Modelle, Version Spaces, Lernen

Größe: px
Ab Seite anzeigen:

Download "Modelle, Version Spaces, Lernen"

Transkript

1 Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Maschnelles Lernen Modelle, Verson Spaces, Lernen Chrstoph Sawade/Nels Landwehr Slva Makowsk Tobas Scheffer

2 Überblck Problemstellungen: Klassfkaton und Regresson Modelle und Hypothesenraum Verlustfunktonen und Regularserer Unscherhet, Wahrschenlchketen, Bayes sche Regel 2

3 Überblck Problemstellungen: Klassfkaton und Regresson Modelle und Hypothesenraum Verlustfunktonen und Regularserer Unscherhet, Wahrschenlchketen, Bayes sche Regel 3

4 Problemstellung Klassfkaton Engabe: Instanz (Objekt) X. m Objekte oft durch Vektor von Attrbuten repräsentert ( X = ) Instanz st Belegung der Attrbute. =... Merkmalsvektor m Ausgabe: Klasse y Y ; endlche Menge. Klasse wrd auch als Zelattrbut bezechnet y heßt auch (Klassen)Label 1 Klassfkator y Y 4

5 Klassfkaton: Bespel Engabe: Instanz (Objekt) X. X = Menge aller möglchen Kombnatonen ener Menge von Medkamenten Attrbute Medkament 1 enthalten? Medkament 6 enthalten? Ausgabe: Instanz y Y = { tosch, ok} Belegung der Attrbute, Merkmalsvektor / Medkamentenkombnaton Klassfkator 5

6 Klassfkaton: Bespel Engabe: Instanz (Objekt) X. X = Menge aller 1616 Pel Btmaps Attrbute Grauwert Pel 1 Grauwert Pel 256 Instanz Ausgabe: y Y = {0,1, 2,3, 4,5, 6, 7,8,9} : erkannte Zffer Klassfkator 256 Pelwerte "6" 6

7 Klassfkaton: Bespel Engabe: Instanz (Objekt) X. X Attrbute Wort 1 kommt vor? Wort N kommt vor? N Ausgabe: = Menge aller möglchen Emal-Tete Instanz Alternatve Benefcary Frend Sterlng Zoo y Y = { spam, ok} Emal Dear Benefcary, your Emal address has been pcked onlne n ths years MICROSOFT CONSUMER AWARD as a Wnner of One Hundred and Ffty Fve Thousand Pounds Sterlng Dear Benefcary, We are pleased to notfy you that your Emal address has been pcked onlne n ths second quarter's MICROSOFT CONSUMER AWARD (MCA) as a Wnner of One Hundred and Ffty Fve Thousand Pounds Sterlng Klassfkator Spam 7

8 Problemstellung Klassfkatonslernen Idee: Klassfkator aus Daten lernen Engabe Lernproblem: Tranngsdaten. L = (, y 1),...,(, y 1 N N 1 =... m ) Ausgabe: Klassfkator (auch als Modell bezechnet). f : X Y f ( ) =, wenn = 1 = 0 = 1, sonst

9 Problemstellung Klassfkatonslernen Idee: Klassfkator aus Daten lernen Engabe Lernproblem: Tranngsdaten. L = (, y 1),...,( Objektrepräsentaton y Klassenlabel, y 1 N N 1 =... m ) (, ok) (, ) (, tosch) (, ok) y1 ( 2, y2) 3 y3 (, ) 9

10 Problemstellung Klassfkatonslernen Engabe Lernproblem: Tranngsdaten. L = (, y 1),...,(, y 1 N N 1 =... m ) Ausgabe: Klassfkator (auch als Modell bezechnet). f : X Y Lnearer Klassfkator mt Parametervektor w. f f ( ) = w, wenn = 1 = 0 = 1, sonst ( ) =, sonst T m w= = 1 T, wenn w b 0 w 10

11 Problemstellung Klassfkatonslernen Engabe Lernproblem: Tranngsdaten. L = (, y 1),...,(, y 1 N N 1 =... m ) Ausgabe: Klassfkator (auch als Modell bezechnet). f : X Y Verschedene Klassen von Klassfkatoren - Entschedungsbäume. - Generalserte lneare Modelle (Kernel). - -Betrachtete Klassfkatoren wesentlches Unterschedungsmerkmal zwschen Verfahren des ML

12 Problemstellung Klassfkatonslernen Engabe Lernproblem: Tranngsdaten. Alternatve Schrebwese: Tranngsnstanzen: Matr Tranngslabels: Vektor ), ),...,(, ( 1 1 N N y y L = = m... 1 ( ) = = Nm N m N X = y N y... 1 y

13 Problemstellung: Regresson Engabe: Instanz (Objekt) X. Objekte oft durch Attrbut-Vektoren repräsentert. Instanz st Belegung der Attrbute. 1 =... m Merkmalsvektor Ausgabe: kontnuerlcher Wert, z.b Toztät. y We tosch st Kombnaton? y 13

14 Regressonslernen Engabe: Tranngsdaten. Ausgabe: Modell, Regressonsmodell. L = Z.B. (, y 1),...,(, y 1 N N 1 =... m y f : X ) T f ( ) = w + b w (,0.05) (, y ) (,0.95) (,0.01) (, ) 2 y2 3 y3 (, ) 14

15 Andere Lernprobleme Ordnale Regresson. Präferenzlernen. Taonome-Klassfkaton. Klassfkaton und Regresson mt strukturerten Ausgaberäumen. Kollaboratve Vorhersage. 15

16 Andere Lernprobleme Ordnale Regresson. Präferenzlernen. Taonome-Klassfkaton. Klassfkaton und Regresson mt strukturerten Mschung aus Klassfkaton Ausgaberäumen. Kollaboratve Vorhersage. und Regresson Endlche, dskrete Labels Ordnung 16

17 Andere Lernprobleme Ordnale Regresson. Präferenzlernen. Taonome-Klassfkaton. Klassfkaton und Regresson mt strukturerten Ausgaberäumen. Kollaboratve Vorhersage. Kene drekten Klassen beobachtet, sondern nur Präferenzen z.b Rehenfolge von Suchresultaten aus Clckstreams lernen 17

18 Andere Lernprobleme Ordnale Regresson. Präferenzlernen. Taonome-Klassfkaton. Klassfkaton und Regresson mt strukturerten Ausgaberäumen. Herarche von Klassen Kollaboratve Vorhersage. En Objekt hat mehrere Klassenlabels Panther st ->Ter ->Säugeter ->Katze ->Panther 18

19 Andere Lernprobleme Ordnale Regresson. Präferenzlernen. Taonome-Klassfkaton. Klassfkaton und Regresson mt strukturerten Ausgaberäumen. Kollaboratve Vorhersage. Engabe X und Ausgabe Y strukturerte Räume Bespel: Engabe DNA Ausgabe Protenfaltung Klassenlabel 3D Struktur AAGCTTGCACTGCCGT 19

20 Andere Ausnutzen Lernprobleme von Relatonen zwschen Objekten Bespel: Produktempfehlungen Präferenzlernen. Vorhersage nteressanter Produkte Ordnale Regresson. Taonome-Klassfkaton. Was hat der Nutzer/haben ähnlche Nutzer vorher gekauft? Klassfkaton und Regresson mt strukturerten Ausgaberäumen. Kollaboratve Vorhersage. 20

21 Überblck Lernprobleme: Klassfkaton und Regresson Modelle und Hypothesenraum Verlustfunktonen und Regularserer Unscherhet, Wahrschenlchketen, Bayes sche Regel 21

22 Klassfkatonslernen Engabe: Tranngsdaten. Ausgabe: Klassfkator. We Klassfkator lernen aus Tranngsdaten? L = (, y 1),...,(, y 1 N N 1 =... m f : X Y ) f ( ) =, wenn 1 = 1 3 = 0 6 = 1, sonst Ansatz: Klassfkator, der Tranngsdaten (Beobachtungen) erklärt Suchproblem m Raum aller (betrachteten) Klassfkatoren 22

23 Hypothesenraum Hypothesenraum, Modellraum H: Menge der Klassfkatonsmodelle, de Lernverfahren n Betracht zeht. Hypothesenraum st ener der Frehetsgrade bem maschnellen Lernen, vele Räume gebräuchlch. Hypothesenraum hesst auch Language Bas Bespel: Alle möglchen Konjunktonen von Bedngungen, wenn j J j = v j J {1,..., m}, v j {0,1} f ( ) =, sonst We groß st Hypothesenraum (m bnäre Attrbute)? 23

24 Suche nach Hypothese Suche nach Klassfkator für Kombnaton tosch. Hypothesenraum:, wenn = v f ( ) =, sonst j J j j Bespel- Kombnatonen Ansatz: Hypothese sollte konsstent sen mt Tranngsdaten : f( ) = y Identfzeren aller solchen Hypothesen? Medkamente n der Kombnaton y Nutze Struktur auf dem Hypothesenraum (generell/spezell) Tranngsdaten 24

25 Genereller-Als -Ordnung f f gdw. f ( ) =+ 1 f ( ) =+ 1 X Grundmenge X Hypothesen H spezfsch Immer f 1 f 3 2 f 2 f 1 =, wenn 2=1, 6=1 g g s s g f g 2 g f1 f2 g f3 aber ncht f1 f 3 g generell Immer f 2 =, wenn 2=1 f 3 =, wenn 2=1, 3=1 25

26 Verson Space Menge aller Hypothesen, de mt den Tranngsdaten konsstent snd, nennen wr den Verson Space: VSHL, = { f H (, y) L : f ( ) = y} Verson Space begrenzt durch generellste/spezellste Hypothesen, de Daten erklären G = { f VS f ' VS : f ' > f } H, L H, L g S = { f VS f ' VS : f > f '} H, L H, L g VSH, L= { f H f g G, fs S : f g g f g fs} Generellste konsstente Hypothesen Spezellste konsstente Hypothesen Verson Space: alles zwschen G und S (kene unendlchen Ketten) 26

27 Verson Space: Beobachtungen VSHL, = { f H (, y) L : f ( ) = y} Verson Space wrd klener, je mehr Daten vorhanden Verson Space leer: Tranngsmenge wdersprüchlch (es estert kene Hypothese n H, de Daten erklärt) Verson Space enelementg: Rchtges Modell gefunden, Oder rchtges Modell st ncht m Hypothesenraum. Mehrere Elemente m Verson Space: Noch ncht fertg. 27

28 Verson Space: Brute Force Konstrukton Intalsere V auf Menge aller Hypothesen. Für alle Tranngsbespele (, y): Lösche alle Hypothesen f aus V, de mt nkonsstent snd, also f () y. V st jetzt der Verson Space Bessere Verfahren unter Benutzung von G und S (kene Detals) 28

29 Bespel: Verson Space H: f ( ) = Welche Hypothesen snd m Verson Space?,, wenn v sonst j J j= j Bespel- Kombnatonen Medkamente n der Kombnaton y L= (, y ),(, y ),(, y ),(, y )

30 Bespel: Verson Space H: Welche Hypothesen snd m Verson Space? 2 4 f ( ) =,, 2 = 1 wenn v sonst j J j= j Bespel- Kombnatonen = 0 = 1 = Medkamente n der Kombnaton y L= (, y ),(, y ),(, y ),(, y ) = 1 = 0 1 = 0 2 = 1 1 = 0 4 = =

31 Verson Space H: Welche Hypothesen snd m Verson Space? Problem:, wenn j j = v f () =, sonst j Bespel- Kombnatonen Medkamente n der Kombnaton y Alle Elemente des Verson Space erklären de Daten glechermaßen gut. Verson Space ncht robust be fehlerhaften Daten 31

32 Unscherhet In der Pras errecht man nemals Gewsshet darüber, en korrektes Modell gefunden zu haben. Verson Space-Ansatz problematsch Der Hypothesenraum st mest unendlch groß. Der Verson Space st dann mest auch unendlch groß, oder leer. Alternatve/zusätzlche Konzepte Lernen als Optmerungsproblem Verlustfunktonen: Grad der Konsstenz mt Tranngsdaten A-pror Vertelung über Modelle, Regularserer 32

33 Überblck Lernprobleme: Klassfkaton und Regresson Modelle und Hypothesenraum Verlustfunktonen und Regularserer Unscherhet, Wahrschenlchketen, Bayes sche Regel 33

34 Verlustfunkton, Optmerungskrterum Alternatve zu Verson Spaces: Lernprobleme werden als Optmerungsprobleme formulert. Verlustfunkton msst, we gut Modell zu Tranngsdaten passt Regularserungsfunkton msst, ob das Modell nach unserem Vorwssen wahrschenlch st. Optmerungskrterum st Summe aus Verlust und Regularserer. Suche Mnmum des Optmerungskrterums Insgesamt wahrschenlchstes Modell, gegeben Tranngsdaten und Vorwssen. 34

35 Verlustfunkton We schlmm st es, wenn Modell f( ) vorhersagt obwohl der echte Wert der Zelvarable y st? Verlust auf den ganzen Tranngsdaten L: Bespel: Bnäres Klassfkatonsproblem mt postver Klasse (+1) und negatver Klasse (-1). False Postves und False Negatves glech schlmm. Zero-One Loss: l( f( ), y ) N = 1 l( f ( l( f( ), y ) 0, wenn f ( ) = y ), y ) = 1, sonst 35

36 Verlustfunkton Bespel: dagnostsche Klassfkatonsprobleme, übersehene Erkrankungen (False Negatves) schlmmer als False Postves. Kostenmatr l( f ( ), y ) = f ( f ( ) = + 1 ) = 1 y c = FN y = 1 c FP 0 36

37 Verlustfunkton Bespel Verlustfunkton Regresson: Vorhersage möglchst dcht an echtem Wert des Zelattrbutes Quadratscher Fehler l( f ( ), y ) = ( f ( ) y 2 ) 37

38 Verlustfunkton We schlmm st es, wenn Modell f( ) vorhersagt obwohl der echte Wert der Zelvarable y st? Verlust l(f( ), y ). Verlustfunkton st aus der jewelgen Anwendung heraus motvert. 38

39 Regularserer Verlustfunkton drückt aus, we gut Modell zu Daten passt Regularserer: drückt Annahme darüber aus, ob Modell a pror wahrschenlch st. Unabhängg von den Tranngsdaten. Je höher der Regularserungsterm für en Modell, desto unwahrschenlcher Häufg wrd de Annahme ausgedrückt, dass wenge der Attrbute für en gutes Modell ausrechen. Anzahl der Attrbute, L 0 -Regularserung Betrag der Attrbut-Gewchtungen, L 1 -Regularserung Quadrat der Attrbut-Gewchtungen, L 2 -Regularserung. 39

40 Regularserer: Bespel Hypothesenraum: Konjunkton von Bedngungen Lneares Modell: Lässt sch schreben als Allgemen: äquvalente Darstellung st, wenn 1 = 1 3 = 1 7 = 1 f ( ) =, sonst f ( ) = w j j f w,, ( ) = = { 1, 0, + 1} wenn sonst,,,, m j= 1 7 T w j 3 wenn w b sonst wenn sonst j b w: Modellparameter w { 1, + 1} falls Attrbut n logscher Bedngung vorkommt 40

41 Regularserer: Bespel Lnearer Klassfkator L 2 -Regularserung: f w ( ) = 2 λ w Addert,, λ wenn w T b sonst w = w für jedes von null verschedene Gewcht. Optmerungskrterum: Verlust+Regularserer 2 2 ˆ(, ) ( ( ), ) 2 R w L = l f w y + λ w Parameter steuert Stärke des Regularserers λ Durch den Regularserer mplementerte Präferenz des Lerners wrd auch Inductve Bas genannt. 41

42 Optmerungsproblem: Bespel ˆ(, ) ( ( ), ) 2 Beste Hypothese für λ = 0.1? = 1 = 0 1 = 0 2 = 1 1 = 0 4 = R w L = l f y + λ w w 2 = 1 = 0 = 1 = y =

43 Optmerungsproblem: Bespel R ˆ( w, L) = 2λ ˆ(, ) ( ( ), ) 2 R w L = l f y + λ w Beste Hypothese für λ = 0.1? 2 4 w 2 = 1 = 0 = 1 = y = 1 = 0 1 = 0 2 = 1 1 = 0 4 = R ˆ( w, L) = λ R ˆ( w, L) = 3λ =

44 Optmerungsproblem Enstellung von λ? Rechtfertgung für Optmerungskrterum? Mehrere Rechtfertgungen und Herletungen. Wahrschenlchste Hypothese (MAP-Hypothese). Hypothese, de Daten am stärksten komprmert (Mnmum Descrpton Length). Nedrge obere Schranke für Fehler auf zukünftgen Daten abhängg von w. (SRM). Lernen ohne Regularserung st ll-posed Problem; kene endeutge Lösung, oder Lösung hängt etrem stark von mnmalen Änderungen n den Daten ab. 44

45 Überblck Lernprobleme: Klassfkaton und Regresson Modelle und Hypothesenraum Verlustfunktonen und Regularserer Unscherhet, Wahrschenlchketen, Bayes sche Regel 45

Modelle, Version Spaces, Lernen

Modelle, Version Spaces, Lernen Unverstät Potsdam Insttut ür Inormatk Lehrstuhl Maschnelles Lernen Maschnelles Lernen Modelle Verson Spaces Lernen Tobas Scheer Mchael Brückner Klasskaton Engabe: Instanz Objekt X. Können durch Attrbut-Vektoren

Mehr

Bayessches Lernen (3)

Bayessches Lernen (3) Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen (3) Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte, Varanz

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Überblck Graphsche Modelle: Syntax und Semantk Graphsche Modelle m Maschnellen Lernen Inferenz n Graphschen

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte, Varanz

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation

Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation Kaptel 2: Klassfkaton Maschnelles Lernen und Neural Computaton 28 En enfacher Fall En Feature, Hstogramme für bede Klassen (z.b. Glukosewert, Dabetes a/nen) Kene perfekte Trennung möglch Entschedung: Schwellwert

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Das Cutting Stock-Problem

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Das Cutting Stock-Problem 1 Problem Technsche Unverstät München Zentrum Mathematk Dskrete Optmerung: Fallstuden aus der Praxs Barbara Wlhelm Mchael Rtter Das Cuttng Stock-Problem Ene Paperfabrk produzert Paperrollen der Brete B.

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

Teil E: Qualitative abhängige Variable in Regressionsmodellen

Teil E: Qualitative abhängige Variable in Regressionsmodellen Tel E: Qualtatve abhängge Varable n Regressonsmodellen 1. Qualtatve abhängge Varable Grundlegendes Problem: In velen Fällen st de abhängge Varable nur über enen bestmmten Werteberech beobachtbar. Bsp.

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Dskrete Mathematk Chrstna Kohl Georg Moser Oleksandra Panasuk Chrstan Sternagel Vncent van Oostrom Insttut für Informatk @ UIBK Sommersemester 2017 Zusammenfassung der letzten LVA ene Telmenge

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y 5. Probt-Modelle Ökonometre II - Peter Stalder "Bnar Choce"-Modelle - Der Probt-Ansatz Ene ncht drekt beobachtbare stochastsche Varable hängt von x ab: x u 2 u ~ N(0, ( Beobachtet wrd ene bnäre Varable

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

2.1 Einfache lineare Regression 31

2.1 Einfache lineare Regression 31 .1 Enfache lneare Regresson 31 Regressonsanalyse De Regressonsanalyse gehört zu den am häufgsten engesetzten multvaraten statstschen Auswertungsverfahren. Besonders de multple Regressonsanalyse hat große

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren Mehrfachregresson: Enfluss mehrerer Merkmale auf en metrsches Merkmal Desgnmatrx Bestmmthetsmaß F-Test T-Test für enzelne Regressoren Mehrfachregresson Bvarat: x b b y + = 0 ˆ k k x b x b x b b y + + +

Mehr

Entscheidungstheorie Teil 3. Thomas Kämpke

Entscheidungstheorie Teil 3. Thomas Kämpke Entschedngstheore Tel 3 Thomas Kämpke Sete Entschedngstheore Tel 3 Inhalt St. Petersbrg Paradoon (Bernoll 73) Präferenzfnktonen ttelpnktsmethode zr Bestmmng von Wertfnktonen über Intervallen (endmensonal)

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Emprsche Wrtschaftsforschung Prof. Dr. Bernd Süßmuth Unverstät Lepzg Insttut für Emprsche Wrtschaftsforschung Volkswrtschaftslehre, nsbesondere Ökonometre 5. Enfaches OLS-Regressonsmodell 5.1. Herletung

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Analyse von Querschnittsdaten. Bivariate Regression

Analyse von Querschnittsdaten. Bivariate Regression Analse von Querschnttsdaten Bvarate Regresson Warum geht es n den folgenden Stzungen? Kontnuerlche Varablen Deskrptve Modelle kategorale Varablen Datum 3.0.2004 20.0.2004 27.0.2004 03..2004 0..2004 7..2004

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Kapitel 3: Klassifikation

Kapitel 3: Klassifikation Ludwg Mamlans Unverstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscovery n Databases m Wntersemester 2007/2008 Kaptel 3: Klassfkaton Skrpt

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement 13.11.010 Hydrologe und Flussgebetsmanagement o.unv.prof. DI Dr. H.P. Nachtnebel Insttut für Wasserwrtschaft, Hydrologe und konstruktver Wasserbau Glederung der Vorlesung Statstsche Grundlagen Extremwertstatstk

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Statistische Methoden für Bauingenieure WS 13/14

Statistische Methoden für Bauingenieure WS 13/14 Statstsche Methoden ür Baungeneure WS 3/4 Enhet 3: Bvarate Zuallsvarablen Unv.Pro. Dr. Günter Blöschl Bezechnungen... Zuallsvarable... Realsaton konkrete Werte Momente Grundgesamthet Mttelwert,Varanz Stchprobe

Mehr

Äquivalenzen stetiger und glatter Hauptfaserbündel

Äquivalenzen stetiger und glatter Hauptfaserbündel Äquvalenzen stetger und glatter Hauptfaserbündel Chrstoph Müller Chrstoph Wockel Fachberech Mathematk Unverstät Darmstadt 31. Süddeutsches Kolloquum über Dfferenzalgeometre Glederung 1 De Problemstellung

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Klassifikation mit dem Perceptron von Rosenblatt. Vom Perceptron zum Multilagen-Perceptron. Error-Backpropagation Lernregel

Klassifikation mit dem Perceptron von Rosenblatt. Vom Perceptron zum Multilagen-Perceptron. Error-Backpropagation Lernregel Neuronale Verfahren zur Funktonsaromaton Klassfkaton mt em Percetron von Rosenblatt Vom Percetron zum Multlagen-Percetron Error-Backroagaton ernregel Raale Bassfunktonen-Netze PD Dr Martn Stetter, Semens

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell Kaptel : Das enfache Regressonsmodell - Das enfache Regressonsmodell. En ökonomsches Modell Bespel: De Bezehung zwschen Haushaltsenkommen und Leensmttelausgaen Befragung zufällg ausgewählter Haushalte

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

6. Elektrische Wechselgrössen

6. Elektrische Wechselgrössen Grundlagen der Elektrotechnk GE 2 [Buch GE 2: Seten 72-14] Grundbegrffe Wechselgrössen Perodsche Wechselgrössen Lnearer und quadratscher Mttelwert Der Effektvwert Bezugspfele Verallgemenerte Zetfunktonen

Mehr

Kapitel 5: Klassifikation

Kapitel 5: Klassifikation Ludwg-Maxmlans-Unverstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscovery n Databases m Sommersemester 2015 Kaptel 5: Klassfkaton Vorlesung:

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alternatve Darstellung des -Stchprobentests für Antele DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Response No Response Total absolut DCF 43 68 111 CF 6 86 11 69 154

Mehr

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen. IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr