Mikroskop. 1 Ziele. 2 Grundlagen. 2 Grundlagen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mikroskop. 1 Ziele. 2 Grundlagen. 2 Grundlagen"

Transkript

1 Mkroskop Zele I desem Versuch mache Se sch mt dem Strahlegag eem Mkroskop vertraut ud verstehe, we es zu eer Vergrößerug kommt. Se kalbrere e Messokular, um damt de Dcke hres Haares zu bestmme. Schleßlch ermttel Se och das Auflösugsvermöge ees Objektvs: Welche Abstad köe zwe Pukte habe, damt ma se mt dem Mkroskop och getret beobachte ka? 2 Grudlage Der Sehwkel st e Maß für de Größe des 2 I der Physk st der atürlche Sehwkel 3 Ee Lupe verstärkt de Brechkraft Bldes auf der Netzhaut. Er wrd größer, der Wkel des Objektes der des Auges ud rückt de Gegewe ma de Gegestad äher herarückt. ormale Sehwete s = 25 cm. stad äher hera. Sehwkel ud Netzhautbld werde dadurch größer. 2 Grudlage Brgt ma ee Gegestad aus der ormale Sehwete s = 25 cm auf 5 cm a das Auge hera, so stegt zwar der Sehwkel auf das Füffache, de Brechkraft des Auges st aber zu kle, um e scharfes Bld auf der Netzhaut zu erzeuge. Des gelgt mt eer Lupe, de de Brechkraft des Auges uterstützt. Mt gute Lupe lässt sch aber höchstes ee 25fache Vergrößerug erzele, mt de Mkroskope m Praktkum errecht ma etwa ee 5fache Vergrößerug. Dr. Rüdger Scholz LUH November 22

2 2. Vergrößerug eer Lupe Uter der Lupevergrößerug γ versteht ma das Verhälts Sehwkel mt Lupe γ = =. Sehwkel 25 cm Etferug Für ee Gegestad der Brewete f (Abb. 4 lks) lässt sch γ lecht ausreche: γ = = = G s s. f G f Das Lcht vo eem Pukt des Gegestades fällt da parallel s Auge, das Bld legt m Uedlche. Das Auge stellt sch daher auf Uedlch e ud st etspat. Rückt ma de Gegestad äher a de Lupe (Abb. 4 rechts), so seht ma e och größeres Bld: 4 Der Gegestad legt lks der Brewete der Lupe. Rechts st er äher heragerückt, der Sehwkel wrd och größer. γ = = = + G s s f g. g G f g Es legt edlcher Etferug, so dass sch de Lse m Auge desmal krümme muss. 2.2 Vergrößerug ees Mkroskops Ee wesetlch stärkere Vergrößerug errecht ma m Mkroskop mt zwe Sammellse. Vo dem Gegestad G, der kurz hter der Brewete des Objektvs legt, wrd e reelles, vergrößertes ud umgekehrtes Zwschebld B erzeugt. Deses wrd mt dem Okular we durch ee Lupe betrachtet. Für e auf Uedlch akkomodertes Auge (Abb. 5 lks: Lcht, das vo eem Objektpukt ausgeht, fällt parallel s Auge) legt das Zwschebld der geormte Tubusläge t hter der Objektvbrewete f. B t Mt der Objektvvergrößerug γ obj = = G f ergbt sch da de Mkroskopvergrößerug zu 5 Strahlegag eem Mkroskop. Lks für e auf uedlch, rechts für e auf edlche Etferug akkomodertes Auge. γ γ γ = ok obj = f2 f s t. Objektv ud Okular aus Abb. 6 lefer de Gesamtvergrößerug γ =. Ee Fehlschtgket oder e auf edlche Wete akkomodertes Auge führe m Versuch jedoch machmal auf abwechede Werte. 6 γok ud γobj sd für de geormte Tubusläge t = 6 mm auf Objektve bzw. Okulare egravert Dr. Rüdger Scholz LUH November 22 2

3 Um Abbldugsfehler zu korrgere, bestehe Objektve der Regel aus Lsesysteme. Se ethalte mtuter mehr als Ezellse aus verschedee Glassorte ud erreche Brewete m Mllmeterberech. De meste Okulare bestehe aus zwe Lse we Abb. 7 gezegt. De Kollektvlse macht das efallede Lcht etwas kovergeter, so dass e Zwschebld cht mehr der Ebee Z*B*, soder ZB etsteht. Das Zwschebld wrd dadurch zwar kleer, das beobachtbare Sehfeld aber größer. Außerdem wrd de sphärsche Aberrato (lks) korrgert, wel der Strahl 2 de Kollektvlse weter auße, de Augelse aber weter e als Strahl durchsetzt. Aalog wrd auch de chromatsche Aberrato (rechts) verbessert. E weßer Lchtstrahl wrd vo der Kollektvlse see Farbatele aufgespaltet. Wel der rote Strahl weter auße auf de Augelse trfft, wrd er stärker zur Achse gebroche als der blaue. Bede falle parallel s Auge ud das auf egestellte Auge seht weder weß. I der Zwschebldebee ZB ka ma ee Glasmaßstab abrge. Ma seht da zuglech desse Skala ud das Zwschebld scharf ud ka so das Bld ausmesse. 7 Das Huyges-Okular besteht aus Kollektv- ud Augelse. Quelle: Gerthse 8 Lks: I der Vergrößerug lks lasse sch kee Ezelhete erkee, jewels rechts dagege st de Auflösug größer rechts: fache Ver-größerug, lks mt rotem, rechts mt blauem Lcht 2.3 Vergrößerug st cht alles, Ma köte das vergrößerte Zwschebld Abb. 5 mt eer wetere Lse ochmals vergrößer ud deses zwete stark vergrößerte Zwschebld mt dem Okular betrachte. Deses Vorgehe leße sch wederhole ud ma köte so m Przp belebg große Blder erzeuge, ur wäre der Aufwad dafür allerdgs völlg umsost: I de Blder würde ma kee eue Ezelhete erkee köe. Der Grud: Jede Blede, Öffug erzeugt Beugug es kommt auch auf das Auflösugsvermöge a. Ifolge vo Beugug am Objektv wrd jeder Pukt ees Gegestades als e Beugugsschebche abgebldet. I Abb. st obe der Zwschebldebee de Itestätsvertelug für de bede Pukte P ud P 2 dargestellt. Lks st der Abstad x der bede Hauptmaxma so groß, dass se bequem getret beobachtbar sd. 9 De Brete der Hauptmaxma wrd durch de erste dukle Rg um se begrezt. Er legt m Wkel m = λ/d um das Hauptmaxmum, wrd also durch de Durchmesser D des Objektvs bestmmt. λ: Welleläge des Lchtes. Dr. Rüdger Scholz LUH November 22 3

4 Rechts sd de bede Pukte auf de Abstad d m zusammegerückt. Das Maxmum vo P fällt jetzt auf de erste dukle Rg vo P 2 ud ma ka de bede Bldpukte gerade och getret beobachte. Würde ma deses Zwschebld ochmals vergrößer, so köte ma trotzdem kee wetere Pukte oder Ezelhete zwsche P ud P 2 erkee. Verrgert ma de Abstad vo P ud P 2 och weter, so fleße de bede Hauptmaxma eader ud ma sähe ur och ee größere verschwommee Lchtfleck. Der Wkel zwsche de bede trebare Bldpukte beträgt daher ε m λ/ D. Da der Gegestad fast geau der Brewete des Objektvs legt, ergbt sch der kleste auflösbare Puktabstad aus: dm ε f = λ f / D. De Größe D/2f et ma Numersche Apertur (NA), hr Wert st auf jedem Objektv ach der Vergrößerug agegebe. Mt dem Wert auf dem Objektv Abb. 6 erhält ma äherugswese d m f λ 6 m λ = = m=,mm. D 2 NA 2,3 3. Messuge ud Auswertuge Vorscht bem Estelle des Mkroskops! Das Objektv darf cht auf das Objekt stoße! 3. Ermttlug der Vergrößerug De Vergrößerug wrd her durch de Verglech des Sehwkels ormaler Sehwete vo 25 cm mt dem vom Mkroskop vergrößerte bestmmt, we be eer Lupe 2. Verfahre: Objektmkrometer scharf estelle Aufsatz mt halbdurchlässgem 45 - Spegel ud 25-cm-Lse auf das Okular setze. I 25 cm Etferug Naturskala (auf Holzwkel) aufstelle ud mt Tschlampe aleuchte. Beleuchtug so eregulere, dass bede Skale gut erkebar sd, Mkroskophellgket heruterregel. Holzwkel so stelle, dass bede Skale parallaxefre übereader lege, (d. h. kee Bewegug der Blder gegeeader be setlcher Bewegug des Auges). Verglech der Skale m gewählte Itervall Naturskala: N mm Objektmkrometerskala: N' mm. Auf dem Objektmkrometers beträgt e Skaleabschtt, mm. Spegel ud 25 cm-lse sd eem Aufsatz tegrert Dr. Rüdger Scholz LUH November 22 4

5 Es se : Sehwkel, uter dem mm der Naturskala erschet ud ': Sehwkel, uter dem mm der vergrößerte Skala des Objektmkrometers erschet. Da ergbt der Verglech der Itervallwkel ' ' N N = N '' γ = = für de Vergrößerug N Versuch (Okular: 5x/Objektv: x). Messug der Mtte des Geschtsfeldes für 3 verschede große Itervalle 2. Messug am Rad des Geschtsfeldes für e mm- ud e 2 mm-itervall Auswertug Mttelwert der Messuge für de Vergrößeruge ud Stadardabwechug des Mttelwertes. Versuch 2 (Okular: 5x/Objektv: 4x) Messug der Mtte des Geschtsfeldes für 3 verschede große Itervalle Obe: Naturskala, ute: Objektmkrometerskala. De Vergrößerug beträgt her: γ = 4/, Auswertug Mttelwert der 6 Messuge für de Vergrößeruge ud Stadardabwechug des Mttelwertes Nach der Theore sollte Ihre erste Messrehe ee Vergrößerug γ = 5 ergebe. Ihre Messwerte werde vo desem theoretsche Wert scherlch zum Tel erheblch abweche. We groß st de gemessee Vergrößerug tatsächlch ud we geau st Ihre Messug? Um des abzuschätze, müsse Se de Fehlerrechug bemühe. So ählch sollte Ihre Tabelle dazu m Heft aussehe, damt Se de Fehlerrechug lechter durchführe köe: Messug 2 3 N cm N mm γ = N / N γ γ ( γ γ ) 2 γ = = 2 ( γ γ ) = = Mttelwert: γ γ = ; Messuscherhet des Mttelwertes: u = γ γ γ ( ) ( ) 2 Ergebs: γ = γ ± u γ. 3.2 Mkroskopsche Lägemessug (Messokular/Objektv 4x) Auch we ma de Vergrößerug geau ket, ka ma trotzdem de Ausdehug des beobachtete Objekts och cht bestmme. Des gelgt mt eem Messokular. Kalbrerug ees Messokulars I eem Messokular st zwsche Augelse ud Kollektvlse ee Messskala egebaut. Dese Skala wrd zuächst mt dem Objektmkrometer 2mm/2 als Objekt kalbrert. Dr. Rüdger Scholz LUH November 22 5

6 Messug der Mtte des Geschtsfeldes für 3 verschede große Itervalle. Stelle Se de Augelse scharf auf de Messskala e ud veräder Se dese Abstad daach cht mehr. Verschebe Se da de Mkroskoptubus, bs das Zwschebld (ZB) der Objektmkrometerskala scharf auf/ebe der Messskala erschet. Mt de Werte am Arbetsplatz lese Se de Edpukte ees gewählte Itervalls der ee Skala auf der adere ab. 2 Der Abstad Augelse-Messskala lässt sch durch Zehe oder Drehe der Augelse veräder. Bereche Se de Skalefaktor mm/skt.; Mttelwert der 6 Messuge für de Skalefaktor ud Stadardabwechug des Mttelwertes. We dck st Ihr Haar? Klebe Se ees Ihrer Haare auf ee Objektträger auf. Drehe Se das Messokular ud lese Se de Haardcke auf,2 Skt geau ab (Objektträger, Schere ud Klebebad bekomme Se be de Tutore). Messe Se jewels de Dcke a 5 verschedee Stelle ud bestmme Se de Mttelwert der Messuge für de Haardcke ud de Stadardabwechug Bestmmug des Auflösugsvermöges Dazu muss ma de Numersche Apertur NA = D/2f des Objektvs bestmme. Das gelgt über de maxmale Öffugswkel 2u, der vom Objektv erfasst wrd. Dese Wkel bestmme Se aus der Größe x ees erkebare Rasters R. I Abb. 3 lese Se ab x /2 u ta u= ud bereche damt NA: h D/2 x/2 NA = u f h. () Messe Se zuerst de Höhe h der Bledeplatte mt eem Messscheber. (2) Im zwete Schrtt stelle Se Ihr Mkroskop auf de,4 mm-lochblede der Objektebee scharf e (hellste Beleuchtug). Dese Estellug des Mkroskops blebt uverädert! (3) Nu bestmme Se de gesuchte Ausdehug x des schtbare Rastertels. Beutze Se dafür e Hlfsmkroskop, das astelle des Okulars egeführt wrd. Der Tubus des Hlfsmkroskops lässt sch herauszehe ud auf das Rasterbld R' scharf estelle. 3 Das Raster st zur Hälfte / mm ud zur adere Hälfte /5 mm getelt Bestmme Se u de Ausdehug x, dem Se de Rasterskala über das gesamte Geschtsfeld auszähle. (Durchführug für Okular 5x/Objektve x ud 4x). Bereche Se für bede Objektve de Numersche Apertur (NA) ud vergleche Se Ihre Werte mt de Agabe auf de Objektve. De kleste auflösbare Puktabstad dm = λ /( 2 NA) bestmme Se mt der Welleläge λ = 5 Nm. Vergleche Se dese Wert mt der Agabe auf de Objektve. Dr. Rüdger Scholz LUH November 22 6

7 Für de A-Kurse: Vergleche Se dese Werte auch mt dem kleste auflösbare Puktabstad für user Auge der ormale Sehwete s. Der mmale Sehwkel useres Auges beträgt etwa = ' = 3-4 rad. I der Lteratur wrd de Numersche Apertur (NA) üblcherwese mthlfe der Brechzahl defert als NA = su ( Luft = ). Be dem Objektv 4/,65 beträgt der Öffugswkel etwa 4. Für solch große Wkel glt de der Aletug gemachte Näherug su = tau = u cht mehr. Ma muss daher für deses Objektv zuächst aus tau de Wkel u bestmme: u = arcta x /2 ud damt su bereche. h Berückschtgt ma, dass de Blede her stets kresförmg sd, so ergbt sch der mmale Puktabstad λ m Verglech zur Beugugsformel für Spalte lecht modfzert: dm,6 (Woher der Faktor s u,6 kommt? S. dazu Demtröder Bd. 2). NA De relatve Messabwechug erhält ma über de Reheetwcklug vo arcta z um z =, NA 2k k z z z z x /2 arcta z = ( ) = z +... mt z =. Führe Se de Rechug durch. 2k h k= Bevor Se gehe: Zehe Se btte de Schutzhülle über das Mkroskop! Dr. Rüdger Scholz LUH November 22 7

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Eplzte Defto Reursve Defto 4. Gleder eer vorher deferte Folge bereche E Gled Mehrere Gleder 6 4 5 4.3 Ee Folge defere ud ege hrer

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Physikalisches Anfaengerpraktikum. Beugung und Brechung

Physikalisches Anfaengerpraktikum. Beugung und Brechung Physikalisches Afaegerpraktikum Beugug ud Brechug Ausarbeitug vo Marcel Egelhardt & David Weisgerber (Gruppe 37) Mittwoch, 3. Februar 005 I Utersuchuge am Prismespektroskop 1. Versuch zur Bestimmug des

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Skript Teil 7: Polygonzug

Skript Teil 7: Polygonzug Prof. Dr. tech. Alfred Mschke Vorlesug zur Verastaltug Vermessugskude Skrpt Tel 7: Polgozug Der Begrff Polgo letet sch aus Pol = vel ud Go = Wkel ab ud bedeutet uregelmäßges Veleck. Das Polgoere det zum

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig Eschlägge Begrffe zur Meßuscherhet /7 Eschlägge Begrffe zur Meßuscherhet Dr. Wolfgag Kessel, Brauschweg De Aufstellug folgt cht der re lexografsch-alphabetsche Aordug. Verwadte Begrffe sd velmehr zu Gruppe

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE)

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE) Stoffwerte vo Flüssgkete Oberflächespaug (PHYWE) Zel des Versuches st, de Platzbedarf ees Ethaol-Moleküls der Grezfläche zwsche Dapfphase ud Lösug aus der Kozetratosabhäggket der Oberflächespaug be wässrge

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Versuchsprotokoll zum Versuch Nr. 2 Drehbewegungen vom

Versuchsprotokoll zum Versuch Nr. 2 Drehbewegungen vom Gruppe: A zum Versuch Nr. 9.03.00. Glechmäßg beschleugte Drehbewegug.. Wkelbeschleugug Versuchsdurchführug Wr bege damt, de Durchmesser der bede Walze (sehe Grafk) mt dem Zetmetermaßstab zu bestmme. Für

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Eine einfache Formel für den Flächeninhalt von Polygonen

Eine einfache Formel für den Flächeninhalt von Polygonen Ee efache Formel für de Flächehalt vo Polygoe Peter Beder Set ege Jahre hat der Mathematkddaktk de sogeate emprsche Uterrchtsforschug mt quattatve ud qualtatve Methode Kojuktur, währed stoffddaktsche Arbete

Mehr

IV. Interpolation und Quadratur 4.1. Interpolation

IV. Interpolation und Quadratur 4.1. Interpolation IV. Iteroato ud Quadratur 4.. Iteroato 4... Bese: Iteroato mt Taewere ür e s cos og Gesucht: e.454 ; Tabeert: e.45 ud e.46 Leare Iteroato. : e:.42....43....44....45.5683.46.584 Verwade dsrete Pute otuerche

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

Physikalische Chemie T Fos

Physikalische Chemie T Fos Physkalsche Cheme T Fos ISCHPHSEN.... ZUSENSETZUNG VO ISCHPHSEN.... EXTENSIVE - UND INTENSIVE GRÖßEN... 4.. Partelles olvolume V m... 7.3 DS ROULTSCHE GESETZ... 0.4 KOLLIGTIVE EIGENSCHFTEN....4. De Sedeuktserhöhug...

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

6.3.4 Rechenschema "Symbolische Methode"

6.3.4 Rechenschema Symbolische Methode 6.3 Netzwerkberechg mttels komplexer echg 55 Der Verglech führt z C U I C 90 wege j e j π j (6.03) d: Z j Z Z 90 jc C C (6.04) Y j C; Y C 90 (6.05) Y De Mltplkato des Stromzegers mt dem Wderstadsoperator

Mehr

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf.

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf. Physik awede ud verstehe: Lösuge 5. Brechug ud Totalreflexio 004 Orell Füssli Verlag AG 5. Brechug ud Totalreflexio Beim Übergag i ei Medium gilt obige Aussage icht mehr. Würde das Licht die kürzeste Strecke

Mehr

IV. VERSICHERUNGSUNTERNEHMUNG

IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG Vers.-Oek.Tel-I-Ka-IV--5 Dr. Rurecht Wtzel; HS 09.0.009 IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG. Überblck ) I desem Katel wede wr us der Aalyse der Verscherugsuterehmug

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

Potentielle Energie und Spannenergie (Artikelnr.: P )

Potentielle Energie und Spannenergie (Artikelnr.: P ) Lehrer-/Dozentenblatt Potentielle Energie und Spannenergie (Artikelnr.: P1001500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Mecha7ik Unterthema: Arbeit u7d

Mehr

4.3 Statistik des radioaktiven Zerfalls

4.3 Statistik des radioaktiven Zerfalls 4.3 Statstk des radoaktve Zerfalls Stchworte: Radoaktvtät, -, -, -Strahlug, Geger-Müller-Zählrohr, Statstk, Posso- ud Gauß-Vertelug, Stadardabwechug, Rehetszahl, statstsche Aalyse. Theoretsche Grudlage

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Finanzmathe. -Zinsrechnung November 2004 Anne Grund & Mathias Jahn Zinsrechnung 2

Finanzmathe. -Zinsrechnung November 2004 Anne Grund & Mathias Jahn Zinsrechnung 2 Fazmathe -Zsrechug -. November 00 Ae Grud & Mathas Jah Zsrechug. Das Bruttoladsrodukt ( Prese vo 980 der Budesreublk betrug 970. Mrd.DM ud 980.8, Mrd. DM Bereche Se de durchschttlche Wachstumsrate ro Jahr

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

Zentrum für Sensorsysteme Projektbereich 5 "Anwendung von Sensoren in der Fertigungstechnik" Univ.-Prof. Dr.-Ing. Peter Scharf

Zentrum für Sensorsysteme Projektbereich 5 Anwendung von Sensoren in der Fertigungstechnik Univ.-Prof. Dr.-Ing. Peter Scharf UNIVERSITÄT SIEGEN Zetrum für Sesorssteme Projektberech 5 "Awedug vo Sesore der Fertgugstechk" Uv.-Prof. Dr.-Ig. Peter Scharf Utersuchug des Eflusses vo Algorthme auf de Messuscherhet be der D-Geometremessug

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr