D f = 1 π D J (M13.13) 1 Hz = 1 s kg m 2 rad. N m rad

Größe: px
Ab Seite anzeigen:

Download "D f = 1 π D J (M13.13) 1 Hz = 1 s kg m 2 rad. N m rad"

Transkript

1 00 13 Mechanische harmonische Schwingungen T Schwingungsdauer = 1/ f, Dauer einer vollen Schwingung, J Trägheismomen des die Drehschwingung ausführenden Körpers, bezogen auf seine Drehachse, dann gelen analog zu (M13.11) (M13.13) ω = D J ; f = 1 π D J ; J T = π D SI D M ε ω f T J N m N m rad 1 Hz = 1 s kg m rad s s Pendelschwingungen Pendel führen Drehschwingungen aus. Das rücksellende Drehmomen wird von der Schwerkraf erzeug. Mahemaisches Pendel Das Fadenpendel mi punkförmiger Masse am masselosen Faden is nich realisierbar. Is jedoch die Masse des Fadens vernachlässigbar klein gegenüber der Masse des Pendelkörpers und die Fadenlänge groß gegenüber den Abmessungen des Körpers, dann kann mi ausreichender Genauigkei die Bewegung des mahemaischen Pendels als lineare Schwingung angesehen werden, solange die Auslenkung nach jeder Seie klein bleib (ε < 8 ). T Schwingungsdauer = 1/ f, Dauer eines vollen Hin- und Herganges (Periode), l Pendellänge, Absand Drehpunk Schwerpunk, g Fallbeschleunigung = 9,807 m/s (auf der Erde), ε l F 1 F G ε F dann gil F 1 /F G = /l und, da bei kleinem Winkel ε dem Weg auf dem Bogen gleichgesez werden kann, ensprechend (M13.8) k = F 1 = F G = mg und eingesez in (M13.11) l l

2 13. Eigenfrequenz der ungedämpfen harmonischen Schwingung 01 ml T = π mg (M13.14) oder l T = π g T l g SI s m m s Beache: Die Schwingungsdauer T häng nich von der Masse des Pendelkörpers ab. Die Schwingungsdauer häng innerhalb der angegebenen Grenzen (ε < 8 ) nich von der Ampliude ab. M Phsisches Pendel Pendel, bei denen die Bedingungen des mahemaischen Pendels nich erfüll sind, heißen phsische (d. h. körperliche) Pendel (leider manchmal phsikalische Pendel genann). T Schwingungsdauer = 1/ f, A J A Trägheismomen des pendelnden Körpers, bezogen auf die durch den Drehpunk A ε s gehende Achse, m Masse des pendelnden Körpers, s Absand Drehpunk A Schwerpunk S, dann gil D = M ε = F G = F Gs sin ε ε ε oder, weil bei kleinen Winkeln D = F G s = mgs und ensprechend (M13.13) (M13.15) J A T = π mgs S F G sin ε 1, ε T J m g s SI s kg m kg m s m Beache: (M13.15) gil nur für Ampliuden kleiner als 8. J A is mi dem Saz von Seiner zu besimmen. Mi J A = ms und s = l ergib sich die Schwingungsdauer des mahemaischen Pendels (M13.14).

3 0 13 Mechanische harmonische Schwingungen Reduziere Pendellänge Uner der reduzieren Pendellänge eines phsischen Pendels verseh man die Länge eines mahemaischen Pendels gleicher Schwingungsdauer. l reduziere Pendellänge, J A Trägheismomen, bezogen auf die durch den Drehpunk A gehende Achse, m Masse des phsischen Pendels, s Absand Schwerpunk S DrehpunkA, dann gil ensprechend (M13.14) und (M13.15) π l g = π (M13.16) J A mgs l = J A ms oder l J A m s SI m kg m kg m Beache: Im Absand l senkrech uner dem Aufhängepunk eines drehbar gelageren Körpers befinde sich der Schwingungs- oder Soßmielpunk. Söße, die den Körper zum Pendeln bringen sollen, müssen gegen diesen Punk geriche sein, wenn im Aufhängepunk keine Rücksöße aufreen sollen. Die Schwingungsdauer eines phsischen Pendels änder sich nich, wenn Aufhängepunk und Schwingungsmielpunk verausch werden. Anwendung beim Reversionspendel z. B. zur Besimmung der Fallbeschleunigung. Besimmung des Trägheismomens Durch Messung von s, m und T kann das Trägheismomen eines beliebigen Körpers experimenell besimm werden. Aus (M13.15) und (M7.57) folg s A J S = mgst 4π ms F G = mg oder (M13.17) ( gt ) J m g s T J S = ms 4π s SI kg m kg m s m s

4 13. Eigenfrequenz der ungedämpfen harmonischen Schwingung 03 Beache: Zur Besimmung von J S is der Körper an einem Punk außerhalb S aufzuhängen und mi kleiner Ampliude anzusoßen Flüssigkeisschwingungen Wird die Flüssigkei in den Schenkeln eines U-Rohres aus dem Gleichgewich gebrach, so führ sie harmonische Schwingungen aus. T Schwingungsdauer = 1/ f, h l Länge der Flüssigkeissäule von Oberfläche bis h Oberfläche, g Fallbeschleunigung = 9,807 m/s (auf der Erde), dann gil, wenn der Höhenunerschied zwischen beiden Oberflächen h beräg, für die Rücksellkraf l F R = F G = haϱg. DieRichgröße k = F R / = F R /h ergib sich zu k = Aϱg. Mi der Masse m = laϱ folg für die Schwingungsdauer ensprechend (M13.11) T = π m/k laϱ T = π und daraus Aϱg (M13.18) l T = π g T l g SI s m m s M Beache: Die Schwingungsdauer häng nur von l, nichabervonϱ, A oder h ab. Die schwingende Flüssigkeissäule besiz die gleiche Schwingungsdauer wie ein mahemaisches Pendel mi der halben Länge der Flüssigkeissäule Schwingungsenergie Die Energie eines ungedämpf schwingenden Ssems is konsan. Sie sez sich aus poenzieller Energie E p und kineischer Energie E k zusammen. Beide Energiearen ändern ihre Größe periodisch. Zu jedem

5 04 13 Mechanische harmonische Schwingungen Zeipunk gil E = E p + E k. Mi (M 7.1) und (M 7.19) ergib sich E = k + mv. E Energie des Schwingers, k Richgröße, Ampliude, Auslenkungsmaximum, ϕ Phasenwinkel = ω + ϕ 0, dann gil mi (M13.) und (M13.3) E = k ŷ sin ϕ + m ŷ ω cos ϕ. Mi (M 13.8) mω = k folg E = k ŷ sin ϕ + k ŷ cos ϕ, daraus E = k ŷ (sin ϕ + cos ϕ ) und schließlich (M13.19) E E = kŷ = m ˆv E ges E k v m ϕ SI J=N m N m m m kg rad =1 s E k E p E p = E k 0 0 T 4 T 3T T 5T 3T 4 4 Beache: Die Gesamenergie is konsan. Die periodische Umwandlung von kineischer in poenzielle Energie (und umgekehr) erfolg mi der doppelen Frequenz des Schwingers. Beim Nulldurchgang ( = 0, ϕ = 0) besiz der Schwinger nur kineische Energie, die poenzielle Energie is null. In den Umkehrpunken is es umgekehr.

6 13.3 Freie gedämpfe Schwingung 05 Übersich: E p = E k = allgemein Umkehrpunk Nulldurchgang k = kŷ sin ϕ Ê p = kŷ mv = m ˆv cos ϕ 0 Ê k = m ˆv 13.3 Freie gedämpfe Schwingung Die Energie eines schwingenden Ssems wird durch bremsende Kräfe wie innere und äußere Reibung, Lufwidersand u. Ä. allmählich aufgezehr. Da E ŷ (M13.19), nimm auch die Ampliude ŷ bis zu null ab. Als Dämpfung bezeichne man das gesezmäßige Abnehmen der Ampliude im Verlaufe einer Schwingung. Dabei sind unabhängig von der Ar der dämpfenden Kraf zwei Möglichkeien zu unerscheiden: Die Kraf is konsan, z. B. Reibung in der Lagerung des Schwingers. Dann sind die = konsan Ampliuden Glieder einer fallenden arihmeischen Reihe, sie nehmen linear ab. Die Differenz zweier benachbarer Ampliuden gleichen Vorzeichens (ŷ i ŷ i+1 )iskonsan. Die Kraf is der Momenangeschwindigkei proporio- nal, z. B. innere Reibung bei elasischer Verformung Dann sind die Ampliuden Glieder einer fallenden geomerischen Reihe, sie nehmen exponeniell ab. Der Quoien zweier benachbarer Ampliuden gleichen Vorzeichens (ŷ i /ŷ i+1 ) is konsan. 0 M

7 06 13 Mechanische harmonische Schwingungen Bei gedämpfen Schwingungsvorgängen wird in der Technik die geschwindigkeisabhängige Dämpfung angesreb. Da sich aber auch bei guer Lagerung des Schwingers Reibung nie ganz vermeiden läss, reen beide Dämpfungsaren meis gleichzeiig auf. Die Gesamhüllkurve der Ampliuden ergib sich dann aus einer Überlagerung beider Hüllkurven (algebraische Addiion der momenanen Elongaionen) Schwingungsgleichung Verursach wird die Dämpfung durch eine Kraf (meis innere Reibung), die der Geschwindigkei proporional und ihr engegengeriche is: F D v. Der Proporionaliäsfakor wird als Dämpfungskonsane β bezeichne, also F d = β v = β ẏ. SI-Einhei der Dämpfungskonsanen:[β ] = N s m = kg s. Aus Zweckmäßigkeisgründen führ man den Abklingkoeffizienen δ = β /(m) ein. SI-Einhei des Abklingkoeffizienen: [δ ] = 1 s. Elongaion, Auslenkung, ẏ Momenangeschwindigkei, ÿ Momenanbeschleunigung, β Dämpfungskonsane = mδ, δ Abklingkoeffizien = β /(m), ω 0 Eigenkreisfrequenz (Kennkreisfrequenz) der gleichen Schwingung ohne Dämpfung = π f 0, dann laue die Grundgleichung der Dnamik (M7.1) für diesen Fall: Rücksellkraf + Dämpfungskraf = Masse Beschleunigung, also k β ẏ = mÿ. Daraus folg ÿ + β mẏ + k m = 0. Mi β m = δ und k m = ω 0 ergib sich die Gleichung der gedämpfen Schwingung (M13.0) ÿ + δ ẏ + ω 0 = 0

8 13.3 Freie gedämpfe Schwingung 07 Beache: Die Begriffe Dämpfungskonsane, Abklingkoeffizien, Dämpfungskoeffizien u. a. sowie ihre Formelzeichen werden in der Lieraur nich einheilich verwende Elongaion Elongaion (Auslenkung) zur Zei, ŷ 0 Anfangswer der Ampliudenhüllkurve (zur Zei = 0), ŷ Ampliude, e Basis des naürlichen Logarihmus =, , ϕ Phasenwinkel = ω d + ϕ 0, ω d Kreisfrequenz der gedämpfen Schwingung (M13.9), ϕ 0 Nullphasenwinkel, δ Abklingkoeffizien = β /(m), dann gil als eine Lösung der Differenzialgleichung (M13.0), ŷ 0 δ ϕ (M13.1) = ŷ 0 e δ sin ϕ 1 SI m s rad = 1 s Für Messungen und Rechnungen is es günsig, die Zei mi = 0 von einem Augenblick an zu zählen, der eine bequeme (mahemaische) Anwendung von (M13.1) ermöglich. Dies sind der Durchgang durch die Miellage und der Umkehrpunk. 0 0 e δ sin ω d 0 e δ M T d 0 e δ Im Augenblick des Nulldurchgangs herrschen folgende Anfangsbedingungen: = 0, 0 = 0, v 0 = ˆv, ϕ 0 = 0. An Selle des (nich

9 08 13 Mechanische harmonische Schwingungen messbaren) Anfangsweres der Ampliudenhüllkurve ŷ 0 wird wegen (M13.4) ˆv = ŷω in (M13.1) ŷ 0 durch ˆv/ω d ersez. (M13.) = ˆv ω d e δ sin ω d Im Umkehrpunk gelen die Anfangsbedingungen: = 0, v 0 = 0, 0 = ŷ 0, ϕ 0 = 90 = π/ rad. (M13.1) nimm die Form an ( = ŷ 0 e δ sin ω d + π ) (M13.3) = ŷ 0 e δ cos ω d 0 0 e δ cos ω d 0 e δ 1 Der Quoien zweier aufeinander folgender Ampliuden gleichen Vorzeichens is konsan und wird als Ampliudenverhälnis q (manchmal Dämpfungsverhälnis κ) bezeichne. i q Ampliudenverhälnis, δ Abklingkoeffizien = β /(m), T d T d Schwingungsdauer der gedämpfen Schwingung, Λ logarihmisches Dekremen, n beliebige ganze Zahl, dann gil ŷ i /ŷ i+1 = q. Daraus folg für die n-e Ampliude i+1 (M13.4) ŷ i+n = ŷi q n

10 13.3 Freie gedämpfe Schwingung 09 Da der zeiliche Absand zweier benachbarer Ampliuden eine Schwingungsdauer T d beräg, folg aus (M13.1) (M13.5) e δ T d = ŷi ŷ i+1 = q und (M13.6) e nδ T d = ŷi ŷ i+n = q n δ T SI 1 s s Den Exponenen δ T d bezeichne man als logarihmisches Dekremen Λ. Aus (M13.5) erhäl man durch Logarihmieren M (M13.7) ŷi Λ = δ T d = ln = ln q ŷ i+1 Einheien (M13.6) Die Ampliuden nehmen exponeniell mi der Zei ab. Die für den Rückgang auf den e-en Teil des Anfangsweres erforderliche Zei heiß Abklingzei τ. Aus (M13.1) folg mi = ŷ 0 /e = ŷ 0 e δ τ 0 0 e (M13.8) τ = 1 δ 1 δ Für die Halbwerszei T H, also die Zei, in der die Ampliude auf die Hälfe ihres Anfangsweres sink, folg aus (M13.1) ŷ 0 = ŷ 0 e δ T H. Logarihmieren ergib ln = δ T H und daraus (M13.8a) T H = ln δ Eigenfrequenz Die Dämpfung bewirk eine vom Abklingkoeffizienen δ abhängige Veränderung von Frequenz, Kreisfrequenz und Schwingungsdauer. ω d Kreisfrequenz der gedämpfen Schwingung = π f d = π/t d, ω 0 Kreisfrequenz der gleichen, jedoch ungedämpfen Schwingung = π f 0 = π/t 0 = k/m,

Vorwort. Horst Kuchling. Taschenbuch der Physik ISBN: Weitere Informationen oder Bestellungen unter

Vorwort. Horst Kuchling. Taschenbuch der Physik ISBN: Weitere Informationen oder Bestellungen unter Vorwort Horst Kuchling Taschenbuch der Phsik ISBN: 978-3-446-42457-9 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42457-9 sowie im Buchhandel. Carl Hanser Verlag, München

Mehr

Taschenbuch der Physik

Taschenbuch der Physik Horst Kuchling Taschenbuch der Physik ISBN-10: 3-446-41028-7 ISBN-13: 978-3-446-41028-2 Vorwort Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41028-2 sowie im Buchhandel

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung :

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung : Mechaniche chwingungen F r Rück Gleichgewichlage r F Rück F r Rück F r Rück Gleichgewichlage Größen zur quaniaiven Bechreibung : chwingungdauer oder Periode T, Einhei: Frequenz υ /T, Einhei: / oder Hz

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Basiswissen Physik 11. Jahrgangsstufe

Basiswissen Physik 11. Jahrgangsstufe Basiswissen Physik 11. Jahrgangssufe 1. Einfache lineare Bewegungen a) Darsellung von Bewegungen im Koordinaensysem Unerscheide sorgfälig die in der Zei zurückgelege Srecke s() von der zur Zei eingenommenen

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynamik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 8. März Aufgabe (9 Punke) Ein Zahnrad 3 wird über eine Sange on einem Kolben 5 angerieben. Dieses Zahnrad greif in

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

13.1 Charakterisierung von Schwingungen

13.1 Charakterisierung von Schwingungen 87 Schwingungen reen in allen Fachgebieen mi rückgekoppelen Prozessen auf. Im Maschinenbau ensehen Schwingungen durch elasische Radaufhängungen, Maschinenfundamene oder Maschineneile, in der Elekroechnik

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Schwingungen. 1 Schwingung als periodischer Vorgang

Schwingungen. 1 Schwingung als periodischer Vorgang -I.D1- D Schwingungen 1 Schwingung als periodischer Vorgang 1.1 Definiion Voraussezungen für das Ensehen einer mechanischen Schwingung sind eine zur Gleichgewichslage gerichee rückreibende Kraf und die

Mehr

Die numerische Erzeugung eines durchstimmbaren Sinussignals

Die numerische Erzeugung eines durchstimmbaren Sinussignals Die numerische Erzeugung eines durchsimmbaren Sinussignals Jakob Fröhling Die Hersellung eines sinusförmigen Signals is eine Aufgabensellung aus der Messechnik. Für die Messung bei einer Frequenz soll

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

2010-03-08 Klausur 3 Kurs 12Ph3g Physik

2010-03-08 Klausur 3 Kurs 12Ph3g Physik 00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des

Mehr

Physik II Vorlesung an der Fachhochschule Hannover im Fachbereich Maschinenbau

Physik II Vorlesung an der Fachhochschule Hannover im Fachbereich Maschinenbau Physik II Vorlesung an der Fachhochschule Hannover im Fachbereich Maschinenbau Ulrich J. Schrewe Saus: April 8.. Physik von U. J. Schrewe Physik II Inhal. Mechanik deformierbarer Körper 4. Schwingungen

Mehr

15 Erzwungene Schwingungen

15 Erzwungene Schwingungen 11 Unwuchen in elasischen Rooren oder Fahrbahnunebenheien bei Fahrzeugen führen auf erzwungene Schwingungen. Berache werden soll im Folgenden der Fall der Schwingungserregung durch eingepräge Kräfe. Bei

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

2. Grundlagen Schwingungslehre

2. Grundlagen Schwingungslehre Zusammenfassung Harmonische Anregung (5) Zusammenfassung Harmonische Anregung (6) .4 Akive Schwingungsisolaion (1) a) Schuz der Umgebung von Maschinen, die Schwingungen erzeugen (akiv) b) Schuz eines Geräes,

Mehr

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynaik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 7. März 05 Aufgabe (7 Punke) Das Rad (Radius r ) roll i der Winkelgeschwindigkei. I Punk A (Absand r / o Mielpunk) is

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

Mechanik. 1 Kinematik

Mechanik. 1 Kinematik Mechanik Kinemaik - Beschreibung der Bewegung eines Körpers durch Or, Geschwindigkei und Beschleunigung - Körper wird als Punkmasse (PM) beschrieben.. Modell der Punkmasse und Koordinaensseme (KS) Def.

Mehr

Lösungen der Übungsaufgaben TM II Dynamik

Lösungen der Übungsaufgaben TM II Dynamik L Lösungen der Übungsaufgaben TM II Dynamik Einleiung und Grundlagen Aufgabe a) ẋ() A cos B sin, ẋ. () A 2 sin B 2 cos 2 x() b) ẋ() C sin, ẋ. () C 2 cos 2 x() c) ẋ Ce cos Ce sin, ẋ. Ce 2 2 cos 2 sin d)

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

10. Schwingungen(oscilación (la), vibración, la)

10. Schwingungen(oscilación (la), vibración, la) Schwingungen Hofer 1 10. Schwingungen(oscilación (la), vibración, la) A1: Was ist eine Schwingung? A2: Gib Beispiele von Schwingungen an! Alle periodischen Bewegungen können aus harmonischen Schwingungen

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Klausur Nr. 2, WS 2009/2010

Klausur Nr. 2, WS 2009/2010 Physikalisches Prakikum für Sudierende der Biologie Klausur Nr. 2, WS 29/21 Name: Vorname: Mar. Nr.:......... (Bie in Blockschrif) Anschrif: Gruppe:............ (Unerschrif) Für die vollsändige Beanworung

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Beispiele Aufladung von Kondensatoren, Berechnung von Strömen, Spannungen, Zeiten und Kapazitäten.

Beispiele Aufladung von Kondensatoren, Berechnung von Strömen, Spannungen, Zeiten und Kapazitäten. Beispiele Aufladung von Kondensaoren, Berechnung von Srömen, Spannungen, Zeien und Kapaziäen. 1. (876) Beispiel 1.1 Angaben: R 1 = 2M, R 2 = 5M, C = 2µF, U = 60V 1.2 Aufgabe: Nach wie vielen Sekunden nach

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Versuch Operationsverstärker

Versuch Operationsverstärker Seie 1 1 Vorbereiung 1.1 Allgemeines zu Operaionsversärkern Ein Operaionsversärker is ein Versärker mi sehr großer Versärkung. Er wird in der Regel gegengekoppel berieben, so dass auf Grund seiner großen

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizschule Hannover - Seminararbei - Medikameneneinnahme -Modellierung- M D Schuljahr: 20 Fach: Mahemaik Inhalsverzeichnis 1 Einleiung 2 2 Einfache Verabreichung 3 21 Die inravenöse Variane 3 22 Die

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

Windenergie + E 2. +... = const. - (physikalische) Arbeit bezeichnet den Prozeß der Umwandlung einer Energieform E 1

Windenergie + E 2. +... = const. - (physikalische) Arbeit bezeichnet den Prozeß der Umwandlung einer Energieform E 1 Windenergie Grundsäzlich gil: - Energie-Erhalung E ges = E + E +... = cons. - (physikalische) Arbei bezeichne den Prozeß der Umwandlung einer Energieform E in eine andere E ; Energie bedeue auch Arbeisvermögen

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. Physik Schwingungen 3 Physik 2. Schwingungen. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Fluide 5 Themen Parameter einer Schwingung Harmonischer Oszillator Gedämpfter harmonischer Oszillator Resonanz

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

1. Schularbeit (6R) 24. Okt. 1997

1. Schularbeit (6R) 24. Okt. 1997 . Schularbei (6R). Ok. 997. Vereinfache und selle das Ergebnis mi posiiven Hochzahlen dar. Es sind dabei alle Rechenschrie anzugeben: 7 x x y 8 : x x y. Löse die folgende Wurzelgleichung ohne Verwendung

Mehr

Sinus und Cosinus im rechtwinkligen Dreieck ( )

Sinus und Cosinus im rechtwinkligen Dreieck ( ) Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen

Mehr

Formelsammlung (Fundamentum, ohne zusätzliche Blätter) Grafikfähiger Taschenrechner CAS im Prüfungsmodus (zurückgesetzt)

Formelsammlung (Fundamentum, ohne zusätzliche Blätter) Grafikfähiger Taschenrechner CAS im Prüfungsmodus (zurückgesetzt) BM Mahemaik T Schwerpunk_6 / 0 - Serie Seie: /7 Abschlussprüfung BM Mahemaik Schwerpunk TAL Teil Prüfungsdauer 90 Minuen, ohne Hilfsmiel Formelsammlung (Fundamenum, ohne zusäzliche Bläer Grafikfähiger

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau) Schrifliche Abiurprüfung 2007 Sachsen-Anhal Physik 13 n (Leisungskursniveau) Thema 2: Bewegungen in raviaionsfeldern 1 Eigenschafen des raviaionsfeldes Erläuern Sie den Feldbegriff anhand des raviaionsfeldes.

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz Der Primzahlsaz, Teil Vorrag zum Seminar zur Funionenheorie, 07.05.0 Raffaela Biesenbach Diese Arbei beschäfig sich mi der Herleiung des Primzahlsazes. Dazu werden Definiionen und Säze aus dem Sri zur

Mehr

5. Schwingungen und Wellen 5.1. Schwingungen Freier gedämpfter harmonischer Oszillator

5. Schwingungen und Wellen 5.1. Schwingungen Freier gedämpfter harmonischer Oszillator 5. Schwingungen und Wellen 5.. Schwingungen 5... Freier gedämpfer harmonischer Osillaor a) Wiederholung freier ungedämpfer harmonischer Osillaor, keine Reibung d Bewegungsgleichung: m d Lösung: sin d k

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme WS 8. Wechselsröme 8.1 Einleiung n Wechselsromkreisen spielen neben Ohmschen Widersänden auch Kondensaoren (Kapaziäen) und Spulen (ndukiviäen) wichige Rolle. n diesem Versuch soll am Beispiel einfacher

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Aufgabe (5 Punke) Aufgabe : Koninuierliche und diskree Signale. a) Zeichnen Sie jeweils den geraden Aneil v g ( ) und den ungeraden Aneil v u ( ) des in Abb.. dargesellen Signals v (). b) Es gelen folgende

Mehr

Schwingungen. Wir beginnen mit der Schwingung eines leicht beobachtbaren Körpers: 1.) Die Schwingung des Fadenpendels

Schwingungen. Wir beginnen mit der Schwingung eines leicht beobachtbaren Körpers: 1.) Die Schwingung des Fadenpendels Schwingungen Eine Schwingung ist eine periodische, d. h. in gleichen Zeiten sich wiederholende Bewegung eines Körpers um seine Ruhe- oder Gleichgewichtslage. Viele Schwingungsphänomene sind uns vertraut:

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Aufgaben zu den verschiedenen Wachstumsmodellen

Aufgaben zu den verschiedenen Wachstumsmodellen Aufgaben zu den verschiedenen Wachsumsmodellen 1. Beispiel: Spezialdünger Durch den Einsaz von Spezialdünger kann der Errag von Feldfrüchen verbesser werden. Erräge können aber nich grenzenlos geseiger

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr