3.8 Methode der kleinsten Quadrate

Größe: px
Ab Seite anzeigen:

Download "3.8 Methode der kleinsten Quadrate"

Transkript

1 3.8 Methode der leiste Qudrte Lest Squres Normlgleichug usggsput: Üerestimmtes System.? Mehr Gleichuge ls Uete Sei eie m Mtri mit m> ud miml vollem Rg: rg d.h. ildet de R m i de gze R. Ds System ist d i.. icht lösr! Versuche ds Prolem so gut wie möglich zu löse! Miimiere dzu die weichug - i psseder Norm!

2 m este eiget sich dzu die eulid sche Norm d sie uf eie differezierre Futio f führt: : mi + m m m f : M K

3 Die Futio f eschreit eie Proloide -dim. Prel. Ds eideutige Miimum dieser Futio ist der Stelle der die leitug gleich Null ist wgrechte gete. m i i d df für i... oder m i m i

4 I Mtrischreiweise: i i i Normlgleichug zu : Die Mtri ist eie Mtri vo Rg d Rg ht ud eschreit dher ei eideutig lösres qudrtisches lieres Gleichugssystem. llerdigs ist die Koditio vo oft sehr viel schlechter ls die vo de: - 6 -

5 / / * mi m mi m m m m m cod iv cod σ σ λ λ λ λ λ λ Im folgede schitt werde wir dher ei esseres Verfhre zur Lösug dieses Prolems ee lere. Dzu werde esser orthogole Mtrize verwedet um diese Koditiosverschlechterug zu vermeide

6 Lieres usgleichsprolem usgleichsgerde Gegee: Putepre i der Eee i yi i...; Gesucht: este Gerde die möglichst he de Pute liegt y g +. + M Es soll lso gelte: + oder i Mtrischreiweise y M y - 6 -

7 mit ud y M M. y y y M Die Normlgleichug lutet lso. y y Die Lösug dieses Gleichugssystems liefert ud ud dmit die gesuchte Gerde y

8 llgemeier: stzfutioe ud g g m K Pute >m y y K Gesucht : mit m g f y f K Mit ist d m m g g g g G L M M L m y y G G G M M zu löse. Ergeis ist die äheste Futio de vorgegeee Pute die us de g... g m lier zusmmegesetzt ist

9 3.9. Die QR-Zerlegug eier Mtri Scho vorher he wir emert: - codu i GE ev. groß uch ei leiem cod; - Für schlecht oditioiert: ws ist der Rg vo! - cod groß - er codq cod flls Q orthogol. lso sid orthogole Mtrize sehr gut für äquivlete Umformuge vo geeiget vgl. LU-Zerlegug. ußerdem ist Q Q lso sid Gleichugssysteme i Q leicht zu löse. Versuche dher log zu LR eie Zerlegug der Form QR zu fide mit Q orthogol ud R oere Dreiecsmtri

10 3.9. Elemetre orthogole Mtrize Orthogole Mtri : G cos ϕ si ϕ si ϕ cos ϕ Givesrefleio. De G G GG cos ϕ si ϕ si ϕ cos ϕ cos ϕ si ϕ si ϕ cos ϕ cos ϕ + si ϕ si ϕcos ϕ cos ϕsi ϕ cos ϕsi ϕ si ϕcos ϕ si ϕ + cos ϕ ;

11 ltertiv Givesrottio: cos ϕ si ϕ si ϕ cos ϕ G ist eideutig estimmt durch de Wiel ϕ. Bestimme u ϕ so dss ~ ~ G ~ ~ ~ Dzu muss gelte: ~ oere Dreiecsmtri wird.! si ϕ cos ϕ si ϕ cos ϕ Lösug: cot ϕ ; ϕ rcctg oder ϕ rctg Ist so ist eie weitere rsformtio ötig!

12 Numerisch stilere rt der Berechug : oder öte fst sei: ρ sig + ; cos ϕ ; si ϕ ; ρ ρ Gives-Refleio für de llgemeie Fll: Im Wesetliche Eiheitsmtri is uf Bloc der wie oe defiiert ist hägig vo ϕ. Multiplitio mit llgemeier Gives-Mtri:

13 i i G i cos si si cos O O O ϕ ϕ ϕ ϕ

14 zur Elimitio eies Elemetes i der Mtri. Dzu multipliziere wir G i. Dieses Produt verädert ur die i-te ud die -te Zeile vo. Es geügt vom Gesmt-System ur diese eil zu etrchte. lso muss wieder ϕ rcctg i gesetzt sei wie oe. ud i Mit eier solche Mtri G wird d im erste Schritt zu Null gemcht. G G I G cos ϕ si ϕ si ϕ cos ϕ c s s c - 7 -

15 Geuere lyse eies llgemeie Elimitiosschritts: O i c s O s c O O M M i O i ii O verädert ur -te ud i-te Zeile; i-te Zeile: i s ci für... speziell: i s ci! soll Null werde ud legt dher ϕ fest. -te Zeile: c + si für... mit c ud s zu oige ϕ. G i - 7 -

16 G G K G Verwede der Reihe ch 3 zur Bereitug der erste Splte lso um 3 K zu Null zu mche ud dch G3 G4 K G... G ud um 3 4 K... ud zu Null zu mche. G G Die Reihefolge i der die i zu Null gemcht werde ist gegee durch: - 7 -

17 .... M M. 3 L /. Jeweils ötig ist eie Multiplitio mit Gives-Refleio G i i...- ud i+... lso eötigt m isgesmt -/ Givesrefleioe um eie qudrtische Mtri uf Dreiecsgestlt zu trsformiere. M eutze lso immer ds Digolelemet ud eie Komitio vo i-ter/-ter Zeile um i zu Null zu mche

18 Q : G G LG LG LG Mit ergit sich lso Q G G LG mit eier oere Dreiecsmtri R. Q G LG LG LG G L G D ist d i i ud Q*R. Q ist gegee durch die eizele G i ; edes G i ist eideutig gegee durch ds ϕ i ds ötig wr um geu ei i zu elimiiere. Geuso m für eie m Mtri m> r eie QR- Zerlegug ereche mit G Q. R R

19 Wie ei der Guss-Elimitio elimiiert m lso mit de Digolelemete der Reihe ch sämtliche Uterdigolelemete. Der Vorteil der QR-Zerlegug: cod codqr codr Gut für schlecht oditioierte Systeme wedr uf rechtecige Systeme dere Orthogolisierugsverfhre: - Grm-Schmidt orthoormlisiere Vetore - Householder erzeuge i eiem Schritt eie gze Nullsplte

20 wedug ei Lierer usgleichsrechug: mi mi QR mi Q QR mi R Q d Q orthogol ud eulid sche Norm. R ist oere Dreiecsmtri der R Dimesio m ud volle R Rges

21 Ds oige Miimum erhält m durch mi mi mi ~ ~ ~ ~ R R Q R + us der Lösug des Dreiecssystems ~ R. Der Wert des Miimums ist gegee durch ~

22 Beispiel: QR-Zerlegug für Lest Squres: mi mi Erster Schritt: : + + c s c s s c s c c s s c mit 4 / / π ϕ s c Zweiter Schritt: 3 :

23 c s c s s c mit / π ϕ s c / / / / Q R

24 / / / / Q lso wedug uf Miimierugsprolem : mi mi / / / / mi mi - 8 -

25 Lösug ls Lösug des Dreiecsgleichugssystems: I diesem Fll liefert sogr eie geue Lösug vo d der Fehlerterm gleich Null ist. QR-Zerlegug ist i dieser Form wedr für elieige rechtecige Mtri so lge volle Rg esitzt. Koste des QR-Verfhres mit Gives für Mtri: 3 + O lso teuerer ls Guss-Elimitio mit 3 /3 Ei Elimitiosschritt ei Splte : mult + dd 6 flop s 3 Isgesmt: *6 + O Bei m Mtri mit m> ud Rg: 3m

26 wedug des QR-Verfhre ei - schlecht oditioiertem Gleichugssystem - üerestimmtem Gleichugssystem mit vollem Rg Stelle der Normlgleichug wie oe eschriee - llgemeiem ichtqudrtische System i der Form QP R mit Permuttio P zum Vertusche vo Splte. P ist ötig um eie Bloc volle Rges ch vore/oe zu trsportiere Beispiel ud zur - Etdecug fst lier hägiger eigetlich üerflüssiger Gleichuge umerische Bestimmug des Rgs vo - Redutio der Mtri uf de wesetliche eil Noise-reductio - 8 -

27 3. Regulrisierug I viele prtische weduge ht m zwr ei üerestimmtes lieres Gleichugssystem vorliege er so dss die Normlmtri uch och fst sigulär ist! Ddurch erhält m ei der Lösug dieses Prolems eie Vetor der sehr groß ist: Ist i B die Mtri B fst sigulär ivb sehr groß ivb* sehr groß Durch Mess/Rudugsfehler ethält er die rechte Seite viele leie Störuge oise Rusche die i d sehr groß werde so dss die eigetlich geu erechete Lösug uruchr ist. ~ B + Δ B + B Δ + B Δ

28 usweg: Suche verüftige Lest Squres Lösug durch Miimierug mit Neeedigug: soll icht zu groß werde. mi + γ Miimerug Nullstelle der leitug führt uf ds sog. regulrisierte Gleichugssystem + γ I Idee: Verschiee durch ufddiere vo γ I so dss die eue Mtri esser oditioiert ist

29 D ist iv +γ I << iv Dher führe i dem eue Gleichugssystem die Ruschompoete i icht mehr zu eiem etreme wchse der Lösug. M weiß dss die gesuchte Lösug icht zu groß sei ud dies wird durch die Regulrisierug gewährleistet. γ heißt Regulrisierugsprmeter ud die hier eschrieee Methode heißt ihoov-regulrisierug. Regulrisierug wird häufig gewedet ei Proleme der Bildverreitug z.b. ei verruschte uschrfe Bilder Guss-Elimitio Normlegleichug ud QR-Zerlegug ud Regulrisierug sid die wichtigste Werzeuge für

3.5 Die Kondition eines linearen Gleichungssystems (einer Matrix)

3.5 Die Kondition eines linearen Gleichungssystems (einer Matrix) 3.5 Die Koditio eies liere Gleichugssystems eier tri Neu eötigt: triorm ud ihre Eigeschfte.. triorm: > für * * für R +B < + B Besoders wichtig sid triorme, die zu eier Vektororm psse : 3.5.. Eie triorm

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

III. Lineare Gleichungssysteme

III. Lineare Gleichungssysteme . iere Gleichugssysteme Beispiel: Eletrische Schltreise Ohmsche Widerstäde i Reihe- ud Prllelschltug. Kirchhoff sche Regel: - jedem Kote ist die Summe der zufließede eletrische Ströme gleich der Summe

Mehr

III. Lineare Gleichungssysteme

III. Lineare Gleichungssysteme . iere Gleichugssysteme Beispiel: Elektrische Schltkreise Ohmsche Widerstäde i Reihe- ud Prllelschltug. Kirchhoff sche Regel: - jedem Kote ist die Summe der zufließede elektrische Ströme gleich der Summe

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

Wiederholung und Zusammenfassung

Wiederholung und Zusammenfassung Wiederholug ud Zusmmefssug Bchscher Fiputstz zieheder ud bstoßeder Fiput Beispiel: logistische Prbel Grippevirus Newtoverfhre zur Nullstellebestimmug Kovergezordug lier, qudrtisch Weitere Verfhre zur Nullstellebestimmug:

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK BRÜCKENKURS MATHEMATIK ELEMENTE DER DIFFERENTIAL- UND INTEGRALRECHNUNG Schwerpute: Begri der Aleitug Aleitugsregel Uestimmtes Itegrl Bestimmtes Itegrl Itegrtiosregel Aweduge Pro. Dr. hil. M. Ludwig TU

Mehr

Formel- und Tabellensammlung zum Aktuariellen Grundwissen

Formel- und Tabellensammlung zum Aktuariellen Grundwissen Formel- ud Tellesmmlug zum Aturielle Grudwisse Schdeversicherugsmthemti A. Zufllsvrile X, Y seie (disrete oder stetige Zufllsvrile. Verteilugsfutio: F( = P( X (Verteilugs-Dichte: f ( F ( = ei differezierrer

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Numerisches Integrieren

Numerisches Integrieren Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Grundlagen für Matrizenmethoden in der Baustatik

Grundlagen für Matrizenmethoden in der Baustatik Hochschule Grudlge für Mtizemethode i der Busttik Prof. Dr.-Ig. J. Göttsche Seite Grudlge für Mtrizemethode i der Busttik Es werde eiige Defiitioe ud Recheregel für Mtrize ud Vektore zusmmefssed drgestellt.

Mehr

Versuchsprotokoll zum Versuch Nr. 4

Versuchsprotokoll zum Versuch Nr. 4 I diesem Versuch geht es drum, die Temperturbhäigkeit vo Widerstäde zu bestimme. Dies erfolgt mit folgeder Aordug: Folgede Geräte wurde dbei verwedet Gerät Bezeichug/Hersteller Ivetrummer Schleifdrhtbrücke

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Prof. U. Stephan Studiengang BAU 1. Fachsemester Formelsammlung, V. 1 TFH Berlin, FB II LV Mathematik Seite 1 von 6

Prof. U. Stephan Studiengang BAU 1. Fachsemester Formelsammlung, V. 1 TFH Berlin, FB II LV Mathematik Seite 1 von 6 Prof. U. Steph Studiegg BAU 1. Fchsemester Formelsmmlug, V. 1 TFH Berli, FB II LV Mthemtik Seite 1 vo 6 Formelsmmlug ur LV Mthemtik im Studiegg Buigeieurwese Umgg mit dem Tscherecher: Formel: Nottio: Die

Mehr

9. Jahrgangsstufe Mathematik Unterrichtsskript

9. Jahrgangsstufe Mathematik Unterrichtsskript . Jhrggsstufe Mthetik Uterrichtsskript. Die ioische Forel Beispiel: Auftrg: Bereche die Gestfläche der oe stehede Figur uf zwei verschiedee Arte!. Möglichkeit. Möglichkeit: Teilflächeerechug Mit Zhleeispiel

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Stochastische Matrizen

Stochastische Matrizen Matrizerechug Stochastische Matrize Plaareit Plaareit Stochastische Matrize rareite Sie sich schrittweise die folgede heme. Notiere Sie gegeeefalls zu jedem hema Frage. Löse Sie jeweils die zugehörige

Mehr

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2 0. Kovergez vo Folge ud Reihe Der i de Aschitte geometrische Folge ud Reihe eigeführte Grezwertegriff ist für die Alysis (Ifiitesimlrechug) grudleged. Im Folgede werde Grezwerte ei elieige Folge ud Fuktioe

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Lineare Algebra II D-MAVT. Serie 2. Ralph Aeschimann FS15. Lineare Algebra II D-MAVT FS15

Lineare Algebra II D-MAVT. Serie 2. Ralph Aeschimann FS15. Lineare Algebra II D-MAVT FS15 Liere lger II D-MV Serie Rlph eschim FS5 Liere lger II D-MV FS5 Rlph eschim.3.5 Orgio Vorlesug https://www.mth.ethz.ch/eductio/chelor/lectures/fs5/other/lilg_mv Präsez jeweils motgs vo -3 Uhr im HG E E-Mil

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Mathematik. Beträge und Ungleichungen. Absoluter Betrag. y < r ist also gleichwertig mit r < y < r

Mathematik. Beträge und Ungleichungen. Absoluter Betrag. y < r ist also gleichwertig mit r < y < r Mthemtik Beträge ud Ugleichuge Absoluter Betrg Es sei IR. Uter dem bsolute Betrg vo versteht m geometrisch de Abstd des der Zhl etsprechede Puktes vom Nullpukt. Für beliebiges reelles gilt Nch Defiitio

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studiekolleg ei de Uiversitäte des Freisttes Byer Üugsufge zur Vorereitug uf de Mthemtiktest . Polyomdivisio:. Dividiere Sie! ) ( 6 8 ):( ) Lös.: ) ( 9 7 0 8 9):(6 ) Lös.: 7 9 c) ( - ):() Lös.: d) (8 9

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Vektorrechnung und Analytische Geometrie : Punkt, Gerade, Ebene, Projektionen und Schnitte

Vektorrechnung und Analytische Geometrie : Punkt, Gerade, Ebene, Projektionen und Schnitte Vektrrechug ud Alytische Gemetrie : ukt, Gerde, Eee, rjektie ud Schitte Siehe : de.wikipedi.rg, drt ises.: http://de.wikipedi.rg/w/idex.php?titlegerdegleichug http://de.wikipedi.rg/wiki/vektrrechug http://de.wikipedi.rg/wiki/alytische_gemetrie

Mehr

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz Vorlesug 4 6 + 9 April Bei w,, w m, v R ; (w,, w m =: A R (,m ud ieres Produkt = euklidisches Produkt schrieb sich das Approximatiosproblem so: Fide w = Wiederholug: m ζ k w k mit w v w v w spa{w,, w m

Mehr

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

N.6.1. Die Simpsonsche Regel zur Näherung eines bestimmten Integrals

N.6.1. Die Simpsonsche Regel zur Näherung eines bestimmten Integrals N.6.. Die Simpsosce Regel zur Näerug eies estimmte Itegrls lutet. F Simpso ) ) ) ) )... N ) ) N ) ) )) Dei geügt die Scrittweite der Formel N mit eier türlice Zl N. Der Approximtioseler wird gescätzt durc:

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

Lineare Gleichungssysteme Der Gaußsche Algorithmus

Lineare Gleichungssysteme Der Gaußsche Algorithmus Mthemtik Jessi Liere Gleihugsssteme // www.re-lueker.de Liere Gleihugsssteme Der Gußshe Algorithmus iführedes Beispiel s sei ei lieres Gleihugssstem mit drei Gleihuge ud drei ubekte Größe, ud gegebe: (

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

Die gleichen Verhältnisse, wenn wir Faktor 1 festhalten. Diese Überlegungen geben uns eine Vorstellung über das Ertragsgebirge.

Die gleichen Verhältnisse, wenn wir Faktor 1 festhalten. Diese Überlegungen geben uns eine Vorstellung über das Ertragsgebirge. Pro. Dr. Friedel Bolle Vorlesug "Miroöoomie" WS 008/009 II. Teorie der Uteremug/ 36 Pro. Dr. Friedel Bolle Vorlesug "Miroöoomie" WS 008/009 II. Teorie der Uteremug/ 37 7. Frge: Welce Eigescte be Produtiosutioe

Mehr

Vorkurs Mathematik für Informatiker Potenzen und Polynome --

Vorkurs Mathematik für Informatiker Potenzen und Polynome -- Vorkurs Mathematik für Iformatiker -- Poteze ud Polyome -- Thomas Huckle Stefa Zimmer (Stuttgart) 6.0.06 Vorwort Es solle Arbeitstechike vermittelt werde für das Iformatikstudium Der wesetliche Teil ist

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

Thema: Integralrechnung (Grundlagen und Flächenberechnungen)

Thema: Integralrechnung (Grundlagen und Flächenberechnungen) Q GK Mathematik-Vh Vorereitug zur. Kursareit am..7 Thema: Itegralrechug Grudlage ud Flächeerechuge Checkliste Was ich alles köe soll Ich kee de Begri des krummliige Trapezes ud weiß, dass sei Flächeihalt

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

Werkstoffe der Elektrotechnik, WS 2011 / 2012 Lösungen zur Übung 2

Werkstoffe der Elektrotechnik, WS 2011 / 2012 Lösungen zur Übung 2 Werstoffe der letrotechi WS 11 / 1 Lösuge ur Übug Aufgbe 1: Wdh. De roglie-welleläge: ewegt sich ei Objet it icht verschwideder Ruhesse it de Ipuls p = v d ih eie Mteriewelle der Welleläge ugeordet werde:

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

1 vollständige Induktion

1 vollständige Induktion vollstädige Idutio M beweise folgede Gleichuge bzw. Ugleichuge per Idutio ch. (i) (ii) ( ), N ( ) log ( ) log() log(!), N, (iii) (+) +, N, [, [ (iv) ( ) +, N, (v) (vi) (vii) ( + )!, N, F F +, N m i ( +i)

Mehr

Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen

Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz Dr P C Kustma Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtuge Elektroigeieurwese Physik ud Geodäsie iklusive Komplexe Aalysis

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

Lambacher-Schweizer Baden-Württemberg Klasse 10. I Potenzen 6 Rationale Hochzahlen

Lambacher-Schweizer Baden-Württemberg Klasse 10. I Potenzen 6 Rationale Hochzahlen Lmcher-Schweizer Bde-Württemerg Klsse 0 I Poteze Rtiole Hochzhle Seite Nr. Die folgede Wurzel öe m Beste vereifcht werde, we m zuerst eiml die Zhl uter der Wurzel ls Potez schreit, d die gze Wurzel ls

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Quadratwurzeln Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Quadratwurzeln

Quadratwurzeln Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Quadratwurzeln Qudrtwurzel Armi P. Brth -LERNZENTRUM, ETH ZÜRICH Skript Qudrtwurzel Qudrtwurzel Armi P. Brth -LERNZENTRUM, ETH ZÜRICH Qudrtwurzel spiele eie sehr wichtige Rolle i der Mthemtik. Drum versuche wir, i diesem

Mehr

Terme und Formeln Potenzen I

Terme und Formeln Potenzen I Terme ud Formel Poteze I Die Mrgrit philosophic ist die älteste gedruckte llgemeie Ezyklopädie us dem Jhr 0 i lteiischer Sprche. Ds Werk ethält ls Uiversits literrum ds gesmte Wisse des späte Mittellters.

Mehr

Fachschaft Mathematik der Staatlichen Fachoberschule und Berufsoberschule Augsburg

Fachschaft Mathematik der Staatlichen Fachoberschule und Berufsoberschule Augsburg Fchschft Mthemtik der Sttliche Fchoberschule ud Berufsoberschule Augsburg Auf de folgede Seite sid i kurzer Form die Schverhlte der Algebr drgestellt, mit eiige relevte Übugsbeispiele, i der Regel ch Schwierigkeitsgrd

Mehr