Master E/BMT/DFHI. Lösungen zu Übung 11 Vektoranalysis HM1. Prof. Dr. B. Grabowski

Größe: px
Ab Seite anzeigen:

Download "Master E/BMT/DFHI. Lösungen zu Übung 11 Vektoranalysis HM1. Prof. Dr. B. Grabowski"

Transkript

1 Z Afge Wi etchten einen Keis-Zline mit is essen ottionschse ie -Achse ist n e ch ie Höhen n egent ist. Ailng Wie goß ist e lss es ektofeles ch ie geschlossene Oefläche es Zlines? eenen Sie en Integlst on Gss! Nch Gss ist e lss es ektofeles ch ie geschlossene Oefläche es Zlines gleich: i eechnng et Zlineolmen in Zlinekoointen: : sin cos etg e koieteminnte: cos sin sin cos

2 et et cos sin sin cos Diegen es ektofeles i cos Ds egit sich fü en lss es eles ch : cos cos et i Z Afge eechnen Sie mittels St on Gss s lssintegl S S oei S ie Oefläche eine Kgel mit is n Mittelpnkt n sin! egleichen Sie Ih Egenis mit em Egenis s Afge 5 Üngsltt! Nch St on Gss gilt: Ds geschte Integl ist

3 i eechnng Ds olmen e Kgel in Kgelkoointen mit is : cos sin sin cos sin Die koieteminnte e Kgelkoointen: sin sin cos cos sin sin cos sin sin sin sin cos cos cos sin et et Diese ist fü imme positi.h. e etg iese Deteminnte ist: sin sin Weitehin ist fü i

4 olglich gilt fü s geschte Oeflächenintegl: sin 6 sin i eechnng ϑ ϑ Ds gleiche Egenis hen i in Afge 5 Üngsltt ehlten n ot ets mstänliche Z Afge Wie goß ist e lss s Oeflächenintegl es ektofeles ch ie geschlossene Oefläche es Zlines in Ailng Afge? eenen Sie en St on Gss! egleichen Sie Ih Egenis mit em Egenis s Afge 7 Üngsltt! Nch Gss ist e lss es ektofeles ch ie geschlossene Oefläche es Zlines gleich: i eechnng et Zlineolmen in Zlinekoointen: : sin cos etg e koieteminnte:

5 5 cos sin sin cos et et cos sin sin cos Diegen es ektofeles cos i Ds egit sich fü en lss es eles ch : cos cos et i Ds ist s gleiche Egenis ie in Afge 7 Üngsltt n hie ets elegnte n effiiente eeicht! Z Afge eechnen Sie mittels St on Gss en lss es ektofeles ch ie geschlossene Oefläche e Hlkgel mit oenfläche in e --Eene Mittelpnkt e oenfläche n fü en is! egleichen Sie Ih Egenis mit em Egenis s Afge 8c Üngsltt! Nch St on Gss gilt: Ds geschte Integl ist

6 6 i eechnng Ds olmen e Hlkgel in Kgelkoointen fü : / cos sin sin cos sin Die koieteminnte e Kgelkoointen: sin sin cos cos sin sin cos sin sin sin sin cos cos cos sin et et Diese ist fü / imme positi.h. e etg iese Deteminnte ist: sin sin Weitehin ist fü sin sin i

7 7 olglich gilt fü s geschte Oeflächenintegl: sin sin sin sin / / ϑ ϑ i eechnng Ds gleiche Egenis hen i in 8c Üngsltt ehlten n ot ets mstänliche Z Afge 5 eechnen Sie en Wielflss es ektofeles ch ie Mntelfläche e Hlkgel mit oenfläche in e --Eene Mittelpnkt e oenfläche f ei eschieene Aten mit Hilfe es Stes on Stokes.h. eifiieen Sie en St on Stokes fü ieses eispiel! lächennomle N ist nch ßen geichtet ie in e --Eene liegene nke i in Gegenheigeichtng chlfen! St on Stokes: ot eechnng. inte: Diekte eechnng es Wielflsses echte Seite es Stes on Stokes: ot

8 8 läche in Kgelkoointen: Die Oefläche e Hlkgel ist fü : Die Aleitngen n ie Koointenlinien sin: sin sin cos cos cos cos sin sin sin ϑ cos sin sin sin cos sin ϑ emekng: De Nomlenekto. ieses Kepokt mss on e Kgeloefläche nch ßen eigen. Dch ist ie eihenfolge es Kepoktes festgelegt siehe Skie oen. sin sin ot ot sin sin cos sin sin sin cos sin sin cos 8sin φ

9 Demfolge ist s geschte Integl: / ot 8 / sin Integltellen Int fü Int 8 cos sin 8 / sin sin. inte: eechnng es Wielflsses ls Kenintegl linke Seite es Stes on Stokes: nke : In Polkoointen: { cos sin } sin cos Ds ektofel f e Ke: 8sin n folglich ist 8sin sin cos 6sin Dmit ist s geschte Integl gleich: 9

10 6 Integlt elle Int sin 6 [ 8sin sin ] Z Afge 6 Wi etchten en im I.Oktnt gelegenen eil e Eene. Dieses eieckige eene lächenstück i on eine geschlossenen Ke egent. eechnen Sie nte eenng es Stoke schen Integlstes s Kenintegl fü s ektofeles Gemäß St on Stokes gilt:! ot eechnng läche : { }

11 ot ot Demfolge ist s geschte Integl: ot Z Afge 7 Z o: ote.h. ist ein ottionsfel eh:

12 eeis: Gemäß St on Gss gilt: i ot E D ie i fühe eiesen hen siehe Üngsltt.. Afge. - stets gilt: i ot E ist ch i ot E Z o: gω.h. ist ein Gientenfel eh: eeis: Gemäß St on Stokes gilt: ot g q.e.. D ie i fühe eiesen hen siehe Üngsltt.. Afge. - stets gilt: ot g ist ch ot g q.e.

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven Das Zwei-Köe-Poblem 9 Woche_Skitoc, /5 agange-gleichngen, Integale e Bewegng, Bahnkven Betachtet ween wei Pnktmassen m n m an en Oten (t n (t, ie übe ein abstansabhängiges Potenial U( miteinane wechselwiken

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

Steiner-Geometrie des Sehnen-Vierecks. Eckart Schmidt

Steiner-Geometrie des Sehnen-Vierecks. Eckart Schmidt Steine-Geometie es Sehnen-Vieecks Eckat Schmit Z einem Vieeck lässt sich as ollstänige Vieseit e Seitengeaen sowie e zgehöige Steine-Pnkt Miel oint als gemeinsame Pnkt e Umkeise e Teileiseite betachten.

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Pof. Anes Hez, D. Stefn Häusle emil: heusle@biologie.uni-muenchen.e Deptment Biologie II Telefon: 89-8-748 Goßhenest. Fx: 89-8-7483 85 Plnegg-Mtinsie

Mehr

Kapitel 2 Dynamik eines Massenpunktes

Kapitel 2 Dynamik eines Massenpunktes 1 Kpiel Dnmik eines Mssenpunkes Mechnik eines Mssenpunkes Ielisiees Gebile : lle Msse es Köpes in einem Punk konenie Keine Beücksichigung e Ausehnung eines Köpes Ausehnung sei iel kleine ls ie Dimensionen

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors - 1-2 Vektolge 2.1 Definition eines Vektos - Skle - Vektoen Def.: Q Ende Ein Vekto ist eine mthemtische Göße, die duch Ange von: P Anfng PQ - Mßhl (Mßeinheit) - Richtung Vollständig eschieen ist. Speielle

Mehr

7. Zusammengesetzte Beanspruchung

7. Zusammengesetzte Beanspruchung 7. Zsammengesetzte Beanspchng Biegng / Tosion ellen, ei denen gleichzeitig ein Biegemoment (Nomalspannngen) nd ein Tosionsmoment (Schspannngen) aftitt. Biegespannngen (Ode ach Nomalspannngen stehen echtwinklig

Mehr

Einführung in die Robotik Differentialsantrieb. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Differentialsantrieb. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Einfühung in ie Roboik Diffeeniasanieb Mohame Oubbai Insiu fü Neuoinfomaik Te.: +49) 731 / 5 24153 mohame.oubbai@uni-um.e 27. 11. 212 D. Oubbai, Einfühung in ie Roboik Neuoinfomaik, Uni-Um) Diffeeniaanieb

Mehr

M4 Kreis, Kreissektor Name: E1)Der Umfang eines Kreises ist gesucht! Man kennt den Kreisradius mit 4 cm Länge.

M4 Kreis, Kreissektor Name: E1)Der Umfang eines Kreises ist gesucht! Man kennt den Kreisradius mit 4 cm Länge. M, sekto Name: E1)De Umfang eines es ist gescht! Man kennt en ais mit cm Länge. E)De Dchmesse eines es ist mit eine Länge von 7 cm gegeen. Wie lang ist e Umfang! M3)Beechne en Umfang e agestellten Fig!

Mehr

Mit der Standardmethode müsste nun die Klammer aufgelöst werden. Dann könnte man die Summanden einzeln integrieren:

Mit der Standardmethode müsste nun die Klammer aufgelöst werden. Dann könnte man die Summanden einzeln integrieren: Integrlrechnng Im Dokment "Integrlrechnng " wrde üer die Berechnng on Flächeninhlten eine Einführng in die Integrlrechnng gegeen. Während für prktisch lle Fnktionen, die n Gymnsien nterscht werden, die

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

P eine waagrechte Tangente besitzt.

P eine waagrechte Tangente besitzt. Mtemtik MB Üungsltt Temen: unktionsuntesucungen, Etem mit und one Neenedingungen DHBW STUTTGART MB MATHEMATI SEITE VON Aufge A: Gegeen ist die unktion, in impliite om ) Bestimmen Sie die Tngentensteigung

Mehr

CJT-Gymnasium Lauf Grundwissen (& Aufgaben) Jahrgangsstufe 10 (7/2009)

CJT-Gymnasium Lauf Grundwissen (& Aufgaben) Jahrgangsstufe 10 (7/2009) CJT-Gmnsim L Gndwissen (& gben) Jhgngsste 0 (/00) Wissen / Können eispiele. Keis nd Kgel Fü einen Keissekto mit Rdis nd Mittelpnktswinkel gilt: Länge des Keisbogens b 60 Flächeninhlt des Keissektos 60

Mehr

Übungsaufgaben. Physik II. Elektrisches Feld und Potential

Übungsaufgaben. Physik II. Elektrisches Feld und Potential Institut fü mathematisch - natuwissenschaftliche Gunlagen http://www.hs-heilbonn.e/ifg Übungsaufgaben Phsik II Elektisches Fel un Potential Auto: Pof. D. G. Buche Beabeitet: Dipl. Phs. A. Szasz August

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

B.Sc.-Modulprüfung Geotechnik I

B.Sc.-Modulprüfung Geotechnik I Fcheeich Bu- und Umweltingenieuwissenschften Institut und Vesuchsnstlt fü Geotechnik Pof. D.-Ing. Rolf Ktzench Fnzisk-Bun-Stße 7 6487 Dmstdt Tel. +49 6151 16 149 Fx +49 6151 16 6683 E-Mil: ktzench@geotechnik.tu-dmstdt.de

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Mechanik-1b. fh-pw. Mechanik-1b 1

Mechanik-1b. fh-pw. Mechanik-1b 1 Mechik-b Mechik-b Eiimesiole eweu Geschwiikei Duchschis- u Momeeschwiikei 3 eispiel Momeeschwiikei 4 eschleuiu 5 Gleichfömi beschleuie eweu 7 eispiel Gleichfömi beschleuie eweu Gleichfömi beschleuie eweu

Mehr

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse Rezipokes Quaatgesetz un Stabilität von planetaischen Bahnen Einige analytische Egebnisse ) Die Kepleschen-Gesetze sin Folgen e Tatsache, ass ie Gavitationskaft einem umgekehten Quaatgesetz folgt Wi ween

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

Inhalt. 1 Modellierung. 2 Zustandsrückführung. 3 Polvorgabe 4 LQR. 5 Zustandsrückführung: Berücksichtigung des Führungsverhaltens

Inhalt. 1 Modellierung. 2 Zustandsrückführung. 3 Polvorgabe 4 LQR. 5 Zustandsrückführung: Berücksichtigung des Führungsverhaltens hma h1 Q1 h2 T ank Q2 12 12 30 h3 Zstandsückfühng in lineaen Mehgößenegelkeisen Zstandsegleentwf fü ein Deitanksstem Paktikm Mehgößenegelssteme, WS 2009/2010 Stephanie Geist 1 Modellieng 2 Zstandsückfühng

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

2. Mehrteilige ebene Tragwerke

2. Mehrteilige ebene Tragwerke Mehrteilige ebene Trgwerke bestehen us mehreren gelenkig miteinnder verbundenen Teiltrgwerken. Zusätzlich zu den Lgerrektionen müssen die Kräfte in den Gelenken bestimmt werden. Prof. Dr. Wndinger 3. Trgwerksnlyse

Mehr

Dieses lässt sich auf Funktionen in mehreren Veränderlichen verallgemeinern.

Dieses lässt sich auf Funktionen in mehreren Veränderlichen verallgemeinern. 4. Mehfachitegale eitag Volesg gewate Mathematik Maste M Pof. D.. Gaowski HTW es Saalaes GIS 4 Mehfachitegale Pof. D. aaa Gaowski HTW es Saalaes GIS Z Volesg gewate Mathematik Maste M Ihalt: 4 Mehfachitegale...

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

r r B r Die magnetische Induktion Ein Strom erzeugt ein Magnetfeld. Kann ein Magnetfeld auch einen Strom erzeugen?

r r B r Die magnetische Induktion Ein Strom erzeugt ein Magnetfeld. Kann ein Magnetfeld auch einen Strom erzeugen? Die magnetische nuktion Ein Stom ezeugt ein Magnetfe. Kann ein Magnetfe auch einen Stom ezeugen? Atagsbeobachtung: Wenn ein etzstecke gezogen wi entsteht manchma ein Funken. Ekäung: Das zusammenbechene

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten 66 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN 6 iefenshe in ngerihteten Grphen: Zeifhe Zsmmenhngskomponenten Der Algorithms ist gnz gen ersele ie im gerihteten Fll! Ailng 1 zeigt noh einml en gerihtete Fll n

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

Symbole und Schaltzeichen der Elektrotechnik

Symbole und Schaltzeichen der Elektrotechnik Symboe un Schtzeichen e Eektotechnik Hbeite IsoieschichtFET, neicheungstyp, Substtnschuss Substt inten mit Souce vebunen Wechse mit Untebechung Schieße öffnet un schießt vezöget Zweiwegschieße mit Mittesteung

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MVT/D-MTL nalysis II FS 8 Dr. nreas Steiger Lösung - Serie MC-ufgaben (Online-bgabe). Es sei ie Einheitskugel um en Ursprung. Für welches er Vektorfeler (x, y, z) v(x, y, z) arf er Divergenzsatz für

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Bündelungsgrad und Abstandsfaktor

Bündelungsgrad und Abstandsfaktor ünelungga un btanfakto Die Gleihung fü ie ieale Rihthaakteitik von ikofonen lautet ( o (: Übetagungfakto : Dukanteil : Gaientenanteil mit a l ünelungga bezeihnet man a Vehältni e von einem iealen mikofon

Mehr

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV ZÜ 3. Aufgabe 3. Ein Wagen Masse M) kann eibungsfei auf eine waagechten Bahn fahen. An eine Achse uch seinen Schwepunkt S que zu Fahtichtung hängt eibungsfei gelaget ein Massenpenel Masse, Länge l, Stab

Mehr

R05 - Reibschlüssige Verbindungen

R05 - Reibschlüssige Verbindungen IZ-ÜCIG-IIU Ü MCIEEE DE ECICE UIEIÄ CLUL Pofesso D.-Ig. Pee Diez 0..00 e 05 - eibschlüssige ebiduge ufgabe: uf eie ohlwelle aus Ck 5 soll eie ieescheibe aus eie luiiulegieug iels eie zlidische Peßvebidug

Mehr

Körper II. 2) Messt den Durchmesser des Kreises mit Hilfe von rechtwinkligen Dreiecken. 3) Berechnet nun: Umfang (u) Durchmesser (d)

Körper II. 2) Messt den Durchmesser des Kreises mit Hilfe von rechtwinkligen Dreiecken. 3) Berechnet nun: Umfang (u) Durchmesser (d) I Köpe II 33. Umfang un Flächeninhalt eines Keises Expeimentiet un vegleicht. Abeitet in Guppen. (Mateial: zb veschieene Dosen, Küchenolle, CD un ein Maßban) ) Emittelt en Umfang eines Keises bzw. eines

Mehr

Geometrie in Punkträumen

Geometrie in Punkträumen IV Geometie in Puntäumen De ffine Puntum P zum Vetoum V ffin lt. vewndt in de Geometie im Sinne gleichleiende Aildungen - Ausgngspunt: Geometische Vetoum V mit Aiomen - Ein estimmte Punt (Uspung) wid ls

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikationstehnik I of. D. tefan Weinziel ustelösung 7. ufgabenblatt. ikofone. Was vesteht man unte em (Fel-Übetagungsfakto eines ikofons? De Übetagungsfakto eines ikofons (engl. ensitivity ist as Vehältnis

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Aufgabe 9: Prisma mit maximalem Volumen

Aufgabe 9: Prisma mit maximalem Volumen Lösungen de Extemwetpoleme im Skipt, Ascnitt 86 Aufgae 9: Pisma mit maximalem olumen Wete > 0 sind natülic sinnlos! ( x ) ( 00 x ) ( 60 x) x 0 50 0 0 0 ( ) 0 0 0 0 0 5 0 5 0 5 0 5 0 5 50 olumenfunktion:

Mehr

Rollkurven - Zykloide - Animation

Rollkurven - Zykloide - Animation HTL Saalfelden ollkuven Seite von 7 Wilfied ohm ollkuven - Zykloide - Animation wilfied.ohm@schule.at Bescheiung Mathematische / Fachliche Inhalte in Stichwoten: Zykloide, Epizykloide, Hypozykloide, ollkuven,

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Technische Daten Schiebebeschläge

Technische Daten Schiebebeschläge M E T A L L - A N W E N D U N G E N Technische Dten Schieeeschläge L n g l e i g e Q u l i t ä t f ü r h ä n g e n e u n u n t e n l u f e n e T o r e S t h lrolle n u n S c hie e tor rolle n u s Gu s

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

Technische Mechanik B WS 2010/11

Technische Mechanik B WS 2010/11 Technische Mechnik WS / Ein Täge wid mit einem Loslge und wei Stäben sttisch bestimmt gelget De Täge ist us einem U-Pofilsthl gefetigt und wid mit eine Linienlst konstnte Intensität belstet Die Stäbe sind

Mehr

Der Drehimpuls von Licht

Der Drehimpuls von Licht De Dehils vo Licht Qelle: htt://www.otiqe-igeie.og/e/coses/opi_ag_m_c3/co/cote_4.htl htt://load.wikiedia.og/wikiedia/coos/7/77/cicla.polaiatio.ciclal.polaied.light_with.cooets_right.haded.svg 3..3 Fachbeeich

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI 1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Übungen zur Ingenieur-Mathematik III WS 2017/2018 Blatt

Übungen zur Ingenieur-Mathematik III WS 2017/2018 Blatt Übungen zur Ingenieur-Mahemaik III WS 7/8 Bla 7..7 Aufgabe 9: Berechnen Sie ie Länge zweier Kurven auf er Eroberfläche (im Kugelmoell, ie S. Peersburg ( N, O mi Anchorage in Alaska ( N, 5 W verbinen. Lösung:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

γ Zerfälle und innere Konversion

γ Zerfälle und innere Konversion Zefäe und innee Konvesion Enegieabgabe u Eeichen eines enegetisch günstigeen Zustands Schaenode Voesung 6: Kene -Zefa: E E E : Diskete -Linien i Enegiespektu Innee Konvesion seten: Aufenthatswahscheinichkeit

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

CREATE YOUR OWN PERFUME BUSINESS CONCEPT. Der Duft für Ihr erfolgreiches Business

CREATE YOUR OWN PERFUME BUSINESS CONCEPT. Der Duft für Ihr erfolgreiches Business CREATE YOUR OWN PERFUME BUSINESS CONCEPT Der Duft für Ihr erfolgreihes Business DAS BUSINESS CONCEPT Fszinieren einfh. In wenigen Shritten zum iniviuellsten Weregeshenk er Welt. Wollen Sie sih von Ihren

Mehr

Physikspezifische mathematische Methoden: Anwendungen der Differentialrechnung

Physikspezifische mathematische Methoden: Anwendungen der Differentialrechnung Phsikspeifische mathematische Methoden: Anwendngen de Diffeentialechnng 23. Mai 2013 Inhalt 1 Kvendiskssion 2 1.1 Nllstellen............................... 2 1.2 Extemwete.............................

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 4 MC-Aufgaben (Online-Abgabe) 1. Sei z := exp ( π 6 i) (5 + b i). Für welches b R ist z eine reelle Zahl? (a) 1 (b) (c) 1 5 (d) 5 (e)

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

1 Ladung, Coulomb-Gesetz, E-Feld

1 Ladung, Coulomb-Gesetz, E-Feld Lung, Coulomb-Gesetz, E-Fel. () Beingung ist hier ufgben zur Experimentlphysik II: Elektrosttik Lösungen Willim Hefter - 6//8 F el F g Q 4πɛ r G m em m r Q Gm e m m 4πɛ 5, 7 3 C Die Entfernung fällt herus,

Mehr

49 Uneigentliche Integrale

49 Uneigentliche Integrale Abschnitt 49 Uneigentliche Integale R lato 23 49 Uneigentliche Integale Wi betachten im Folgenden Integale a f / d von Funktionen f, die in einzelnen unkten des betachteten Integationsbeeichs nicht definiet

Mehr

α Winkel der Schrägen

α Winkel der Schrägen Glechföge Bewegung eg Gechwndgket t π d n t Glechföge echleungte Bewegung Bewegung ohne nfng- t gechwndgket t t t d n t eg Gechwndgket et Duchee Dehhl eg Bechleungung et Gechwndgket - n - - - chefe Eene

Mehr

Analysis II. Uneigentliche Integrale

Analysis II. Uneigentliche Integrale Pof D H Benne Osnbück SS 204 Anlysis II Volesung 3 In diese Volesung entwickeln wi die Integtionstheoie weite, und zw untesuchen wi die Fge, ws pssiet, wenn wi in einem Integl b die Intevllgenzen gegen

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Gaz, Institut fü Regelungs- und Automatisieungstechnik 1 Schiftliche Püfung aus Regelungstechnik am 21.10.2004 Name / Voname(n): Kenn-Mat.N.: BONUSPUNKE aus Computeechenübung SS2003: BONUSPUNKE aus Computeechenübung

Mehr

7 Kurvenintegrale und die Greensche Formel

7 Kurvenintegrale und die Greensche Formel nalysis III, WS 2/22 Montag 3. $Id: geen.tex,v.9 22//3 5:4:52 hk Exp $ 7 Kuvenintegale und die Geensche Fomel 7.5 Rotation und die Geensche Fomel m Ende de letzten Sitzung hatten wi die geometische Definition

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

œ œ œ œ œ œ œ œ œ 4 œ œnœ œ œ œ œ œ œ œ # œ œ œ J J œ œ œ œ œ Œ œ œ œ œ œ œ œ j œ œ œ œ œ œ œwœ œ œ w œ œ w œ œ œ œ œ œ ẇ w w w w œ œ # œ œ n

œ œ œ œ œ œ œ œ œ 4 œ œnœ œ œ œ œ œ œ œ # œ œ œ J J œ œ œ œ œ Œ œ œ œ œ œ œ œ j œ œ œ œ œ œ œwœ œ œ w œ œ w œ œ œ œ œ œ ẇ w w w w œ œ # œ œ n Worte, aus Liebe gesagt (Für das rautpaar) Text + Melodie: Manfred Siebald Klaviersatz: Johannes Nitsch Arrangement: G.Wiebe Querflöte Œ Klavier F dm C am Œ j ẇ ẇ ass als 5 # n dm D G F/G em/g dm/g j #

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2

N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2 Kpitel 5 Gvittionstheoie Ausgebeitet von G. Knup und H. Wlitzki 5. Gvittionskft - Gvittionsfeld Die Gundidee zu Gvittionstheoie stmmt von Newton (643-727): Die Kft, die einen Apfel fllen lässt, ist die

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

Berlin-Brandenburgische Akademie der Wissenschaften

Berlin-Brandenburgische Akademie der Wissenschaften B-B A W MI S 12 / 2011 I D M A D M A E M G K S K M- K B- K T K A V D B-B A W ä M B A. Z M, L. Gä O Aß M Fä. V O M M. D J E R O M P. I R A W W W M ä. M E A W W, L W A W. D A ö ä 316 M, 156 O, 89 O, 69 Aß

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr