

4. Zeitabhängige Spannungen und Ströme in Netzwerken

4. Zeitabhängige Spannungen und Ströme in Netzwerken 86 4 Zeiabhängige Spannungen und Sröme 4 Zeiabhängige Spannungen und Sröme in Nezwerken m vorigen Abschni wurde dargeleg, wie durch zeiliche Änderung des magneischen Flusses Spannungen in Leiern induzier

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

3. Physikschulaufgabe. - Lösungen -

3. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse I - Lösungen - hema: Aom- u. Kernphysik, Radioakiviä. Elekrisches Feld: Alphasrahlung: Sind (zweifach) posiiv geladene Heliumkerne. Sie werden im elekrischen Feld

Mehr

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10 Fachhochschule Augsburg SS 20001 Fachbereich Elekroechnik Modulaion digialer Signale Übungen zur Vorlesung Nachrichenüberragungsechnik E5iK Bla 10 Fragen 1. Welche Voreile biee die digiale Überragung von

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

Zuverlässigkeitstechnik

Zuverlässigkeitstechnik Zuverlässigkeisechnik Derzei gebräuchliche Begriffe, Modelle, Mehoden, und deren Anwendung Mache die Dinge so einfach wie möglich aber nich einfacher! 13. Dezember 2012 Dr. Andraes Hildebrand Alber Einsein

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Mathematik für das Ingenieurstudium. 4. Juli 2011

Mathematik für das Ingenieurstudium. 4. Juli 2011 Mahemaik ür das Ingenieursudium Jürgen Koch Marin Sämple 4. Juli 0 .6 Beweise 43 Beispiel.3 (Ungleichungen) a) Die Ungleichung + 4 < 6 is ür alle -Were deinier. Zur Besimmung der Lösungsmenge berechnen

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz

Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz Finanzmahemaik Wolfgang Müller 213 Insiu für Saisik Technische Universiä Graz Inhalsverzeichnis 1. Markmodelle in diskreer Zei 1 1.1. Das Binomialmodell................................ 1 1.2. Das allgemeine

Mehr

Musterbeispiele zur Zinsrechnung

Musterbeispiele zur Zinsrechnung R. Brinkann h://brinkann-du.de Seie 1 20.02.2013 Muserbeisiele zur Zinsrechnung Ein Bankkunde uss Zinsen zahlen, wenn er sich bei der Bank Geld leih. Das Geld was er sich leih, nenn an aial. Die Höhe der

Mehr

2.1 Produktion und Wirtschaftswachstum - Das BIP

2.1 Produktion und Wirtschaftswachstum - Das BIP 2.1 Produkion und Wirschafswachsum - Das BIP DieVolkswirschafliche Gesamrechnung(VGR)is das Buchführungssysem des Saaes. Sie wurde enwickel, um die aggregiere Wirschafsakiviä zu messen. Die VGR liefer

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Messgrößen. a81 a00002. a81 a000021

Messgrößen. a81 a00002. a81 a000021 Elekrische Energie is heuzuage die handlichse aller Energieformen. Sie läss sich vielseiig nuzen und nahezu überall bereihalen, sofern ein diches Nez von Krafwerken, Überlandleiungen, Umspannsaionen, Kabeln

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast:

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast: 4. Fremdgeführe Sromricher Fremdgeführe Sromricher benöigen eine fremde, nich zum Sromricher gehörende Wechselspannungsquelle, die ihnen während der Dauer der Kommuierung die Kommuierungsspannung zur Verfügung

Mehr

Versuch 13: Elektronenstrahloszilloskop

Versuch 13: Elektronenstrahloszilloskop Versuch 13: Elekronensrahloszilloskop Der Versuch vermiel eine Einführung in die Funkionsweise des Elekronensrahloszilloskops anhand der wichigsen Anwendungsmöglichkeien dieses in der Messechnik sehr vielseiig

Mehr

PPS-Auswahl und -einsatz - weniger ist mehr!

PPS-Auswahl und -einsatz - weniger ist mehr! Prof. Dr.-Ing. Wilhelm Dangelmaier Einleiung Die eine Aussage dieser Überschrif is: Auswahlprozesse für die Produkionsplanung und -seuerung laufen nich immer so ab, dass schließlich das geeigneese Sysem

Mehr

Information zum Dimmen von LED-Lichtquellen

Information zum Dimmen von LED-Lichtquellen nformaion zum Dimmen von LED-Lichquellen Zenralverband Elekroechnik- und Elekronikindusrie mpressum nformaion zum Dimmen von LED-Lichquellen Herausgeber: ZVE - Zenralverband Elekroechnikund Elekronikindusrie

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

Regelungstechnik für den Praktiker. Manfred Schleicher

Regelungstechnik für den Praktiker. Manfred Schleicher Regelungsechnik für den Prakiker Manfred Schleicher Vorwor und Hinweise zum Inhal dieser Broschüre Bezüglich der Regelungsechnik is eine Vielzahl von Büchern und Abhandlungen erhällich, welche häufig

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

I. Vorbemerkungen und wichtige Konzepte

I. Vorbemerkungen und wichtige Konzepte - 1 - I. Vorbemerkungen und wichige Konzee A.Warum und zu welchem Zweck bereiben wir Wirschafsheorie? 1. Zur Beanworung der ökonomischen Grundfragen Fragen der Allokaion (Ziel is die effiziene Allokaion

Mehr

Versuch: Phosphoreszenz

Versuch: Phosphoreszenz Versuch O8 PHOSPHORESZENZ Seie 1 von 6 Versuch: Phosphoreszenz Anleiung für folgende Sudiengänge: Biowissenschafen, Pharmazie Raum: Physik.24 Goehe-Universiä Frankfur am Main Fachbereich Physik Physikalisches

Mehr

IX. Lagrange-Formulierung der Elektrodynamik

IX. Lagrange-Formulierung der Elektrodynamik IX. Lagrange-Formulierung der Elekrodynamik In diesem Kapiel wird gezeig, dass die Maxwell Lorenz-Gleihungen der Elekrodynamik hergeleie werden können, wenn dem Sysem {Punkladung + elekromagneihes Feld}

Mehr

Physik. Klassische Mechanik Teil 2. Walter Braun. Grundlagenfach Physik. NEUE SCHULE ZÜRICH Physik Mechanik Teil 2. Luft Vakuum

Physik. Klassische Mechanik Teil 2. Walter Braun. Grundlagenfach Physik. NEUE SCHULE ZÜRICH Physik Mechanik Teil 2. Luft Vakuum Physik Klassische Mechanik Teil Waler Braun Luf Vakuum = Aluminiumzylinderchen = dünnwandiger Glaskörper, vollsändig verschlossen Grundlagenfach Physik Mechanik Teil Version 9.11.1 W. Braun Seie 1 von

Mehr

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe 5-0 5- Kapiel 5 Die Beweung von Anleihen und Akien Kapielübesich 5. Definiion und Beispiel eine Anleihe ( Bond ) 5. Beweung von Anleihen 5.3 Anleihenspezifika 5.4 De Bawe eine Akie 5.5 Paameeschäzungen

Mehr

Brush-up Kurs Wintersemester 2015. Optionen. Was ist eine Option? Terminologie. Put-Call-Parität. Binomialbäume. Black-Scholes Formel

Brush-up Kurs Wintersemester 2015. Optionen. Was ist eine Option? Terminologie. Put-Call-Parität. Binomialbäume. Black-Scholes Formel Opionen Opionen Was is eine Opion? Terminologie Pu-Call-Pariä Binomialbäume Black-Scholes Formel 2 Reche und Pflichen bei einer Opion 1. Für den Käufer der Opion (long posiion): Rech (keine Pflich!) einen

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

5. sequentielle Schaltungen

5. sequentielle Schaltungen Humbold-Universiä zu Berlin, r. Winkler igiale Syseme (Grundlagen 3) 10.05.2010 5. sequenielle Schalungen sequenielle Schalungen: digiale Schalung mi inneren Rückführungen sie haben eine zeisequenielle

Mehr

Strukturaufklärung BSc Chemie-Molekulare Materialien, Teil NMR Spektroskopie

Strukturaufklärung BSc Chemie-Molekulare Materialien, Teil NMR Spektroskopie Srukuraufklärung BSc Chemie-olekulare aerialien, Teil R Spekroskopie Prof. Dr. W.S. Veeman Inhal: I. Einleiung Spekroskopie II. Einfache Beschreibung der R Spekroskopie: coninuous wave R III. Die Puls-R-Spekroskopie

Mehr

Kurs 9.3: Forschungsmethoden II

Kurs 9.3: Forschungsmethoden II MSc Banking & Finance Kurs 9.3: Forschungsmehoden II Zeireihenanalyse Lernsequenz 04: Regression zwischen Zeireihen / ARMA-Modelle November 014 Prof. Dr. Jürg Schwarz Folie Inhal Ziele 5 Regression zwischen

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Vorlesung - Prozessleittechnik 2 (PLT 2)

Vorlesung - Prozessleittechnik 2 (PLT 2) Fakulä Elekro- & Informaionsechnik, Insiu für Auomaisierungsechnik, rofessur für rozessleiechnik Vorlesung - rozessleiechnik LT Sicherhei und Zuverlässigkei von rozessanlagen - Sicherheislebenszyklus Teil

Mehr

REX und REXP. - Kurzinformation -

REX und REXP. - Kurzinformation - und P - Kurzinformaion - July 2004 2 Beschreibung von Konzep Anzahl der Were Auswahlkrierien Grundgesamhei Subindizes Gewichung Berechnung Basis Berechnungszeien Gewicheer Durchschniskurs aus synheischen

Mehr

A. Multiple Choice Teil der Klausur (22 Punkte) Lösungen jeweils in blauer Schrift

A. Multiple Choice Teil der Klausur (22 Punkte) Lösungen jeweils in blauer Schrift A. Muliple Choice eil der Klausur ( Punke) Lösungen jeweils in blauer chrif Punk Lösung: B Homoskedasiziä bedeue dass a) Annahme B gil, d.h. dass die geschäzen örgrößen û über alle Zeipunke gerechne eine

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Long Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN Bezugswer Fakor 4x Long Copper Index CBLKU4 / 12306935 / CZ33RK / DE000CZ33RK2 üblicherweise der an der Maßgeblichen erminbörse

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

Unternehmensbewertung

Unternehmensbewertung Unernehmensbewerung Brush-up Kurs Winersemeser 2015 Unernehmensbewerung 1. Einführung 2. Free Cash Flow 3. Discouned-Cash-Flow-Bewerung (DCF) 4. Weighed average cos of capial (wacc) 5. Relaive Bewerung/

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

Übersicht über die Vorlesung. 2 Marketing-Mix und Marktreaktion

Übersicht über die Vorlesung. 2 Marketing-Mix und Marktreaktion Üersich üer die Vorlesung Was is arkeing? arkeing-ix und arkreakion 3 Sraegisches arkeing 4 Produkpoliik 5 Preispoliik 6 Kommunikaionspoliik 7 Disriuionspoliik Gliederung des zweien Kapiels arkeing-ix

Mehr

WACHSTUM VON POPULATIONEN

WACHSTUM VON POPULATIONEN WACHSTUM VO POPULATIOE I II Exponenielles Wachsum Logisisches Wachsum Bei auseichenden Resoucen und fehlende Einwikung duch naüliche Feinde ode sonsige Einflußgößen, die das Wachsum beschänken, komm es

Mehr

Lehrstuhl für Finanzierung

Lehrstuhl für Finanzierung Lehrsuhl für Finanzierung Klausur im Fach Finanzmanagemen im Winersemeser 1998/99 1. Aufgabe Skizzieren Sie allgemein die von Kassenhalungsproblemen miels (sochasischer) dynamischer Programmierung! Man

Mehr

Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003

Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003 Bernhard Geiger, 4 MODULATION Unerrichsskrip aus dem TKHF-Unerrich 3 Was is Modulaion? Was is Modulaion? Modulaion is die Veränderung eines Signalparameers (Ampliude, Frequenz, hasenwinkel) eines Trägersignals

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation Gliederung akroökonomie 1 rof. Volker Wieland rofessur für Geldheorie und -poliik J.W. Goehe-Universiä Frankfur 1. Einführung 2. akroökonomische Analyse mi Flexiblen reisen 3. akroökonomische Analyse in

Mehr

-1- + + Die Grenzleitfähigkeit des Salzes ist gleich der Summe aus den Grenzleitfähigkeiten des Kations Λ 0 und der des Anions Λ

-1- + + Die Grenzleitfähigkeit des Salzes ist gleich der Summe aus den Grenzleitfähigkeiten des Kations Λ 0 und der des Anions Λ -1-16 ELEKTRCEMIE 2: EINELNE INEN 16.1 Grenzleifähigkei der Ionen Kohlrausch ha bei seinen Besimmungen der Grenzleifähigkeien Λ gewisse Gesezmäßigkeien beobache. Demnach räg jedes Ion mi einem besimmen

Mehr

Grundwissen Physik am bayerischen Gymnasium (G8)

Grundwissen Physik am bayerischen Gymnasium (G8) Grundwissen Physik am bayerischen Gymnasium (G8) Richard Reindl 004 009 Das Grundwissen is zweispalig dargesell, links die Definiionen, Säze und Beweise, rechs bbildungen und. Es handel sich nich nur um

Mehr

Aufbau von faserbasierten Interferometern für die Quantenkryptografie

Aufbau von faserbasierten Interferometern für die Quantenkryptografie Aufbau von faserbasieren nerferomeern für die uanenkrypografie - Gehäuse, Phasensabilisierung, Fasereinbau - Maserarbei im Sudiengang Elekroechnik und nformaionsechnik Veriefungsrichung Phoonik an der

Mehr

Aufnahme von Durchlasskurven mit dem Oszilloskop (OSZ)

Aufnahme von Durchlasskurven mit dem Oszilloskop (OSZ) Seie 1 Aufnahme von Durchlasskurven mi dem Themengebie: Elekrodynamik und Magneismus 1 Sichwore, Taskopf, Funkionsgeneraor, Schwingkreis, Resonanz, Bandbreie, Dämpfung, Güe, Tiefpass, Hochpass, Grenzfrequenz

Mehr

Diplomarbeit zur Erlangung des Diplomgrades Diplom-Informatiker (FH) in der Fachrichtung Allgemeine Informatik

Diplomarbeit zur Erlangung des Diplomgrades Diplom-Informatiker (FH) in der Fachrichtung Allgemeine Informatik Fachhochschule Köln - Campus Gummersbach Fakulä für Informaik und Ingenieurwissenschafen Universiy of Applied Sciences Cologne Faculy of Compuer and Engineering Science Sudiengang Allgemeine Informaik

Mehr

Digitale und Analoge Modulationsverfahren. Inhaltsverzeichnis. Abbildungsverzeichnis. ADM I Analoge & Digitale Modulationsverfahren

Digitale und Analoge Modulationsverfahren. Inhaltsverzeichnis. Abbildungsverzeichnis. ADM I Analoge & Digitale Modulationsverfahren ADM I Analoge & Digiale Modulaionsverfahren Digiale und Analoge Modulaionsverfahren Inhalsverzeichnis 1 Idealisiere analoge und digiale Signale 1 2 Bezeichnungen für digiale Modulaionsverfahren 2 3 Eingriffsmöglichkeien

Mehr

1 Einführung. Bild 1-1: Ein digitales Kommunikationssystem

1 Einführung. Bild 1-1: Ein digitales Kommunikationssystem 1 Einführung Ein digiales Kommunikaionssysem, das sicherlich viele Leser aus eigener Erfahrung kennen, zeig Bild 1-1: Ein Compuer is über ein Modem mi einem Kommunikaionsnez verbunden und ausch Daen mi

Mehr

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1 TONI T0EL. Flipflops. Flipflops. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Beobachung: Das NO-Flipflop unerscheide sich von allen

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Kausalität. Kausalität. Relata der Kausalität. Relata der Kausalität. Kausalität und Notwendigkeit

Kausalität. Kausalität. Relata der Kausalität. Relata der Kausalität. Kausalität und Notwendigkeit Kausaliä 1. Sizung Das Phänomen der Kausaliä (also von Ursache und Wirkung) is allgegenwärig: Hurrikan Karina ha die Flukaasrophe von New Orleans verursach. Das Aena von Sarajevo ha den Ersen Welkrieg

Mehr

Faktor 4x Short Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Short Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Shor Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN / Common Code Fakor 4x Shor DAXF Index 11617870 / CBSDX DE000CZ33BA7 / CZ33BA Bezugswer üblicherweise der an der Maßgeblichen

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

Universität Stuttgart. Institut für Technische Chemie

Universität Stuttgart. Institut für Technische Chemie Universiä Sugar Insiu für Technische Chemie Technisch-Chemisches Prakikum Versuch 5: Verweilzei-Vereilungscharakerisiken von Reakoren 8/1 Verweilzei-Vereilungscharakerisiken von Reakoren 1. Einleiung Die

Mehr

MEA DISCUSSION PAPERS

MEA DISCUSSION PAPERS Ale und neue Wege zur Berechnung der Renenabschläge Marin Gasche 01-2012 MEA DISCUSSION PAPERS mea Amaliensr. 33_D-80799 Munich_Phone+49 89 38602-355_Fax +49 89 38602-390_www.mea.mpisoc.mpg.de Ale Nummerierung:

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

Soziale Sicherung durch Markt und Staat SS 2005 5. Rentenversicherung Version vom 02.06.2005. Equation Section 5

Soziale Sicherung durch Markt und Staat SS 2005 5. Rentenversicherung Version vom 02.06.2005. Equation Section 5 Soziale Sicherung durch Mark und Saa SS 2005 5. Renenversicherung Version vom 02.06.2005 Equaion Secion 5 Equaion Secion 5...2 5. Renenversicherung...3 5. Einleiung...3 5.2 Das Alerssicherungssysem in

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Kleine DC/DC-Konverter

Kleine DC/DC-Konverter Kleine C/C-Konverer Gleichspannungswandler uner der upe Von rof. r.-ing. Marin Oßmann chalnezeile gehören nich unbeding zu den beliebesen chalungen von Hobbyelekronikern. pezialeile sind of schwer zu beschaffen

Mehr