U berblick. Knoten und Zo pfe. Knoten sind u berall in unserer 3-dimensionalen Welt. Knoten finden sich auch in den Naturwissenschaften

Größe: px
Ab Seite anzeigen:

Download "U berblick. Knoten und Zo pfe. Knoten sind u berall in unserer 3-dimensionalen Welt. Knoten finden sich auch in den Naturwissenschaften"

Transkript

1 U berblick Knoten und Zo pfe 1 Motivierende Frgen Spin Jonglge hirlit t 2 Zo pfe Wie modelliert mn Zo pfe? Wie rechnet mn mit Zo pfen? nwendung uf Dirc Zo pfe 3 Knoten Wie modelliert mn Knoten? Wie rechnet mn mit Knoten? Gibt es inverse Knoten? Michel Eisermnn 22. September 2012 Mthetg fu r Schu ler n der Universit t Stuttgrt 2/34 1/34 Knoten sind u berll in unserer 3-dimensionlen Welt Knoten finden sich uch in den Nturwissenschften () iologie 3/34 (c) theoretische Physik (b) hemie (d) Mthemtik 4/34

2 Vorl ufer im 19. Jhrhundert Knotentbellen von Tit Little Kirkmn rl Friedrich Guß ( ) Willim Thomson Lord Kelvin ( ) deutscher Mthemtiker Physiker stronom Professor in Go ttingen englischer Physiker und Ingenieur Professor in Glsgow 5/34 Erstes Experiment: Spin und Dirc Zo pfe L sst sich der folgende Zopf entwirren? eine volle Drehung L sst sich der folgende doppelt so komplizierte Zopf entwirren? Knotentbellen von Tit Little Kirkmn /34 zwei volle Drehungen Frgen pr zisieren und pssende Werkzeuge erstellen: Ws ist ein Zopf? Welche ewegungen sind erlubt? Ws ist ein Dirc Zopf? Welche ewegungen sind erlubt? Welche Hindernisse gibt es bei mo glichen Umformungen? 7/ /34

3 Zweites Experiment: Topologische Jonglge Drittes Experiment: hirlit t Ist die Kleeblttschlinge quivlent zu ihrem Spiegelbild? Knn mn ein Seil verknoten mit nur einer Hnd??? die Kleeblttschlinge Knn mn ein Seil ebenso entknoten? ihr Spiegelbild?? geschlossen Frgen pr zisieren und pssende Werkzeuge erstellen: Ws ist ein Knoten? Welche ewegungen sind erlubt? Wie knn mn Knoten miteinnder verknu pfen? Gibt es inverse Knoten sozusgen nti-knoten? Spiegelbild Ist der chterknoten quivlent zu seinem Spiegelbild??? der chterknoten? sein Spiegelbild?? geschlossen Spiegelbild 9/ Wie modelliert mn Zo pfe? 10/34 Wie modelliert mn Zo pfe? Die L nge ist unwesentlich: Die Str nge sind flexibel sie du rfen sich bewegen. Erstes Modell: Schlechte Nchricht: In diesem ersten Modell sind lle Zo pfe gleich. Elementre ewegungen: 2.1 esseres Modell: Wir fixieren die Enden links und rechts. Nur in der Mitte du rfen sich die Str nge bewegen.. Stz (Emil rtin 1925) Diese ewegungen reichen bereits us. 11/ /34

4 Wir können Zöpfe verknüpfen! Die Verknüpfung von Zöpfen Zöpfe uf n Strängen erluben eine Verknüpfung: : Welche Rechenregeln gelten hier? 1 Ist diese Verknüpfung ssozitiv? ( b) c (b c) 2 Ist diese Verknüpfung kommuttiv? b b 3 Gibt es ein neutrles Element? 1 und 1 4 Gibt es zu jedem Zopf einen inversen Zopf? 1 1 und 1 1 Ist sie ssozitiv? J! ( ) b c b c b c ( ) b c b c b c Ist sie kommuttiv? Nein! b b b b / /34 Die Verknüpfung von Zöpfen Die Verknüpfung von Zöpfen: Zusmmenfssung Gibt es ein neutrles Element? J! 1 1 Gibt es zu jedem Zopf einen inversen Zopf? J! Wir können mit Zöpfen rechnen wie mit Zhlen! Die Verknüpfung von Zöpfen ist ssozitiv: ( b) c (b c) Es gibt ein neutrles Element 1 nämlich den trivilen Zopf: 1 1 Zu jedem Zopf gibt es einen inversen Zopf 1 sein Spiegelbild: Definition Eine Verknüpfung mit diesen Eigenschften heißt Gruppe. 1 Stz (Emil rtin 1925) Die Verknüpfung von Zöpfen uf n Strängen ist eine Gruppe ( n ) / /34

5 Wie knn mn diese Gruppen verstehen? Der Drll ist eine Invrinte n 1: n 2:... uf nur einem Strng ist jeder Zopf trivil: Zöpfe uf zwei Strängen verstehen wir uch noch gut: Die nzhl der Kreuzungen knn sich bei ewegung ändern. eispiel: Ws zählt ist der Drll v : ( 2 ) (Z +). v +1 v 1 v( b) v() + v(b). Korollr (Folgerung us dem Stz von rtin) Zöpfe uf zwei Strängen werden durch ihren Drll klssifiziert Der Drll ist eine bbildung v : ( n ) (Z +) mit v +1 v 1 v( b) v() + v(b). Zum eispiel gilt / /34 Dirc Zöpfe (Theorie des Elektrons Nobel Preis 1933) v Nchweis der Invrinz: v v v v Ds Phänomen des Spin v v. Wir ersetzen die rechte Wnd durch ein kleineres. Ist der folgende Dirc Zopf z äquivlent zum trivilen Zopf? eweis? eine volle Drehung Die Stränge können sich nun um ds herum bewegen: Der Schlüssel ist folgende eobchtung: v v 4 ein Zopf ein Zopf ein Zopf ein Zopf Ist der Dirc Zopf z 2 äquivlent zum trivilen Zopf? eweis? Dirc Zöpfe verhlten sich genuso wie rtin Zöpfe. Einzige Neuerung: Dirc Zöpfe erluben diese zusätzliche ewegung. zwei volle Drehungen / /34

6 Topologische Jonglge Wie modelliert mn Knoten? eobchtung In einem llzu niven Modell sind lle Knoten gleich: Knn mn ein Seil verknoten mit nur einer Hnd? Knn mn ein Seil ebenso entknoten? Zwei Modelle sind mo glich (und erweisen sich ls gleichwertig): lng/offen Komplement re Strtegien: Um zu beweisen dss etws mo glich ist genu gt es es zu tun. Mthemtiker nennen dies einen konstruktiven eweis. Um zu beweisen dss etws unmo glich ist genu gt es nicht zu scheitern. In diesem Fll mu ssen wir ds Hindernis verstehen... geschlossen Wie zuvor drf sich der Strng bewegen. 21/ /34 Reidemeister Zu ge Wir ko nnen Knoten verknu pfen! Die folgenden Zu ge ndern ds Digrmm nicht ber den Knoten: uch Knoten erluben eine Verknu pfung: : Ist sie ssozitiv? ( ) ( )? J klr! Gibt es ein neutrles Element? 1 und 1? J klr! Stz (Kurt Reidemeister 1926) 1 Diese ewegungen reichen bereits us / /34

7 Die Verknüpfung von Knoten Ist sie kommuttiv?? Gibt es Inverse? 1 1 und 1 1?? Dreifärbungen (Rlph Fox 1971) Wir betrchten ein Knotendigrmm und färben es blu rot und grün. Dbei verlngen wir folgende Regeln: 1 n jeder Kreuzung treffen entweder lle drei Frben zusmmen oder nur eine einzige. (Wir verbieten zweifrbige Kreuzungen.) 2 Der Eingng ist blu; der usgng wird es dnn uch sein. T T T? Ds präzisiert unsere Frge zur topologischen Jonglge! Für jedes Knotendigrmm D sei col(d) die nzhl der Dreifärbungen. Wir finden zum eispiel col() 3 ber col(t ) col(t ) / /34 Dreifärbungen sind invrint! Gibt es inverse Knoten? Stz (Fox 1971) us D D folgt col(d) col(d ). eweis. Reidemeister Züge trnsportieren die Färbungen: Ds ist keine Dreifärbung. Die Kleeblttschlinge erlubt genu 3 Dreifärbungen: Drus folgt dss die Kleeblttschlinge nicht trivil ist: col()3 col(t )1 esser noch: Wir finden col( ) col() col(). Umgekehrt gilt dher: us col(d) col(d ) folgt D D. us 1 folgt demnch col() col() 1. Ds ist unmöglich! Stz Zur Kleeblttschlinge gibt es keinen inversen Knoten / /34 Ds löst unsere ursprüngliche Frge zur topologischen Jonglge!

8 Zusmmenfssung Wir können mit Zöpfen rechnen wie mit Zhlen. Gruppe. Der Drll vernschulicht ds Phänomen des Spin. Invrinte. Ein topologischer Zubertrick Ein Zuberer hält ein unverknotetes Seil n beiden Enden. Er behuptet ohne loszulssen ds Seil verknoten zu können. uch mit Knoten können wir rechnen. Hier fehlen ber die Inversen. Zur Kleeblttschlinge existiert kein nti-knoten. Invrinte. Vielen Dnk für Eure ufmerksmkeit! #Mthetg2012 Ist dieses Kunststück uf ehrliche Weise möglich? / /34 Ein mthemtischer Zuber Trick Ist der Mzur Trick ein eweis oder ein Schwindel? Stz Für lle Knoten und gilt: us 1 folgt 1. Diese schöne Rechnung gibt es uch für Zhlen. eweis-idee (nch rry Mzur 1962) Wir wissen 1. Knoten unendliche Knoten Knoten / / (1 1) + (1 1) + (1 1) + (1 1) ( 1 + 1) + ( 1 + 1) + ( 1 + 1) Ds drf doch nicht whr sein! ber wo liegt der Fehler?

9 Zerlegung von Knoten In Donlds Luftschluch sind einige Knoten. Wie viele sind es? Primfktorzerlegung von Knoten Ein Knoten heißt prim oder uch unzerlegbr wenn us jeder Zerlegung stets entweder 1 oder 1 folgt. Z.. ist die Kleeblttschlinge prim. Es gibt unendlich viele weitere. Stz (Schubert 1949) Jeder Knoten lässt sich eindeutig in ein Produkt von Primknoten zerlegen. Frgen präzisieren und pssende Werkzeuge erstellen: Wie lässt sich ein Knoten in Teilknoten zerlegen? Gibt es unzerlegbre Knoten? Wie erkennt mn diese? Ist die Zerlegung in unzerlegbre Knoten eindeutig? Die ntürlichen Zhlen (N ) erfreuen sich derselben Eigenschft! Korollr Die Verknüpfung von Knoten entspricht der Multipliktion ntürlicher Zhlen. Produkt von Zhlen Verknüpfung von Knoten Einselement triviler Knoten Primzhlen Primknoten / /34

Knoten und Zöpfe. Michael Eisermann. 22. September Mathetag für Schüler an der Universität Stuttgart

Knoten und Zöpfe. Michael Eisermann. 22. September Mathetag für Schüler an der Universität Stuttgart Knoten und Zöpfe Michael Eisermann 22. September 2012 Mathetag für Schüler an der Universität Stuttgart www.igt.uni-stuttgart.de/eiserm/popularisation/#mathetag2012 1/34 Überblick 2/34 1 Motivierende Fragen

Mehr

Ziel dieser Einfu hrung. Knoten sind u berall in unserer 3-dimensionalen Welt

Ziel dieser Einfu hrung. Knoten sind u berall in unserer 3-dimensionalen Welt Ziel dieser Einfu hrung Diese bildreiche Einfu hrung entstnd us popul rwissenschftlichen Vortr gen zum Them Knoten und Zo pfe, die ich in den letzten Jhren versucht hbe. Fu r eine Mthemtik-Vorlesung ist

Mehr

Knoten und Zöpfe. Prof. Dr. Michael Eisermann. Institut für Geometrie und Topologie Universität Stuttgart. Vortrag am 16./17.11.

Knoten und Zöpfe. Prof. Dr. Michael Eisermann. Institut für Geometrie und Topologie Universität Stuttgart. Vortrag am 16./17.11. Knoten und Zöpfe Prof. Dr. Michael Eisermann Institut für Geometrie und Topologie Universität Stuttgart Vortrag am 16./17.11.2011 zuletzt kompiliert am 17. November 2011 Unitag der Universität Stuttgart

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

1.2 Eigenschaften der reellen Zahlen

1.2 Eigenschaften der reellen Zahlen 12 Kpitel 1 Mthemtisches Hndwerkszeug 12 Eigenschften der reellen Zhlen Alle Rechenregeln der Grundrechenrten der reellen Zhlen lssen sich uf einige wenige Rechengesetze zurückführen, die in der folgenden

Mehr

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist. 7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht Formle Systeme, Automten, Prozesse Übersicht 2 2.1 Reguläre Ausdrücke 2.2 Endliche Automten 2.3 Nichtdeterministische endliche Automten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.7 Berechnung

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

13. Quadratische Reste

13. Quadratische Reste ChrNelius: Zhlentheorie (SS 007) 3 Qudrtische Reste Wir ehndeln jetzt ei den Potenzresten den Sezilfll m und führen die folgende Begriffsildung ein: (3) DEF: Seien n und teilerfremd heißt qudrtischer Rest

Mehr

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen Prof. Dr. H. Brenner Osnrück WS 2014/2015 Vorkurs Mthemtik Vorlesung 3 Die rtionlen Zhlen Definition 3.1. Unter einer rtionlen Zhl versteht mn einen Ausdruck der Form, woei, Z und 0 sind, und woei zwei

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

2.1.4 Polynomalgebren und ihre Restklassenalgebren

2.1.4 Polynomalgebren und ihre Restklassenalgebren 2.1. GRUNDLAGEN 59 2) Ist R ein kommuttiver Ring mit Eins, so ist der Polynomring R[X] eine R-Alger. 2) Ist A eine R-Alger und I A ein Idel, so ist A/I eine R-Alger und ν I ein R- Algerenhomomorphismus.

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Knoten und Zöpfe. Prof. Dr. Michael Eisermann. Vortrag am Samstag, den 2. Juli 2011 zuletzt kompiliert am 4. Juli 2011

Knoten und Zöpfe. Prof. Dr. Michael Eisermann. Vortrag am Samstag, den 2. Juli 2011 zuletzt kompiliert am 4. Juli 2011 Knoten und Zöpfe Prof. Dr. Michael Eisermann Institut für Geometrie und Topologie Universität Stuttgart Vortrag am Samstag, den 2. Juli 2011 zuletzt kompiliert am 4. Juli 2011 Tag der Wissenschaften der

Mehr

2.6 Unendliche Reihen

2.6 Unendliche Reihen 2.6 Unendliche Reihen In normierten Räumen steht ds wichtige Werkzeug der Bildung von unendlichen Reihen zur Verfügung. Mn denke in diesem Zusmmenhng drn, dss mn in der Anlysis Potenz- und Fourierreihen

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ.

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ. 24 UNEIGENTLICHE INTEGRALE 146 für lle t [, b] und lle x D mit x x < δ. Für lle x D mit x x < δ gilt lso = F (x) F (x ) b f(x, t) dt b b f(x, t) dt + f(x, t) f(x, t) dt + ɛ 3(b ) (b ) + ɛ 3 + ɛ 3 = ɛ.

Mehr

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben.

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben. A Anlysis, Woche Kurven I A. Der n-dimensionle Euklidische Rum A3 Drunter versteht mn für eine Zhl n N + R n := {x, x,..., x n ; mit x i R für lle i {,..., n}}. Ebenso gibt es uch C n := {z, z,..., z n

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

FK03 Mathematik I: Übungsblatt 1; Lösungen

FK03 Mathematik I: Übungsblatt 1; Lösungen FK03 Mthemtik I: Übungsbltt 1; Lösungen Verständnisfrgen: 1. Woher stmmen die Objekte in einer Menge? Die Objekte einer Menge entstmmen unserer Anschuung und unserem Denken. 2. Welche Drstellungen von

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

1 Symbolisches und approximatives Lösen von Gleichungen

1 Symbolisches und approximatives Lösen von Gleichungen 1 Symbolisches und pproimtives Lösen von Gleichungen von Frnk Schumnn 1.1 Eine hrte Nuss von Gleichung Wir sind zu Gst in einer Privtstunde im Fch Mthemtik, Klssenstufe 11. Anwesende sind Herr Riner Müller-Herbst,

Mehr

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben.

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben. ALGEBRA GRUNDRECHENARTEN MULTIPLIZIEREN Grundlgen der Mthemtik Lösen Sie die nchfolgenden grundlegenden Aufgben. Beweisen Sie durch Ausrechnung, dss b ) b ist! ( Wichtige mthemtische Regeln: 0 = 0 = 0

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts BASIC MSC Ein System besteht us Instnzen. Eine Instnz ist eine bstrkte Einheit, deren Interktion mit nderen Instnzen oder mit der Umgebung mn (teilweise) beobchten knn. Instnzen kommunizieren untereinnder

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Ergänzungsblatt 7. Letzte Änderung: 30. November Vorbereitungsaufgaben

Ergänzungsblatt 7. Letzte Änderung: 30. November Vorbereitungsaufgaben Theoretische Informtik I WS 2018 Crlos Cmino Ergänzungsltt 7 Letzte Änderung: 30. Novemer 2018 Vorereitungsufgen Vorereitungsufge 1 Wiederholen Sie die Begriffe us Üungsltt 0, Aschnitt 4. 1. Welche der

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/ Präsenzblatt Lösungen

Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/ Präsenzblatt Lösungen Linere lgebr Prof. Dr. R. Dhlhus Dr. S. Richter, N. Phndoiden Wintersemester 8/9. Präsenzbltt Lösungen ufgbe P7 (Lösen linerer Gleichungssysteme mit dem Guß-lgorithmus). Für, y R seien := M(, R), b :=

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof Dr H Brenner Osnbrück SS 2017 Grundkurs Mthemtik II Vorlesung 33 Die Zhlenräume Die Addition von zwei Pfeilen und b, ein typisches Beispiel für Vektoren Es sei K ein Körper und n N Dnn ist die Produktmenge

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Lineren Algebr Lösungen Wintersemester 9/ Universität Heidelberg Mthemtisches Institut Lösungen Bltt Dr. D. Vogel Michel Mier Aufgbe 44. b 4 b b 4 ( )b Fll : = ( )b 4 b ( ) b ( ) ( )(b ) b

Mehr

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich:

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich: Vorlesung 4 Zhlenbereiche 4.1 Rtionle Zhlen Wir hben gesehen, dss nicht jedes Eleent us Z ein ultipliktives Inverses besitzt. Dies führt zur Einführung der rtionlen Zhlen Q, obei der Buchstbe Q für Quotient

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen Inhlte Brückenkurs Mthemtik Fchhochschule Hnnover SS 00 Dipl.-Mth. Corneli Reiterger. Grundlgen. Summenzeichen, Produktzeichen. Fkultät, Binomilkoeffizient. Potenzen, Wurzeln, Logrithmen. Elementre Funktionen

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Lösungen zur Probeklausur Lineare Algebra 1

Lösungen zur Probeklausur Lineare Algebra 1 Prof. Dr. Ktrin Wendlnd Dr. Ktrin Leschke WS 2006/2007 Lösungen zur Probeklusur Linere Algebr Ausgbe: 2. Dezember 2006 Aufgbe.. Geben Sie die Definition des Begriffs Gruppe n. Eine Gruppe ist eine Menge

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

Kapitel 6. Funktionen

Kapitel 6. Funktionen Kpitel 6 Funktionen Josef Leydold Mthemtik für VW WS 07/8 6 Funktionen / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von

Mehr

Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität

Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität Reelle Funktion Kpitel 6 Funktionen Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von R üblicherweise Intervlle) sind. Bei reellen Funktionen

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele 6. Lndeswettbewerb Mthemtik yern. Runde 00/04 ufgben und Lösungsbeispiele ufgbe 1 ie Seite [] eines reiecks wird über hinus bis zum Punkt so verlängert, dss = n gilt (n N n>1). ie Gerde durch und den Mittelpunkt

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sort Trining erfordert, erfordert Mthemtik ds selbständige Lösen von Übungsufgben. Ds wesentliche n den Übungen ist ds Selbermchen!

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Grundlagen der Algebra

Grundlagen der Algebra PH Bern, Vorbereitungskurs MATHEMATIK Vorkenntnisse 0 Grundlgen der Algebr Einleitung Auf den nchfolgenden Seiten werden grundlegende Begriffe und Ttschen der Algebr erläutert: Zhlenmengen, Rechenopertionen,

Mehr

Arbeitsblatt 1 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 1 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 1. November 006 Arbeitsbltt 1 Übungen zu Mthemtik I für ds Lehrmt n der Grund- und Mittelstufe sowie n Sonderschulen H. Strde, B. Werner WiSe 06/07 4.10.06 Präsenzufgben: 1. Zeige: Sei p eine (un) gerde

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und eterminnten efinition einer Mtri: Ein us m Zeilen und n Splten bestehendes rechteckiges Zhlenschem heißt Mtri vom Typ (m; n) oder (m n)-mtri. m m m n n n mn izeileninde; jsplteninde Schreibweise:

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien DFA Reguläre Grmmtik (Folie 89) Stz. Jede von einem endlichen Automten kzeptierte Sprche ist regulär. Beweis. Nch Definition, ist eine

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

Minimalität des Myhill-Nerode Automaten

Minimalität des Myhill-Nerode Automaten inimlität des yhill-nerode Automten Wir wollen zeigen, dss der im Beweis zum yhill-nerode Stz konstruierte DEA für die reguläre Sprche L immer der DEA mit den wenigsten Zuständen für L ist. Sei 0 der konstruierte

Mehr

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den 19 REGELFUNKTIONEN 107 Kpitel 7: Integrtion Notwendigkeit des Integrlbegriffes und Hinweise zu seiner Präzisierung liegen uf der Hnd. Betrchten wir etw den physiklischen Begriff der Arbeit, die im einfchsten

Mehr

41 Normierte Räume über dem Körper der komplexen Zahlen

41 Normierte Räume über dem Körper der komplexen Zahlen 41 Normierte Räume über dem Körper der komplexen Zhlen 411 Rechenregeln für komplexe pseudonormierte Räume 412 Stetigkeits-, Differenzierbrkeits- und Integrierbrkeitskriterien für Abbildungen in einen

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Vektoren. Karin Haenelt

Vektoren. Karin Haenelt Vektoren Grundbegriffe für ds Informtion Retrievl Krin Henelt 13.10.2013 Anltische Geometrie und Linere Algebr Geometrie: Konstruktionsverfhren mit Zirkel und Linel Anltische Geometrie: Umsetzung geometrischer

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1 Vorkurs Mthemtik Frnkfurt University Of Applied Sciences, Fchbereich 1 Rechnen mit Potenzen N bezeichnet die Menge der ntürlichen Zhlen, Q die Menge der rtionlen Zhlen und R die Menge der reellen Zhlen.

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr