Mathematische Grundlagen

Größe: px
Ab Seite anzeigen:

Download "Mathematische Grundlagen"

Transkript

1 olad Eicheberger Matheatische Grudlage Folge aufzählede For a 1, a 2, a 3,, a k, a a 1 a k a das erste Glied der Zahlefolge, das allgeeie Glied der Zahlefolge, das letzte Glied der Zahleege letztes Glied letztes Glied ooto wachsed ooto falled edliche Zahlefolge uedliche Zahlefolge a a +1 N a a +1 N Arithetische Zahlefolge Geoetrische Zahlefolge ekursiosforel a +1 = a + d q kostat a = a 1 + ( 1) d a = a 1 q 1 a k = q a k 1 d kostat für das -te Glied a 1 a 2 = a 1 + d a 3 = a 2 + d = a 1 + 2d a 4 = a 3 + d = a 1 + 3d a 1 a 2 = a 1 q a 3 = a 2 q = a 1 q 2 a 4 = a 3 q = a 1 q 4 -te Partialsue s = 2 a 1 + a s = a 1 1 q 1 q -te Partialsue eier uedlich lage eihe, bei der q ier kleier wird s = a 1 1 q 1 q q < 1 s = a 1 1 q Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 1

2 olad Eicheberger Prozetrechug Bezeichuge Grudwert, Bezugsgrösse Prozetfuss Prozetsatz Prozetwert K p i= p 100 q = 1 + i q = 1 + P 100 Zisrechug Begriffe Ziszuschlagterie Zisperiode Zeitpukte, zu dee Zise fällig werde. Zeitrau zwische zwei Ziszuschlagterie Nachschüssige (dekursive) Verzisug Zis a Ede der Kapitalüberlassug bezahlt Vorschüssige (atizipative) Verzisug Zis zu Begi der Kapitalüberlassug bezahlt Eifache Verzisug Diskotierug Jährliche lieare Verzisug (eifache Verzisug) Zis wird Kapital zugeschlage, aber icht verzist Afagskapital aus Edwert bereche. Iflatiosrate Afagskapital, Barwert (Diskotierug) K 0 Edwert K Zissatz i K K 0 = t (1 + i 360 ) K = K 0 (1 + i i = K K 0 t K t 360 ) Laufzeit = Äquivalezprizip t 360 = t 360 = K K 0 K 0 i L = GL We icht explizit Ausgeacht, gilt als Stichtag das Datu der letzte Zahlug t = K j t Mittlerer Zahlugsteri t es gilt j =1 K j j =1 K j K j 1 + i t j = K (1 + i t ) t 1 K i K t i 360 = K t 1 + K 2 (1 + i 360 Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 2

3 olad Eicheberger atezahlug Nachschüssig Vorschüssig K = Ebetrag, = Moate/ Periode, r = ate t = 1 2 K = (1 + i 1 2 ) t = K = (1 + i ) Jährlicher Ziseszis (expoetielle Verzisug) Edkapital K, K t Verdoppelugszeit T Äquivalezprizip Effektiver Zissatz i, edite Geischte Verzisug (uterjährig liear, gaze Jahre expoetiell) K = K 0 (1 + i) K = K 0 q Tagesschreibweise K = K 0 (1 + i) t l(2) T = l(1 + p 100 ) L = GL Stichtag frei wählbar i = (1 + i k ) 1 t 1 K t = K i 360 (1 + i)n (1 + i 360 ) Mit t = t 1 + N + t 2 t 2 Uterjährige Verzisug t 1 N t 2 Laufzeit bis Jahresede Azahl folgede Jahre Laufzeit vo letzte Jahresede bis zu Auszahlugsteri K = K 0 (1 + i ) i i p = i rel = i Laufzeit i Jahre Azahl Zisterie pro Jahr Noieller Jahresszis Periodezissatz Mittlerer Zahlugsteri der expoetielle Verzisug / Fälligkeitsteri eier lg eialige Zahlug = r j =1 K j lg lg 1 + i r j =1 K j (1 + i) j Duratio = Mittlere Bidugsdauer eies bestite Kapitals D = r t=1 t Z t (1 + i) t r t=1 Z t (1 + i) t Barwert i t fälliger Zahlug Z t (1+i) t Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 3

4 olad Eicheberger Duratio festverzisliche Aleihe D = 1 + i i K 1 + i 1 + T (1 + i i) K (1 + i) (1 + i) T i D = 1 + i i K + T (1 + i i) K (1 + i) 1 + T i i T K Marktzissatz Laufzeit ückzahlugsbetrag Kupo (Noialwert Noialzis) Stetige Verzisug Afagskapital K 0 Edkapital K t K 0 = K t e i t K t = K 0 e i t Zissatz i i = p 100 = 1 t l K t K 0 Laufzeit t Äquivalezbeziehug t = 1 i l K t = 100 K 0 p l K t K 0 K 0 (1 + i eff ) t = K 0 e i s t L = GL Effektiver Aufzisfaktor i eff = e i s 1 Stetiger Aufzisfaktor i s = l( 1 + i eff ) atekredit r e = r( i) Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 4

5 olad Eicheberger eterechug Nachschüssige ete, Jährliche Verzisug K q 1 q 1 = lg K + 1 lg q Vorschüssige ete, q 1 Jährliche Verzisug K q q 1 Barwert achschüssig B = q Barwert vorschüssig B = q 1 B = B q Sparkasseforel Nachschüssig Sparkasseforel Vorschüssig K = K 0 q ± K = K 0 q ± q Soderfall: Kapital it ate aufbrauche(k = 0) = log 1 1 i K 0 log(q) Ewige ete achschüssig B ewig = Ewige ete vorschüssig B q ewig = Barwertfaktore ä = 1 q k 1 bzw qk a = q k 1 Aufgeschobee ete Uterbrochee ete k Jahre zwische Zahluge B = q 1 q 1 Azahl Zahluge + Wartezeit B = q k + 1 q k q k + 1 q k k 1 bis k sid jee Periode, i welche Zahluge stattfide. Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 5

6 olad Eicheberger Spezialfälle ur gültig, we das Jahr i gleich grosse Teile zerlegt Zahlug Verzisug Edwert K / Barwert B K = + i 1 2 ete, uterjährig, achschüssig Jährlich (Jahresede) Azahl uterjähriger Zahluge Azahl Jahre ete, uterjährig, vorschüssig Jährlich (Jahresede) K = + i Azahl uterjähriger Zahluge Azahl Jahre ete, jährlich, achschüssig Uterjährig K = q 1 q 1 Azahl uterjähriger Zahluge Azahl Jahre q = 1 + i K = q q 1 q 1 ete, jährlich, vorschüssig Uterjährig B = K q Azahl uterjähriger Zahluge Azahl Jahre q = 1 + i K = q 1 ete, uterjährig, achschüssig Uterjährig B = K q = q q 1 Azahl uterjähriger Zahluge Azahl Jahre q = 1 + i K = q q 1 ete, uterjährig, vorschüssig Uterjährig B = K q = q 1 q 1 Azahl uterjähriger Zahluge Azahl Jahre q = 1 + i Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 6

7 olad Eicheberger Tilgugsrechug Auität Auität / ate Jährliche Abzahlug (Aortisatio) eier Schuld Diet zur Verzisug ud zur Tilgug der Schuld Auität = Tilgugsrate + Zisbetrag a = r = S 1 qn q N 1 a = S 1 1 a N Afagsschuld S 1 a = Auität S 1 = E q N Edwert E S 1 = r q N 1 q N () S 1 = t 1 qn 1 E = r qn 1 Jährlich gleichbleibede ückzahluge 1 1 = qn () a N a N q N 1 estschuld r = (S 1 q ) r Tilgugsrate i 1. Jahr -Tilgugsrate r = t 1 qn 1 t 1 = a (S 1 i) t = t 1 q 1 Sue aller Zise Dauer N j=1 Z j Z j j=1 t = [a (S 1 i)] q 1 N = = (N a) S 1 l 1 S 1 r l a Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 7

8 olad Eicheberger Effektivziserittlug bei Darlehe bei atekredite D T Darlehe ate Laufzeit Dq T = qt 1 ate r = K 0 T + K 0 b T + K 0 i Jährliche Ersatzrete e = r ( i) K 0 atekredit i Zissatz p.m. b Eialige Bearbeitugsgebühr i % T Laufzeit Ivestitiosrechug Kapitalwertethode, lohed we KW>1 KW = A 0 + Ü i + Ü 2 (1 + i) 2 + Ü 3 (1 + i) Ü (1 + i) + L (1 + i) KW = A 0 + L + S q S = Ü (1 + i) t 1 (1 + i) 1 = Ü i KW = A 0 + L q + Ü 1 ( t q ) q t Itere Ertragssatz- Methode KW = A 0 + L + S q 1 ( t q ) S = Ü t = Ü +1 kostat Ü Abahe der Überschüsse, Differez zwische Überschuss zu Vorjahr (Bsp Ü 2 Ü 1 A 0 Aschaffugskoste Ü Eiaheüberschüsse (alle Jahre gleich gross) L Liquidatioswert Dauer Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 8

9 olad Eicheberger Kobiatorik Perutatio (Aordugsproblee) Perutatio Azahl Möglichkeite, verschiedee Eleete azuorde. Perutatio it Wiederholuge Azahl Möglichkeite, Eleete azuorde, we we k Eleete gleich sid.! = ( 1) ( 2) P,k =! k!! P,k = k 1! k 2! k 3!... Stichprobe (Auswahlproblee) Ohe Zurücklege (Eleet ka ur 1 al vorkoe) Mit Zurücklege (Eleet ka ehrals vorkoe) Geordet (eihefolge relevat) V k =! ( k)! Ugeordet (eihefolge egal) C k = k = V k = k N =! k! ( k)! r + k 1 k Wahrscheilichkeitsrechug Ereigisse Ergebisrau S S = {e 1, e 2,..., e 1, e } Eleetarereigis e i Sicheres EreigisA e 1 S A = S Uögliches Ergebis S = {} Ereigis A S GegeereigisA Uvereibare Ereigisse A, B S A A = S A A = A B = Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 9

10 olad Eicheberger Vereibarte Ereigisse Uvereibarte Ereigisse A ud B A B A oder B A B p(a) + p(b) p(a B) Weder A och B A B p(a) + p(b) p(a B) A B 1 p(a) p(b) + p(a B) Nicht A ud B zusae A B A B 1 p(a) p(b) + p(a B) B, aber icht A A B B oder icht A A B Häufigkeitsfuktio Ufag der Stichprobe Absolute Häufigkeit (e i ) relative Häufigkeit (e i ) (e i ) = (e i) N, 0 (e i) 1 (S) = 1,( ) = 0, (A) + (A) = 1 U = E 1 E 2 (U) = (E 1 E 2 ) = (E 1 ) + (E 2 ) (E 1 E 2 ) N Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 10

11 olad Eicheberger Wahrscheilichkeit Mächtigkeit eies Ereigisses Mögliche Fälle Güstige Fälle Wahrscheilichkeit P(E) Bedigte Wahrscheilichkeit p(a B) Bedigte Wahrscheilichkeit p(a B) (bei uabhägige Ereigisse) Totale Wahrscheilichkeit p(a) evidierte Wahrscheilichkeit p(b j A) (Satz vo Bayes) P(E) (E) P = E S = g P(E 1 ) + P(E 2 )+... +P(E 1 ) + P(E ) = 1 p(a B) = p(a B) p(b) p(a B) = p(a) p(b) p(a) = p(b i ) p(a B i ) B i = S p(b j A) = E g p(b j ) p(a B j ) p(b i ) p(a B i ) echetipps 0! = 1 1! = 1 2! = 2 3! = 6 4! = 24 x x = 1 x y 1 + x y = x + 1 y ( + 1)! = ( + 1)! x y = x x y x 0 + x 1 + x x x 1 + x x = 2x Darstellugshilfe Wirtschaftsatheatik-2 oe, Fiazatheatik ud Wahrscheilichkeit 11

s n =a 1 1 qn 1 q Für unendliche Reihen mit q 1 gilt: s=a 1

s n =a 1 1 qn 1 q Für unendliche Reihen mit q 1 gilt: s=a 1 Fiazmathematik Folge Arithmetische Geometrische Rekursiosformel a 1 =a d a 1 =a q N-tes Glied a =a 1 1 d a =a 1 q 1 N-te Partialsummer Prozetreche Grudwert, Bezugsgrösse Prozetfuss Prozetsatz i p s = 2

Mehr

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik ISBN:

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik ISBN: Leseprobe Wolfgag Eichholz, Eberhard Vilker Taschebuch der Wirtschaftsmathematik ISN: 978-3-446-41775-5 Weitere Iformatioe oder estelluge uter http://www.haser.de/978-3-446-41775-5 sowie im uchhadel. Carl

Mehr

Taschenbuch der Wirtschaftsmathematik

Taschenbuch der Wirtschaftsmathematik Taschebuch der Wirtschaftsmathematik vo Wolfgag Eichholz, Eberhard Vilker 4., überarbeitete ud erweiterte Auflage Haser Müche 7 Verlag C.H. eck im Iteret: www.beck.de ISN 978 3 446 41117 3 Zu Ihaltsverzeichis

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n Kapitel 4 Folge ud Reihe Josef Leydold Auffrischugskurs Mathematik WS 2017/18 4 Folge ud Reihe 1 / 38 Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Formal: Eie

Mehr

III. Grundlagen der Lebensversicherungsmathematik III.2. Grundlagen der Zinsrechnung

III. Grundlagen der Lebensversicherungsmathematik III.2. Grundlagen der Zinsrechnung III. Grudlage der Lebesversicherugsmathematik III.2. Grudlage der Zisrechug Uiversität Basel Herbstsemester 2015 Dr. Ruprecht Witzel ruprecht.witzel@aktuariat-witzel.ch www.aktuariat-witzel.ch III.2. Grudlage

Mehr

(Grob-) Gliederung. B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite

(Grob-) Gliederung. B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite (Grob-) Gliederug A Eiführug Reterechuge B Fiazmathematische Grudlage C Zisrechuge D Reterechuge E Tilgugsrechuge F Kurs ud Redite Dr. Alfred Brik Dr. A. Brik Istitut für Wirtschafts- ud Sozialwisseschafte

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i 1.1. Jährliche Retezahluge 111 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi eies Jahres

Mehr

Die Größe G nennt man Grundwert, p Prozentsatz und P Prozentwert, so dass sich die Beziehung

Die Größe G nennt man Grundwert, p Prozentsatz und P Prozentwert, so dass sich die Beziehung Fiazmathematik Prozetrechug Beispiel 1: (Siehe Aufgabesammlug) Eier Zeitugsmeldug ist zu etehme, dass Uterehme A seie Umsatz im Jahr 2004 um 4% gegeüber dem Umsatz vo 2003, der 4,3 Mio. Euro betrug, steiger

Mehr

) 100. C. Zinsrechnungen Lösungen. C. Zinsrechnungen Lösungen ... Arithm. Reihe mit a 1 = 0,05 und a n = 0,05 - (n-1) 0,001

) 100. C. Zinsrechnungen Lösungen. C. Zinsrechnungen Lösungen ... Arithm. Reihe mit a 1 = 0,05 und a n = 0,05 - (n-1) 0,001 Aufgabe C/4 Eie apitalalage verzise sich im erste Jahr mit 5 %, daach immt der Zisfuß jährlich um,1 Prozetpukte ab. Nach wie viele Jahre verdoppelt sich das apital bei jährlicher Verzisug mit a eifache

Mehr

Übungsblatt Folgen, Reihen, Finanzmathematik

Übungsblatt Folgen, Reihen, Finanzmathematik Tutorium zu Mathematik für WFB Übugsblatt Folge, Reihe, Fiazmathematik Aufgabe (Grezwerte vo Folge) Bestimme Sie die Grezwerte der Folge ( ), N 4 b) c) d) e) si( ) f) a () g) a cos( ) Aufgabe (4 ) 4 b)

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Finanzmathematische Modelle

Finanzmathematische Modelle Fiazmathematische Modelle Zum Zeitpukt der Erstellug dieses apitels Afag 7 war das absolute Zistief. Bei Guthabezissätze i der Größeordug vo, % macht die Betrachtug vieler asoste wichtiger fiazmathematischer

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Auf welches Endkapital wächst ein Kapital von 4352,40 bei 3,5 % Zinsverzinsung in 8 Jahren an?

Auf welches Endkapital wächst ein Kapital von 4352,40 bei 3,5 % Zinsverzinsung in 8 Jahren an? 2--3 Übugsblatt Lösuge. Aufgabe: Auf welches Edkapital wächst ei Kapital vo 432,4 bei 3, % Zisverzisug i Jahre a? K K q geg: K = 432,4 ; p = 3,; = Jahre ges: K K 432,4,3 K 73,2 Das Edkapital ach Jahre

Mehr

Demo-Text für Darlehen Bausparverträge. Finanzmathematik Teil 3 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Darlehen Bausparverträge. Finanzmathematik Teil 3 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Fiazmathematik Teil 3 Darlehe Bausparverträge Vor allem für die Oberstufe geeiget Text Nr. 18931 Stad: 17. November 2018 FIEDICH W. BUCKEL INTENETBIBLIOTHEK FÜ SCHULMATHEMATIK 18931 Fiazmathematik 3: Darlehe

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Der Wald als Vermögen. und seine finanzmathematische Darstellung

Der Wald als Vermögen. und seine finanzmathematische Darstellung Der Wald als Vermöge ud seie fiazmathematische Darstellug 1. Wald als Vermöge 2. Ziseszisrechug 3. Reterechug 4. Zusammefassug Wald als Vermöge? 1. Wälder sid Quelle vo Eikomme => Vermöge 2. Dadurch sid

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug BESCHRÄNKTE ND NBESCHRÄNKTE ZAHLENFLGEN Berufliches Gymasium / terstufe Wozu sid eigetlich Schrake da? Geau! Damit der Zug icht auf die Straße fährt Bei der Eisebah markiere

Mehr

19. Zinseszinsrechnungen

19. Zinseszinsrechnungen 19. Ziseszisrechuge 19.1 Eileitug Jede Beutzug vo fremdem apital für eie bestimmte Zeitraum ist mit oste verbude. Diese oste, die Zise, etspreche der Etschädigug des apitalehmers a de apitalgeber für die

Mehr

Fit in Mathe. April Klassenstufe 12 Summenzeichen Σ. a 1. a a n. 105 k 5 oder k

Fit in Mathe. April Klassenstufe 12 Summenzeichen Σ. a 1. a a n. 105 k 5 oder k Thea Fit i Mathe Musterlösuge 1 April Klassestufe Suezeiche Σ {a 0,a 1, a,...,a } sei eie Folge vo +1 Zahle. Da wird defiiert a k :=a o a 1 a... a. Ist das erste Folgeglied a ud, so ist a k = a a 1...

Mehr

Lösungen der Aufgaben zur Selbstüberprüfung

Lösungen der Aufgaben zur Selbstüberprüfung Lösuge der Aufgabe zur Selbstüberprüfug 1. a) (a) = {(I, - 3), (2, - 3/2), (3, -1),..., (50, - 3/50),... ) (a) = ( -3, - 3/2, - 1,..., -3/50,... ) (a) ist streg mooto wachsed, de - 3/ < - 3/( + 1), das

Mehr

a) p% = 3% b) p% = 7% c) p% = 4,2% d) p% = 3,6% e) p% = 5,3% f) p% = 5,5% g) p% = 6,75% h) p% = 2,2%

a) p% = 3% b) p% = 7% c) p% = 4,2% d) p% = 3,6% e) p% = 5,3% f) p% = 5,5% g) p% = 6,75% h) p% = 2,2% Berufskolleg aufmäische Schule des reises Düre Mathematik-Übugsaufgabe Thema: Ziseszisrechug Schulform: Höhere Hadelsschule Ziseszisrechug eimalige Zahluge 1. Löse die Formel = 0 q ach 0, q bzw. auf. 2.

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

n 1 E. Tilgungsrechnungen 5 Aufgaben Aufgabe E/2

n 1 E. Tilgungsrechnungen 5 Aufgaben Aufgabe E/2 Thema: Tilgugsrechuge Dr. Alfred Brik A Eiführug B Fiazmahemaische Grudlage C Zisrechuge D Reerechuge E Tilgugsrechuge ysemaisierug der Tilgugsare Raeilgug 3 Auiäeilgug 4 Aufgabe F Kurs ud Redie Dr. A.

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Verteilungsfunktionen

Verteilungsfunktionen Verteilugsfuktioe Wie sid zufällige Fehler verteilt? Wie sid Messwerte verteilt? Fehler Messwerte Verteilugsfuktioe: Maxwell-Boltza Feri-Dirac Bose-Eistei Placksche Verteilug Frage ist stets, wie groß

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet . Zusammehag zwische Kurs ud Redite Kurs P = Preis für de Akauf vo Zahlugsverpflichtuge (z.b. Wertpapiere/Aleihe), wird auch als Marktwert bezeichet Nomialwert NW = Newert (oder Rückzahlugsbetrag) der

Mehr

Die natürlichen, ganzen und rationalen Zahlen

Die natürlichen, ganzen und rationalen Zahlen ie atürliche, gaze ud ratioale Zahle Ihaltsverzeichis.1 ieatürlichezahle... 11. iegazezahle... 15.3 ieratioalezahle... 15.4 Aufgabe... 17 ie Zahleege N, Z, Q ud R der atürliche, gaze, ratioale ud reelle

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Finanzmathematik - Vortrag

Finanzmathematik - Vortrag Fiazmathematik - Vortrag eterechug 2 Patrick Ammo Dietmar Gierlich 11. Aufgabe Das Vermöge vo A ist mit 1. DM doppelt so hoch wie das Vermöge vo B. A spart jährlich 4. DM achschüssig, währed B 8. DM spart.

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 050430 Datum 30.04.005 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger IDUKTIVE STTISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUG - LÖSUGE erutatioe. zahl der erutatioe vo verschiedefarbige erle!! 0. zahl der erutatioe vo 0 uerierte Kugel! 0!.8.800

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukture Prof. Dr. J. Esparza Lehrstuhl für Grudlage der Softwarezuverlässigkeit ud theoretische Iforatik Fakultät für Iforatik Techische Uiversität Müche http://www7.i.tu.de/u/courses/ds/ws0910

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Ausführliche Lösungen

Ausführliche Lösungen usführliche Lösuge,6 8. Lohsteuer: 8,, Lohsteuersatz: 6,7%. a),9 9.9,6 Netto,,6 brutto B Zuschlagsfaktor B gegeüber Zuschlag MWSt..8, Der MWSt-Faktor,6 ka gekürzt werde, der Bruttopreis ist also bei B

Mehr

3.2 Reihen Folgen und Reihen. Beispiele : (i) a n+1 = 1 2 beschränkt. a n 2. ), n N, a 1 = 2; zeigen: (a n ) n monoton fallend & nach unten

3.2 Reihen Folgen und Reihen. Beispiele : (i) a n+1 = 1 2 beschränkt. a n 2. ), n N, a 1 = 2; zeigen: (a n ) n monoton fallend & nach unten 6 3 Folge ud Reihe Beispiele : i + = beschrät Satz 3..5 + = +, N, a = ; zeige: ooto falled & ach ute + a = li + = + s.o. a + = + a = a + a a = a a+ a ii x =, x + = + x, =,,... x ooto wachsed: Idutio: x

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen 7. Vorlesug im Brückekurs Mathematik 2017 Hilfsmittel aus der Kombiatorik, Vollstädige Iduktio, Reelle Zahlefolge Dr. Markus Herrich Markus Herrich Kombiatorik, Vollstädige Iduktio, Zahlefolge 1 Hilfsmittel

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Formelsammlung Mathematik Zentrale Prüfungen 10 Anforderungsniveau HSA

Formelsammlung Mathematik Zentrale Prüfungen 10 Anforderungsniveau HSA Ebee Figure Quadrat Aaaa u a Dreieck g h A u a b c Formelsammlug Mathematik Zetrale Prüfuge 0 Aforderugsiveau HSA Rechteck A ab u a b Parallelogramm A g h u a b Traez a c A h u a b c d reis Radius: r Durchmesser:

Mehr

Rentenrechnung 4. Manuel Schneider Yanfeng Han. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999

Rentenrechnung 4. Manuel Schneider Yanfeng Han. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 eteechug Mauel Scheide Yafeg Ha Ihig/Pflaue Fiazatheatik Oldebug Velag 999 )Aus eie apital v 0000 sll 0 Jahe lag eie vschüssige Matsete bezahlt wede.wie hch ist diese bei vieteljähliche Vezisug v %? 0000

Mehr

Übungsaufgaben. Häufige Fehler: Banale Rechenfehler. Signifikante Stellen falsch. Unsaubere Arbeitsweise. Einheiten vergessen, Pi ist KEINE Einheit

Übungsaufgaben. Häufige Fehler: Banale Rechenfehler. Signifikante Stellen falsch. Unsaubere Arbeitsweise. Einheiten vergessen, Pi ist KEINE Einheit Übugsaufgabe Häufige Fehler: Baale Rechefehler Sigifikate Stelle falsch Eiheite vergesse, Pi ist KEINE Eiheit Usaubere Arbeitsweise Rudugsfehler Eiheite falsch ugerechet T. Kießlig: Auswertug vo Messuge

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Grundlagen der Finanzmathematik

Grundlagen der Finanzmathematik Otto Praxl Grudlage der Fiazmathematik Eie kurze Eiführug mit Berechugsbeispiele. 2 Otto Praxl: Grudlage der Fiazmathematik, 2. Ausgabe Impressum Verfasser: Otto Praxl. Iteretseite: www.praxelius.de Urheberrecht:

Mehr

Logarithmus- und Exponentialgleichungen (Klasse 10)

Logarithmus- und Exponentialgleichungen (Klasse 10) Logarithmus- ud Expoetialgleichuge (Klasse 10) Aufgabe 1 Löse Sie die logarithmische Gleichuge, idem Sie sie auf die Form lg a = b brige ud i die 10.Potez erhebe. a) lg(x-5) = -2 d) lg(7x+9) - lg x = 1

Mehr

Übungsaufgaben. Häufige Fehler: Banale Rechenfehler. Unsaubere Arbeitsweise. Signifikante Stellen falsch. Einheiten vergessen.

Übungsaufgaben. Häufige Fehler: Banale Rechenfehler. Unsaubere Arbeitsweise. Signifikante Stellen falsch. Einheiten vergessen. Übugsaufgabe Häufige Fehler: Baale Rechefehler Sigifikate Stelle falsch Eiheite vergesse Usaubere Arbeitsweise Rudugsfehler Eiheite falsch ugerechet T. Kießlig: Auswertug vo Messuge ud Fehlerrechug - Verteilugsfuktioe

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

Studiengang Betriebswirtschaft Modul. Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz. BB-WMT-S Datum

Studiengang Betriebswirtschaft Modul. Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz. BB-WMT-S Datum Studiegag Betriebswirtschaft Modul Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BB-WMT-S-07060 Datum 0.06.007 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

1. Probabilistisches Sprachmodell - Verständnisfragen

1. Probabilistisches Sprachmodell - Verständnisfragen . Probabilistisches Sprachmodell - Verstädisfrage (a) Defiiere Sie de Begriff eies probabilistische Sprachmodells für eie Sprache. (b) Beerte Sie die folgede Aussage als richtig oder falsch: I eiem probabilistische

Mehr

Derivate und im Transaction Banking der HypoVereinsbank tätig.

Derivate und im Transaction Banking der HypoVereinsbank tätig. Derivate ud im Trasactio Bakig der HypoVereisbak tätig. Zum Ihalt: Dieses kompakte Lehrbuch behadelt eierseits das otwedige fiazmathematische Basiswisse ud greift adererseits zetrale Awedugsmöglichkeite

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Wirtschaftsmathematik. Klausur-Kennzeichen BB-WMT-S Datum

Wirtschaftsmathematik. Klausur-Kennzeichen BB-WMT-S Datum Studiegag Betriebswirtschaft Modul Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kezeiche BB-WMT-S 08068 Datum 8.06.008 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Investitions- analysen

Investitions- analysen Dr.-Ig. habil. Jörg Wollack IA. Ivestitios- aalyse siehe auch Schierebeck: Grudzüge der Betriebswirtschaftlehre, BWB 08 Dyamische Ivestitiosaalyse berücksichtige betrachted vom gegewärtige Zeitpukt t 0

Mehr

Finanzmathematik Zinsrechnung Erstellt von Brülke Jörg/ Piesker Sven

Finanzmathematik Zinsrechnung Erstellt von Brülke Jörg/ Piesker Sven Fiazmathematik Zisrechug. - - Erstellt vo rülke Jörg/ Piesker Sve. Das ruttoiladsrodukt (i de Preise vo 98) der udesreublik betrug 97 34 Mrd. DM ud 98 48, Mrd. DM. ereche Sie die durchschittliche Wachstumsrate

Mehr

Geben Sie bitte Ihren Namen und Ihre Matrikelnummer an: Aufgaben und Ihre Lösungen: n 01 : Lösen Sie die Kapitalverzehrsformel : 0= q

Geben Sie bitte Ihren Namen und Ihre Matrikelnummer an: Aufgaben und Ihre Lösungen: n 01 : Lösen Sie die Kapitalverzehrsformel : 0= q Klaus R. F. Bätjer, Dr., Prof., TFH Wildau, FB IW / WIW, Haus, Raum 5, Friedrich Egels Straße 3 WFG Klausur Nr. 3, Witersemester /,.., Semiarraum, Haus, 5.3 Uhr Allgemeie Hiweise:. Stelle Sie sicher, daß

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Formelsammlug Deskriptive Statistik ud Elemetare Wahrscheilichkeitsrechug Prof. Dr. Ralf Rude Statistik ud Ökoometrie, Uiversität Siege Prof. Dr. Ralf Rude - Uiversität Siege I Statistische Grudbegriffe

Mehr

Die arithmetischen Eigenschaften der Binomialkoeffizienten

Die arithmetischen Eigenschaften der Binomialkoeffizienten Die arithetische Eigeschafte der Bioialkoeffiziete Christopher Egelschö, 00064 Thoas Fößl, 07005 Ihaltsverzeichis Bioialkoeffiziete - Eie kurze Eiführug. Defiitio ud Berechug...........................2

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

1 Analysis in einer Variablen

1 Analysis in einer Variablen 4 1 Aalysis i eier Variable 1 Die reelle Zahle 1.1 Die gägige Zahlbereiche Der Abschitt diet isbesodere zu Eiführe der beutzte Noeklatur. 1.1.1 Beschreibug der Zahlbereiche Tabelle der Zahlbereiche Zahlbereich

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Studiengang Betriebswirtschaft Fach

Studiengang Betriebswirtschaft Fach Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BB-WMT-S-0 / BW-WMT-S-0 Datum..00 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr