Integrieren wie geht das?

Größe: px
Ab Seite anzeigen:

Download "Integrieren wie geht das?"

Transkript

1 Integrieren wie geht ds? Ich knn Dir ds Integrieren nur erklären, wenn wir zuvor ds Differenzieren wiederholen. Ds mchen wir gnz forml, ohne die zugrundeliegenden Ideen zu esprechen. Nur so viel: Aleitung von f() n der Stelle := (Tngenten-)Anstieg der Kurve f n der Stelle f ' = f ' = d f = d f f f = d d f = f := lim d y = f ' d eschreit die Tngente wegen f = f f ', Mit 'Differenzieren' meinen wir ds rechnerische Auffinden der Aleitungsfunktion. Wir erinnern uns n den ekten Sprchgeruch: differenzieren knn mn nur Vrile (mn ildet us y ds Differentil dy), Funktionen werden geleitet (mn ildet us f() die Aleitungsfunktion f'()). Aleitungen Einige eknnte Grundfunktionen: Funktion ihre Aleitung n 1 n 1 1, n 1 n sin cos e ln cos sin e 1 Aleitungsregeln Die folgenden Regeln erluen es uns, jede Funktion zuleiten, und sei sie uch noch so kompliziert us den Grundfunktionen zusmmengesetzt. f ' = f ' Vielfches f ±g ' = f '±g ' Summe und Differenz f g ' = f ' g f g ' Produktregel f g ' = f ' g f g ' g Quotientenregel f g ' = f ' g g ' Kettenregel Die Aleitungsfindung ist ls 'Rechenvorschrift' ufzufssen, die us einer Funktion eine ndere mcht. Mthemtiker nennen die entsprechende Rechenmschine (Blck Bo) den 'Differentilopertor': : f f ' Computerhilfe: um die Funktion sin() zuleiten, tippt mn - in EigenMth d(^sin()) und <ENTER> - in Mim diff(^*sin(),); und <shift ENTER> HIB Wien --- Integrieren v1.1 urn 1/11 1 / 8

2 Die Stmmfunktion technisch gesehen Wir könnten ein Spiel mchen: Du denkst Dir eine Funktion f us, leitest sie und sgst mir f'. Ich will dnn versuchen, Deine ursprüngliche Funktion f heruszufinden. Sgst Du etw 1y, wäre meine Antwort 4y. Dein sin() würde ich mit -cos() kontern. Eine neue Rechenrt, ich nenne sie I : ds Gegenteil vom Aleitungilden. Gnz slopp ufgeschrieen für f(): : f f ' Aleitung ilden I : f f ' Aleitung umkehren Die Funktion I stellt ei Anwendung uf eine Aleitung lso die ursprüngliche Funktion wieder her. F() heißt eine Stmmfunktion der Funktion f(), wenn F'() = f() ist: F = f Wrum 'eine' Stmmfunktion: zum Beispiel ( )' =. Aer uch ( +4)' = und ( -8)' = oder llgemein ( +C)' = für jede Zhl C. Jede Funktion esitzt demnch unendlich viele Stmmfunktionen, er lle unterscheiden sich nur um eine Konstnte. Ds merken wir uns kennen wir eine Stmmfunktion, kennen wir lle. Beim Integrieren spielt diese Konstnte eigentlich nie eine Rolle, wir können sie in der folgenden Liste weglssen (C = ). Drehen wir oige Telle der geleiteten Funktionen einfch um, erhlten wir eine Telle der Stmmfunktionen: f() Stmmfunktion F() 1 n cos sin e 1, n 1 n 1 n 1 sin cos e ln Welche Regeln können wir von oen üernehmen? Bezeichnen wir die Stmmfunktionen mit I: I f = I f Vielfches I f ±g = I f ±I g Summe und Differenz Die ürigen Regeln lssen sich leider nicht so einfch üertrgen. HIB Wien --- Integrieren v1.1 urn 1/11 / 8

3 Integrieren ws steckt dhinter Ausgngspunkt unserer Üerlegungen ist die Berechnung des Flächeninhltes durch Kurven egrenzter Geiete. Nehmen wir der Einfchheit hler eine Funktion y = f(). Gegeen seien diese Funktion f, sowie zwei Stellen und uf der -Achse. Die f()-kurve (ihr Grph), die - Achse und die Vertiklen n diesen zwei Stellen schließen eine Fläche ein. D diese Fläche nicht nur von Gerdenstücken egrenzt wird, kommen wir mit unserem isherigen Wissen nicht weiter. Wir könnten die Fläche er mithilfe einfcher Figuren schätzen. Es ieten sich Rechtecke n: Wir mchen lle Streifen gleich reit (Breite d) und so hoch, dss ihre linke Knte genu is n den Grphen reicht. Dmit ist der gesuchte Flächeninhlt ungefähr gleich der Summe us llen diesen Rechtecksstreifenflächen. Leider ist die Aschätzung nicht sehr genu mnche Streifen erwischen zu viel Fläche, mnche zu wenig im Vergleich mit der Kurvenlinie. Ein Veresserungsvorschlg? Je dünner die Streifen sind (je kleiner wir d wählen), und je mehr Streifen wir deshl zeichnen, desto genuer ist die Aschätzung: Jetzt ist der Fehler fst nicht mehr sichtr! d Streifenflächen = d f gesuchte Fläche Wir führen folgende Schreiweise ein Fläche unter f zwischen und =: Mchen wir d immer kleiner und kleiner, lssen es lso 'gegen Null' gehen, wird die Summe der Rechtecksstreifenflächen der gesuchten Fläche immer ähnlicher. Diese Erkenntnis sieht in cooler Mthe-Schreiweise so us: d f = d f Dies ist ds Integrl üer (die Integrtionsvrile) von (den Integrlgrenzen) is der Funktion f(). Ds neue Zeichen, ds wie ein üerlnges S geschrieen wird, soll uns drn erinnern, dss hier sehr sehr viele sehr sehr kleine (infinitesimle) Summnden ufddiert werden. Es ist er trotzdem ls ein gnz HIB Wien --- Integrieren v1.1 urn 1/11 / 8

4 hrmloses Summenzeichen zu verstehen. Es ist nichts Geheimnisvolles drn. (Flls eim Integrlzeichen keine Grenzen stehen, meint mn immer den gesmten Werteereich der Vrile.) Wir hlten uns n die Rechenregeln für reelle Zhlen: - ist der Grph unterhl der -Achse, rechnen wir die Rechteckshöhe negtiv, d f()< ist - liegt links von, d.h. ist kleiner ls, müssen wir negtive d-werte wählen, um von zu zu gelngen. Folgerungen d f = d const = const ( ) d f = d f d f = d f d f g = d f C = d f d g d f + d f C Die Breite der Fläche ist Null, lso ist uch ihr Inhlt gleich Null Bei konstnte Funktion ist die gesuchte Fläche ein Rechteck Durch ds Vertuschen der Integrtionsgrenzen ekommen lle d ds entgegengesetzte Vorzeichen Sind lle Rechtecke α-ml so hoch, ist die Fläche α-ml so groß Ds Pluszeichen setzt immer zwei Streifenhöhen üereinnder Die Fläche wird in zwei Teile geteilt. (Zustzinfo: der Wert C muss gr nicht zwischen und liegen) Ist Dir ufgefllen, dss wir jede Menge Eigenschften des Integrls kennen, ohne dss wir wissen, wie mn es eigentlich prktisch erechnen knn? Deshl verrte ich Dir jetzt den Huptstz der Differentil- und Integrlrechnung Vergrößern wir ds Integrtionsintervll rechts um einen Streifen der Breite Δ üer hinus, kommt eine Rechtecksfläche mit Inhlt f()δ zur Gesmtfläche hinzu. (Anlog: eginnen wir links erst n der Stelle +Δ mit der Summtion, kommt eine Rechtecksfläche mit Inhlt f()δ von der Gesmtfläche weg.) Dmit erhlten wir zwr keine Informtion üer ds Integrl selst, jedoch üer die Änderung seines Wertes. Und d erinnern wir uns wer eschreit die Änderung einer Funktion? Richtig, die Aleitung! Fläche = Fläche Fläche lim = lim f = f d f = f F = f ( und nlog ergäe sich d f = f ) Und ws edeutet F() = f, woei wir jetzt dieses gnze Integrl mit F ezeichnet hen? Doch HIB Wien --- Integrieren v1.1 urn 1/11 4 / 8

5 genu die Ttsche, dss f die Aleitung der Funktion F ist. Umgekehrt siehe oen: F ist eine Stmmfunktion von f! Jetzt wissen wir endlich, wie mn Integrle erechnet mn sucht Stmmfunktionen! Und d sich lle Stmmfunktionen nur um eine Konstnte unterscheiden können, gilt für eine elieige Stmmfunktion F von f: d f = F C Setzen wir hier = ein, erhlten wir = d f = F C zw. C= F Und jetzt knn ich Dir den erühmten Huptstz uftischen: d f = F F Der Wert des Integrls der Funktion f() üer d in den Grenzen von is ist die Differenz us dem Stmmfunktionswert n der Oergrenze minus dem entsprechenden Wert n der Untergrenze. (Bechte: 'Oergrenze' ezeichnet immer die Zhl, die im Integrl oen steht. Auch flls sie kleiner ls die Untergrenze sein sollte.) Nun ein Beispiel, n dem ich Dir gleich eine prktische Schreiweise vorführe. Wir können in der ereits gefundenen Liste der Stmmfunktionen nchschlgen: d 8 1 = 1 d [ ] = [ ] 1 = [ 4 ] 1 = 4 = 4 =1 = = = Wenn Du geüt ist, knnst Du gerne einige Zwischenschritte im Kopf usführen. Doch mit Bedcht eine üersichtliche Schreiweise mcht sich ezhlt. Die Klmmern um die Terme ei der Differenz empfehle ich Dir dringend wie leicht vergisst mn sonst, dss sich ds Minus uf den gesmten Klmmerinhlt ezieht. Noch ein Beispiel: π π dt cos(t) = dt t sin(t) = sin(t) π / = sin( π ) sin() = 1 = 1 Wenn Du schon geüt ist, knnst Du gnz kurz schreien: Ange Stmmfunktion mit Grenzen (Wert n Oergrenze) minus (Wert n Untergrenze) Vereinfchen dz 8 z z = ( z 4 z ) 1 1 = (16 7) (+1) = 15 = 1 Eigentlich sieht die Sche gnz einfch us: mn muss nur den Vorgng des 'Differenzierens' umkehren, und schon knn mn 'integrieren'. Differenzieren und Integrieren scheinen lso gleich 'schwierig' zu sein. Die Relität sieht zum Leidwesen ller Mthemtiker nders us. Während wir eim Differenzieren Regeln für lle Rechenrten (plus, minus, ml, dividiert, hoch, Verkettung) kennen und demnch lles differenzieren können ws uns unterkommt, git es diese vollständige Liste für ds Integrieren NICHT. Die Mthemtik ht nur einige Methoden entwickelt, mit denen mn Integrle UMFORMEN knn, in der Hoffnung, dss mn dnch die Stmmfunktion leichter errten (j, richtig gelesen!) knn. Universell nwendre Regeln git es leider nicht. J Leute, so trurig sieht's us. Ds Leen knn hrt sein. HIB Wien --- Integrieren v1.1 urn 1/11 5 / 8

6 Aer: Owohl ds Integrl für uns nur eine Methode zur Berechnung von Flächeninhlten ist, lssen sich unglulich viele Aufgen druf zurückführen. Mn integriert, wenn mn z.b. - Ds Volumen einer 1-dimensionlen Kugel wissen will - Die Länge einer gekrümmten Kurve erechnen möchte - Den Schwerpunkt komplizierter Ojekte estimmt - Ds Verhlten von Elektronen im Atomkern eschreien will - Die Ausreitung elektromgnetischer Wellen erechnet - Rketenflughnen voruserechnet - Audiodteien in MPs verwndelt - Achterhnloopings konstruiert - Autocrshtests simuliert (Ws ist der Grund: All diese Zusmmenhänge lssen sich mithilfe von Funktionen (Opertoren) eschreien, die die gleichen Recheneigenschften esitzen wie unser simples Flächenintegrl. Und deshl knn mn ds Flächenintegrlwissen uch ei diesen komplizierten Aufgen nwenden.) Computerhilfe (uch der Computer kennt nicht mehr Methoden zum Auffinden von Stmmfunktionen ls der Mensch, er eherrscht er zusätzlich numerische Methoden um den Zhlenwertes des Integrls zu finden) Zum Sprchgeruch: früher (und unsere Schulücher tun es immer noch) nnnte mn die Stmmfunktion 'ds unestimmte Integrl' und unser Integrl 'estimmtes Integrl', woher der Befehl 'definite integrl' in Mim stmmt. Eine Stmmfunktion: Eigenmth: Mim: integrl(^-8^) integrte( ^-8*^,); Ein Integrl: Eigenmth: defint( ^-8^,,1,) Mim: lgerisch: integrte( ^-8*^,,1,); numerisch: defint( ^-8*^,,1,); HIB Wien --- Integrieren v1.1 urn 1/11 6 / 8

7 Integrtionsmethoden 1.) Prtilruchzerlegung Bei rtionlen Funktionen knn mn den Bruch mit Glück in eine einfchere Form ringen: Mn fktorisiert den Nenner und setzt die Funktion us Brüchen mit diesen Teilnennern zusmmen, ihr Zähler ist eine Zhl. d 4 = d 1 = d A B C 1 = d 4 1 = = [ ln 4ln 1 ] In der Schule wenig wichtig, für 'echte' Mthemtiker er tägliches Brot. Lernen wir vermutlich nicht..) Prtielle Integrtion Wir erinnern uns n die Produktregel des Differenzierens, formen sie um und integrieren uf eiden Seiten: fg '= f ' g fg' f ' g= fg ' fg' d f ' g= d fg d fg ' d f ' g= fg d fg ' Wir sehen links den Aleitungsstrich ei f, rechts ei g. Wir hen die Aleitung uf g üergewälzt. Wnn ist die Methode möglicherweise sinnvoll: Wenn mn ei einem Produkt von einem Fktor leicht die Stmmfunktion findet und der ndere Fktor eim Differenzieren nicht komplizierter wird. Ich merke mir diese Methode gern so: d F ' g = Fg d Fg ' Wir wollen sin() integrieren. Sinus knn ich leicht integrieren, uch. Aer wird eim Differenzieren einfcher deshl ist ds mein Kndidt für die Funktion g d sin = d cos ' = cos = [sin cos ] d cos ' = cos d cos =. Sustitution Mnchml hilft ein Wechsel der Integrtionsvrile (Physiklisch gesehen: mn durchläuft ds Intervll von is mit einer nderen Geschwindigkeit). Wir ersetzen durch eine Funktion t(). t d f = t dt d dt f t Du siehst eim rechten Integrl den Kehrwert der Aleitung t'. Drus folgt: Diese Methode ist sinnvoll - wenn die Aleitung t' sehr einfch ist - wenn die Aleitung t' einen lästigen Term des Integrnden wegkürzen knn HIB Wien --- Integrieren v1.1 urn 1/11 7 / 8

8 8 d 4 4 =? Wir wählen den Inhlt der Wurzel ls neue Funktion, d seine Aleitung den Zähler verschwinden lssen wird. t= 4 dt = d d dt = 1 und die Grenzen werden =4 t=1 wenn =8 t=6 8 d = 1 dt 1 t 6 = 1 dt 1 1 t 6 = 1 1 dt t 1 = 1 t = t 6 1 = 6 1 ODER wir sustituieren m Schluss wieder zurück und setzen die ursprünglichen Grenzen ein. Dmit erspren wir uns ds Umrechnen der Integrlgrenzen. 8 d 4 t 8 4 = t 4 dt 1 t =... = 1 1 t t 8 = t t 8 t 4 t 4 = = 6 1 Folgerungen d f = C C C d f = C C d f C Verschieung der Vrile 5 4 d f C Sklierung der Vrile d = d 7 d 4 = d Die Formel für die Verschieung ist oft ruchr und unmittelr einsichtig. Aer wrum entsteht ei der Sklierung der Fktor C vor dem Integrl? Gnz einfch weil mit einer Vergrößerung von uch eine Vergrößerung der Rechtecksstreifenreite d einhergeht. Ds C kommt lso von dc her. 4. Reihenentwicklung Diese Methode erfreut sich in der Physik größter Belietheit. Mn entwickelt dei den Integrnden in eine Tylor- oder Lurin-Reihe und integriert diese ls Summe von Potenzen. Diese Reihenentwicklungen stehen er nicht mehr im Lehrpln, deshl etrifft Dich ds nicht. 5. So ds wr's Außer einigen Speziltricks für gnz esondere Fälle hst Du lle Methoden kennengelernt. Ein nettes Speziltrickeispiel (nur zum Anstunen, nicht zum Auswendiglernen): Wir wollen sin von is π integrieren (Querverindung zur Physik: Leistung des Wechselstroms). Weil in diesem Intervll Sinus und Cosinus, die sich j nur durch eine Verschieung unterscheiden, genu ein Ml enthlten sind, ergeen die Integrle üer ihr Qudrt den selen Wert. Oder die Hälfte ihrer Summe. Aer die Summe von sin und cos kennen wir, die ist nch Pythgors 1. dsin = 1 d sin cos = 1 d 1 = 1 = Oft erleichtert ds Ausnützen der Symmetrie einer Funktion ds Rechnen eträchtlich! HIB Wien --- Integrieren v1.1 urn 1/11 8 / 8

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung In der Differentilrechung estnd die ufge u drin, zu einer gegeenen Funktion f deren leitungsfunktion

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt.

Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt. I. Integrlrechnung 1 ================================================================= 1.1 Oer- und Untersumme -------------------------------------------------------------------------------------------------------------

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Bruchterme I. Definitionsmenge eines Bruchterms

Bruchterme I. Definitionsmenge eines Bruchterms Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Identifizierbarkeit von Sprachen

Identifizierbarkeit von Sprachen FRIEDRICH SCHILLER UNIVERSITÄT JENA Fkultät für Mthemtik und Informtik INSTITUT für INFORMATIK VORLESUNG IM WINTERSEMESTER STOCHASTISCHE GRAMMATIKMODELLE Ernst Günter Schukt-Tlmzzini 06. Quelle: /home/schukt/ltex/folien/sprchmodelle-00/ssm-06.tex

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr

Musterlösung zur Musterprüfung 2 in Mathematik

Musterlösung zur Musterprüfung 2 in Mathematik Musterlösung zur Musterprüfung in Mthemtik Diese Musterlösung enthält usführliche Lösungen zu llen Aufgben der Musterprüfung in Mthemtik sowie Hinweise zum Selbstlernen. Literturhinweise ) Bosch: Brückenkurs

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

Bruchterme. Franz Embacher

Bruchterme. Franz Embacher mthe online Skripten http://www.mthe-online.t/skripten/ Bruchterme Frnz Emcher Fkultät für Mthemtik der Universität Wien E-mil: frnz.emcher@univie.c.t WWW: http://homepge.univie.c.t/frnz.emcher/ In diesem

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Nturwissenschftliche Fkultät I Didktik der Mthemtik Privte Vorlesungsufzeichnungen Kein Anspruch uf Vollständigkeit 5 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenereiche.4 Die Reellen Zhlen.4.. Definition

Mehr

Monte-Carlo-Integration

Monte-Carlo-Integration Monte-Crlo-Integrtion von Dietmr Herrmnn, Anzing Kurzfssung: An Hnd eines einfchen Beispiels wird gezeigt, dß jedes Integrl ls Erwrtungswert einer reellen Zufllsgröße ufgefßt werden knn. een einer symptotischen

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnbrück WS 20/202 Mthemtik für Anwender I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f :[,b] R knn mn f(t)dt b ls die Durchschnittshöhe

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen

Mehr

Mathematik Brückenkurs

Mathematik Brückenkurs Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Mthemtik Brückenkurs im Fchbereich Informtik & Elektrotechnik Rumpfskript V7 Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Inhltsverzeichnis Mengen...

Mehr

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung Kids Ernährung für Tipps 10 Spiel mit uns! gesunden Zur Weißt du noch, wie du Rd fhren lerntest? Ds Wichtigste dei wr zu lernen ds Gleichgewicht zu hlten. Sold es gefunden wr, konntest du die Pedle gleichmäßig

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Definition: Eine Funktion mit der Gleichung y = c (,, c R; 0) heißt qudrtische Funktion oder Funktion. Grdes. qudrtisches Glied;...lineres Glied; c...solutes Glied Der Grph einer

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2014) Prof Dr Jens Teuner Leitung der Üungen: Mrcel Preuß, Sestin Breß, Mrtin Schwitll, Krolin

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Hinweise für den schulischen Umgang mit lese-/rechtschreibschwachen Kindern speziell in der Sekundarstufe I

Hinweise für den schulischen Umgang mit lese-/rechtschreibschwachen Kindern speziell in der Sekundarstufe I Hilfe, Legsthenie Hinweise für den schulischen Umgng mit lese-/rechtschreischwchen Kindern speziell in der Sekundrstufe I 2 Brigitt Amnn, Schulpsychologie Bludenz Annelies Fliri, Lehrerin für spezifische

Mehr