P eine waagrechte Tangente besitzt.

Größe: px
Ab Seite anzeigen:

Download "P eine waagrechte Tangente besitzt."

Transkript

1 Mtemtik MB Üungsltt Temen: unktionsuntesucungen, Etem mit und one Neenedingungen DHBW STUTTGART MB MATHEMATI SEITE VON Aufge A: Gegeen ist die unktion, in impliite om ) Bestimmen Sie die Tngentensteigung im uvenpunkt / ) eigen Sie, dss die uve im unkt / eine wgecte Tngente esitt Lösungen: Wi eecnen die Aleitungen: und (nloge Vogeensweise ei de ecten ptiellen Aleitung) ) Im lle eines elieigen uvenpunkts gilt dnn (solnge de Nenne nict Null wid) d d ) Seten wi den unkt ein, so elten wi im äle, nict im Nenne, und de uc Recnung: ) ( Aufge A: Bestimmen Sie die Etemwete de unktion unte de Neenedingung Lösung: Wi wenden die Lgngescen Multipliktoen n Es ist, : die Neenedingung Dmit egit sic die Hilfsfunktion,, Von diese ilden wi die dei offensictlicen ptiellen Aleitungen:, und

2 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT Aus den eiden esten Gleicungen folgt duc Umfomen, dss und, womit wi elten Seten wi ds in die ditte Gleicung ein, so egit sic Dmit en wi ls ndidten und duc Einseten in ekennen wi fü Minus ein Minimum und fü lus ein Mimum (Alesen de unktionswete) Aufge A: Bestimmen Sie die eltiven Etemwete de folgenden unktionen ) ) 7 c) Lösungen: Egenisse: Die Recnungen sieen uf dem in de Volesung geeigten Scem (Tg Seiten und ): ) ndidten ei /, /, /, / : Dvon sind die esten eiden keine Etemwete, die ditte Stelle ein Mimum und die lette ein Minimum ) An de Stelle / liegt ein Mimum vo c) An de Stelle / liegt kein Etemwet vo, n de Stelle,/,8 Minimum Recnungen: ) Este Aleitungen: eistiet ein 6 6 Diese eiden Gleicungen müssen gleiceitig efüllt sein! LÖSUNGEN INDEN (SCHRITT ): Aus ) und elieig, ) und elieig folgen DHBW STUTTGART MB MATHEMATI SEITE VON

3 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT Um die noc nict estimmen Vilen (elieig) uf einen Wet festngeln u können, seten wi in die noc veleiende Gleicung ein: ) :, lso ode Wi en die ndidten / und / gefunden ) :, lso Wi en die ndidten / und / UNTE ÜBERRÜEN (SCHRITT ): weite Aleitungen: 6 6 / gefunden otentielle Etemstellen 6 Dmit ilden wi die Hesse-Mti jeden de vie unkte: und eecnen ie Deteminnte fü / : D liegt ein Mimum vo 6 / : D liegt ein Minimum vo 6 / : ein Etemwet / : ein Etemwet ) 7 Este Aleitungen: 7 7 Diese eiden Gleicungen müssen gleiceitig efüllt sein! 7 LÖSUNGEN INDEN (SCHRITT ): Aus folgt 7 Seten wi nun in die weite Gleicung ein, so egit sic DHBW STUTTGART MB MATHEMATI SEITE VON

4 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT , lso und ällt wegen us! otentielle Etemstelle: / 7 UNTE ÜBERRÜEN (SCHRITT ): weite Aleitungen: 5 5 Dmit ilden wi die Hesse-Mti den gefundenen unkt: und eecnen ie Deteminnte fü / : D liegt ein Mimum vo c) Este Aleitungen: 6 9 Diese eiden Gleicungen müssen gleiceitig efüllt sein! LÖSUNGEN INDEN (SCHRITT ): Aus 6 folgt Seten wi nun in die weite Gleicung ein, so egit sic 6 9, lso und otentielle Etemstellen: / und / UNTE ÜBERRÜEN (SCHRITT ): weite Aleitungen: DHBW STUTTGART MB MATHEMATI SEITE VON

5 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT 8 Dmit ilden wi die Hesse-Mti die eiden gefundenen unkte: / : 9 ein Etempunkt Aufge A: / : und eecnen ie Deteminnte fü D liegt ein Minimum vo Welce unkt uf de Eene t vom oodintenuspung den kleinsten Astnd? Bestimmen Sie den unkt u ontolle uc mit Hilfe de us de Anltiscen Geometie eknnten Tecniken Lösung: Alte Vinte: In de Anltiscen Geometie estimmen wi einen Nomlenvekto (B T ) de Eene, stellen dmit eine Hilfsgede duc den Uspung ( g : t T ) uf und eecnen deen Ducstoßpunkt duc die Eene (Einseten egit t und de den unkt D / / Neue Vinte: ) Dmit en wi den gesucten unkt gefunden Im ie voliegenden ll stellen wi die Astndsfunktion d,, unte de Neenedingung uf Dmit elten wi die Hilfsfunktion Die ptiellen Aleitungen sind,,,,, und DHBW STUTTGART MB MATHEMATI SEITE 5 VON

6 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT Aus diesem Gleicungssstem folgt (Recnungen: Mit Gleicungen is Gleicung nc ufgelöst und dnn in die Gleicungen und eingesett), dss ist und mit de Neenedingung elten wi, und Aufge A5: Gegeen seien wei Eponentilfunktionen e und e mit, und Bestimmen Sie und so, dss sic die uven ectwinklig scneiden und de läceninlt, den sie mit de -Acse einscließen, möglicst klein wid Lösung: Alte Vinte: Hie wollen wi den läceninlt, den die eiden unktionen mit de -Acse einscließen mimieen A e d e d e e ), unte de Neenedingung, dss Hieus seen wi sofot, dss, lso A, d mimiet weden muss Es ist A und dmit (weil ) folgt De minimle läceninlt ist dnn A min (Einseten in die omel us unkt ) Neue Vinte: Wi üenemen us de Lösung Alte Vinte die omel A, Diese unktion gilt es nun unte de Neenedingung u minimieen (en wi uc us Alte Vinte üenommen) Wi eeiten Lgnge vo: A, und,,, Hilfsfunktion Diese Hilfsfunktion veeiten wi nc dem Scem im Skipt mit Hilfe de möglicen Aleitungen weite DHBW STUTTGART MB MATHEMATI SEITE 6 VON

7 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT Aleitungen: Division Einseten und d, folgt Die unktionen en dmit die unktionsgleicungen e und wi elten die läce A min e und Aufge A6: Wie muss de Öffnungswinkel eines kegelfömigen Tictes mit dem Volumen V cm³ gewält weden, wenn ei konstnte Dicke des vewendeten omogenen Blecs, de Mteilveuc möglicst geing usfllen soll Lösungen: Lösung mit Lgnge: Es gilt M s Wi seten und elten s sin s sin sin U MINIMIERENDE UNTION: M : M, UR NEBENBEDINGUNG: Die Neenedingung ist üe ds konstnte Volumen gegeen, d V, woei wi ie tn tn ü Lgnge en wi somit, V, tn Dmit können wi die Hilfsfunktion ufstellen:,, V V sin tn sin sin cos Hilfsfunktion Besse um Aleiten! Nun ilden wi die enötigten Aleitungen DHBW STUTTGART MB MATHEMATI SEITE 7 VON

8 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT Aleitungen: sin tn (*) cos sin QR sin cos sin cos sin sin Einseten cos sin cos cos cos V sin Weitee Recnungen u (*): cos sin tn tn = sin Hiemit elten wi cos : cos 5,6 7, 5 Duc Einseten in die ditte Gleicung egit sic mit Hilfe des eknnten Volumens den Rdius, 89 cm Aufge A7: Eine ugel mit dem gegeenen Rdius wede ein linde einescieen (siee igu ) Wie sind die Höe und de Rdius des lindes in Aängigkeit von u wälen, dmit die Mntelfläce des lindes miml wid? igu : ugel mit einescieenem linde Lösung: Alte Vinte: D sowol de linde, ls uc die ugel ottionssmmetisc sind, können wi uns eine weidimensionle Skie nfetigen, die lle notwendigen Infomtionen entält (siee igu ) DHBW STUTTGART MB MATHEMATI SEITE 8 VON

9 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT DHBW STUTTGART MB MATHEMATI SEITE 9 VON igu : linde und ugel von de Seite etctet Die Mntelfläce des lindes eecnet sic u Mntelfläce M Momentn en wi noc wei Uneknnte in diese Gleicung Ds wollen wi nun änden Mit Hilfe von igu können wi seen, dss Duc die gegeenen Bedingungen gilt, dss Des Weiteen ist Wi seten nun ein und elten M Diese unktion leiten wi und seten die Aleitung gleic ' M Wi dividieen nscließend duc und multipliieen mit dem Wueltem duc Dmit egit sic

10 MATHEMATI STUDIENGANG: MB ÜBUNGSBLATT Indem wi die Wuel ieen, elten wi ist seen wi, dss wegen M '' Mit de weiten Aleitung, welce d 6, M '' wiklic ein Mimum voliegt D die Rndwete, R und, R eide die Mntelfläce liefen, liegt wiklic ds gesucte, glole Mimum vo Es sind lso und Neue Vinte: Nc de Alten Vinte wissen wi (mit : und : ), dss M, mit, konstnt (= ) Die Neenedingung lutet, Hilfsfunktion:,, Wi ilden dmit die Hilfsfunktion Aleitungen: Division Einseten Recnung ieu: und d ist (Rdius) und de (Höe) Diese Egenisse - en wi ntülic uc in de Alten Vinte elten DHBW STUTTGART MB MATHEMATI SEITE VON

x = d größer 0 entschieden. Dieses bleibt nun fest,

x = d größer 0 entschieden. Dieses bleibt nun fest, Stützkus Matematik WIW Üungen Tag 5 Datum: 7.. ****** Temen: Etemwetpoleme, Aleitung de Umkefunktion, Genzwete, Stetigkeit und Diffeenzieakeit Umfang: Hilfsmittel: Aufgaen Sind keine notwendig. Eine Fomelsammlung

Mehr

Aufgabe 9: Prisma mit maximalem Volumen

Aufgabe 9: Prisma mit maximalem Volumen Lösungen de Extemwetpoleme im Skipt, Ascnitt 86 Aufgae 9: Pisma mit maximalem olumen Wete > 0 sind natülic sinnlos! ( x ) ( 00 x ) ( 60 x) x 0 50 0 0 0 ( ) 0 0 0 0 0 5 0 5 0 5 0 5 0 5 50 olumenfunktion:

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

S 35 Klotz auf schiefer Ebene mit seitlicher Verschiebekraft

S 35 Klotz auf schiefer Ebene mit seitlicher Verschiebekraft 76 1 Sttik S 35 Klot uf sciefer Eene mit seitlicer Verscieekrft ild S 35 uf einer ruen sciefen Eene (eigungswinkel ) liegt ein Klot vom ewict. Die Koeffiienten für ftung und Reiung wiscen dem Klot und

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Formelsammlung. x 2 + px + q = 0 ax 2 + bx + c = 0 x 1,2. = p 2 ± p². Fläche eines rechtwinkligen Dreiecks: Fläche eines Dreiecks: A = 1 2 g h

Formelsammlung. x 2 + px + q = 0 ax 2 + bx + c = 0 x 1,2. = p 2 ± p². Fläche eines rechtwinkligen Dreiecks: Fläche eines Dreiecks: A = 1 2 g h Fomelsmmlung p q Fomel: c Fomel x 2 + px + q = 0 x 2 + x + c = 0 x 1,2 = p 2 ± p² 4 q x 1,2 = ± ² 4c 2 Fläce eines Deiecks: Fläce eines ectwinkligen Deiecks: A = 1 2 g A = 1 2 g Fläce eines Qudts: A =

Mehr

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich.

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich. Püfungsufgben Köpebeecnungen Aufgbenbltt 6 Püfungsufgben Klssenstufe 0 Alle Lösungen uf CD Dtei N. 6 Ausduck nu von de CD us möglic Fiedic Buckel Juni 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Köpebeecnungen

Mehr

x 8x 2 x 3 x Anwendungsorientierte Mathematik für Techniker Lösungen der Aufgaben zu Kapitel

x 8x 2 x 3 x Anwendungsorientierte Mathematik für Techniker Lösungen der Aufgaben zu Kapitel Anwendungsoientiete Mtemtik ü Tecnike Lösungen de Augen zu Kpitel 8 8. 8. 5 8. 8 8. 7² 8. 5 ² + 0 8. 6 ³ + ² 8. 7 8. 8 8. 8. 0 8. 6 Duckele: Die Auge sollte luten 6 7 8. " 8 0.5 0 0 6 8 Wi estimmen die

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Kapitel 9: Sätze im rechtwinkligen Dreieck 9.1 Der Satz von Pythagoras

Kapitel 9: Sätze im rechtwinkligen Dreieck 9.1 Der Satz von Pythagoras Kpitel 9: Sätze im ectwinkligen Deieck 9.1 De Stz von Pytgo 1. ) c + c 3 + 9 + 16 5 5 cm c 13 1 169 1 5 5 cm c) c 65 56 5 3136 1089 33 cm d) c + c + 1 + 1 5 cm.36 cm e) c 8 7 6 9 15 cm 3.873 cm f) c 13

Mehr

Um- und Inkugelradien am allgemeinen Tetraeder

Um- und Inkugelradien am allgemeinen Tetraeder Ano Fehinge, Gymnsillehe fü Mthemtik und Physik 1 Um- und Inkugeldien m llgemeinen Tetede Oktoe 2007 In de voliegenden Aeit sollen Um- und Inkugeldien eines llgemeinen Tetedes in Ahängigkeit von den Kntenlängen

Mehr

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 7. Aufgabe 1

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 7. Aufgabe 1 Aufge 1 () Anmerkung: Der Punkt in den Bäumen t keinerlei Bedeutung und ist nur d, um drstellen zu können, ws linkes und retes Kind eines Elternteils sein soll Einfügen von,,,,,,, 0, 17 : : : Rottion :

Mehr

E x t r e m w e r t a u f g a b e n

E x t r e m w e r t a u f g a b e n E x t e m w e t u f e n Aufen De Qude Welce oen offene Scctel in de Fom eine qu dtiscen S ule t ei eeenem Oefl ceninlt von dm ein mximles Fssunsvemoen? De Keel Aus einem keisfomien Bltt Ppie soll ein Keel

Mehr

Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A.

Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A. Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Hoctunusscule Oeusel Pilipp Mue in Zusmmeneit mit StR A. Käme Stnd: 20. Feu 2014 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Inltsvezeicnis 1 Mtemtisce Gundlgen

Mehr

Rotationskörper

Rotationskörper .17.5 ottionskörper Im folgenden efssen wir uns mit Körpern, die ddurc entsteen, dss eine eene Kurve oder ein eenes Kurvenstück um eine Acse rotiert, die in der gleicen Eene liegt. Einige spezielle Typen

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Phi- Geometrie 1. Dritte Übungen aus der heiligen Geometrie zum persönlichen Nachvollzug und zur Vertiefung. Von Franz Delaquis

Phi- Geometrie 1. Dritte Übungen aus der heiligen Geometrie zum persönlichen Nachvollzug und zur Vertiefung. Von Franz Delaquis Pi- Geometie Ditte Übungen us de eiligen Geometie zum pesönlicen Ncvollzug und zu Vetiefung. Von Fnz Delquis Aus den Quellen des eindücklicen Buces Vom ewig beginnenden Ende von Andes OttigeAmmnn, AnOA-

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

Übungen zur Vorlesung Lineare Algebra I WS 2003/2004 Musterlösung zu Blatt 4

Übungen zur Vorlesung Lineare Algebra I WS 2003/2004 Musterlösung zu Blatt 4 Prof. Dr. Helmut Lening Pderorn, den 0. Novemer 00 Mrkus Diekämper, Andrew Huer, Mr Jesse Age is. Novemer 00, Ur Üungen ur Vorlesung Linere Alger I WS 00/004 Musterlösung u Bltt 4 AUFGABE (4 Punkte): Gegeen

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I Institut für Angewndte und Eperimentelle Mecni Tecnisce Mecni I ZÜ. Aufgbe. F 4 O F F F In den Knten einer gleicseitigen Prmide wiren 4 Kräfte gemäß nebensteender Sie. Für die Beträge der Kräfte gilt:

Mehr

( ) = ( ) y Kosten in 800

( ) = ( ) y Kosten in 800 R. Brinkmnn tt://brinkmnn-du.de Seite 09.0.008 Lge zweier Gerden zueinnder Ein Gleicungssstem us zwei lineren Gleicungen t beknntlic entweder eine, keine oder unendlic viele Lösungen. Ws ber t ds mit der

Mehr

Eigenschaften von Prismen

Eigenschaften von Prismen gnz klr: Mtemtik - Ds Ferieneft mit Erfolgsnzeiger Eigenscften von Ein gerdes Prism t immer eine rund- und eine Deckfläce, die deckungsgleic (kongruent) und prllel zueinnder sind. Den Astnd zwiscen rund-

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Lineare Algebra. Übungsblatt November Aufgabe 1. (4=2+2 Punkte) Sei V ein K-Vektorraum und seien v 1,..., v n V.

Lineare Algebra. Übungsblatt November Aufgabe 1. (4=2+2 Punkte) Sei V ein K-Vektorraum und seien v 1,..., v n V. Goethe-Univesität Fnkfut Institut fü Mthemtik Linee Alge Wintesemeste 28/9 Pof. D. Jko Sti Mtin Lütke Üungsltt 5 3. Noveme 28 Aufge. (42+2 Punkte) Sei V ein K-Vektoum un seien v... v n V. () Sei K α n

Mehr

Aufgaben, in denen die Nebenbedingung mithilfe des Strahlensatzes ermittelt wird.

Aufgaben, in denen die Nebenbedingung mithilfe des Strahlensatzes ermittelt wird. Differentilrecnung Extremwertufgben Arbeitsbltt Aufgben, in denen die Nebenbedingung mitilfe des Strlenstzes ermittelt wird. Vorwissen 1 Werden zwei Strlen und b mit dem gemeinsmen Anfngspunkt S von zwei

Mehr

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten:

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten: Der Kosinusstz Dreieke lssen si mit drei ngen zu irer Figur, vollständig zeinen. D er die zeinerise Lösung eines Dreieks nit so genu und zudem ret ufwendig ist, muss es u einen renerisen Weg geen, die

Mehr

Referat im Fach Mathematik

Referat im Fach Mathematik Refet im Fc Mtemtik Tem: Beecnung von Rottionsköpen mit klssiscen Metoden und mit Integlecnung m Beispiel von Kegel, Kugel und Rottionsellipsoid. Vefsse: Ruen Flle Inltsvezeicnis. Ws sind Rottionsköpe?

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

Abbildung 1: Achilles und seine Schildkröte.

Abbildung 1: Achilles und seine Schildkröte. PROBEKLAUSUR II MATHEMATIK STUDIENGANG MB THEMA I: FOLGEN UND REIHEN (5 Minuten) Augbe 1 (Grenzwertig)**: Prdoon des ZENO: Achilles läut mit einer Schildkröte um die Wette. Weil Achilles zehnml so schnell

Mehr

1. Berechne mit dem Taschenrechner Näherungswerte und runde das Ergebnis auf vier Dezimalen a) sin 35,20 b) cos 17,75 c) tan d) cos 3 3

1. Berechne mit dem Taschenrechner Näherungswerte und runde das Ergebnis auf vier Dezimalen a) sin 35,20 b) cos 17,75 c) tan d) cos 3 3 9 Üben X Trigonometrie 30. Berecne mit dem Tscenrecner Näerungswerte und runde ds Ergebnis uf vier Dezimlen ) sin 35,0 b) cos 7,75 c) tn 44 d) cos 3 3. Berecne die Winkel und gib ds Ergebnis gerundet uf

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt 1 4 Hperel 4.1 Die Hperel ls Kegelschnitt Wird ein Kreiskegel mit dem hlen Öffnungswinkel α von einer Eene σ geschnitten, die mit der Kegelchse einen Wink β < α einschliesst, so entsteht ls Schnittkurve

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

= f (x). Anmerkung: Stammfunktionen finden ist also die Umkehrung der Ableitung, es wird daher auch manchmal als Aufleiten bezeichnet.

= f (x). Anmerkung: Stammfunktionen finden ist also die Umkehrung der Ableitung, es wird daher auch manchmal als Aufleiten bezeichnet. .Stmmfunktionen Integrlrechnung Im folgenden sei I R ein Intervll ds mit mindestens 2 verschiedene Punkte enthält.. Stmmfunktionen Definition: Eine differenzierre Funktion F : I R heißt Stmmfunktion einer

Mehr

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE Übungsbeispiele Deiecke Mg. Toms Höffee ufgben DREIECKE Fläce von Deiecken: D 1. Gegeben sin ie ei Seiten eines llgemeinen Deiecks. estimme ie Fläce un ie ei Höen e einzelnen Deiecke. b c b c.) 1 1 15

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

MW-E Mathematikwettbewerb der Einführungsphase

MW-E Mathematikwettbewerb der Einführungsphase MW-E Mthemtikwettewer der Einführungsphse.Ferur 08 MW-E Mthemtikwettewer der Einführungsphse Hinweis: Von jeder Schülerin zw. jedem Schüler werden fünf Aufgen gewertet. Werden mehr ls fünf Aufgen ereitet,

Mehr

Eigenschaften mathematischer Körper

Eigenschaften mathematischer Körper Rettungsing Köpe gnz kl: temtik 4 - Ds Feieneft mit Efolgsnzeige Eigenscften mtemtisce Köpe Eigenscften von Pismen Ein gedes Pism t imme eine und- und eine Deckfläce, die deckungsgleic und pllel zueinnde

Mehr

9 Längen- Flächen- und Volumenmessung

9 Längen- Flächen- und Volumenmessung 9 Längen- Flächen- und Volumenmessung A Länge einer Kurve B Flächenmessung C Volumenerechnung 56 A. Länge einer Kurve ERKLÄRUNG 9.1. (Länge einer Kurve in Funktionsdrstellung.) Es sei f eine uf dem Intervll

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6 Geometrie 6. Juni 017 Inltsverzeicnis 1 Zweidimensionle Geometrie Dreidimensionle Geometrie 6 1 1 Zweidimensionle Geometrie In diesem Kpitel wollen wir uns mit einigen einfcen geometriscen Formen bescäftigen

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 03 mit Lösungsvorschlägen

Elektro- und Informationstechnik WS 2012/2013. Mathematik II - Übungsblatt 03 mit Lösungsvorschlägen Dr.-ng. Wilfried Dnkmeier Elektro- und nformtionstechnik WS 22/23 Mthemtik Aufge Mthemtik - Üungsltt 3 mit Lösungsvorschlägen Berechnen Sie ds Doppelintegrl (enötigt zur Berechnung von Verformung und Mterilspnnungen

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inlt der Lösungen zur Prüfung 2012: Pflictteil 2 Wlteil ufgbe W1 11 Wlteil ufgbe W2 15 Wlteil ufgbe W3 19 Wlteil ufgbe W4 24 2012 Pflictbereic Lösungen zur Prüfung 2012: Pflictbereic ufgbe P1: erecnung

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Ellipsen DEMO. Text Nr Stand 29. Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Ellipsen DEMO. Text Nr Stand 29. Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Ellipsen Tet Nr. 5060 Stnd 9. i 06 FRIEDRICH W. BUCKEL INTERNETBIBLITHEK FÜR SCHULATHEATIK www.mthe-cd.schule 5060 Ellipsengleichungen Vorwort Die Ellipse wurde ereits in den Teten, und esprochen. Dort

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN Mtemtik: Mg. Wolfgng Smid beitsbltt 11 6. Semeste BEITSBLTT 11 EXTEMWETUFGBEN In diesem beitsbltt befssen wi uns mit ufgben, bei denen einem gegebenen Köpe ein ndee Köpe eingesieben ode umsieben wid. Beispiel:

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

26 Gebrochenrationale Funktionen; Definitionsmenge und Nullstellen. z x. f : x n x

26 Gebrochenrationale Funktionen; Definitionsmenge und Nullstellen. z x. f : x n x 6 Gebrocenrtionle Funktionen; Deinitionsmenge und Nullstellen 6. Deinition und Klssiiktion Sind n gnzrtionle Funktionen, dnn eißt die Funktion z und gebrocenrtionle Funktion. z : n Mn untersceidet dbei

Mehr

Integration Teil 2: Flächenberechnungen

Integration Teil 2: Flächenberechnungen Integtion Teil : Fläcenbeecnungen Dtei N. 8 Stnd Febu 7 Fiedic Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mte-cd.de Inlt Dtei 8. Rectecksmetoden. Ein estes goßes Beispiel. Heleitung eine Fläceninltsfomel.

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden?

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden? Relscule Scüttorf Mtemtik Klsse 10d Dezemer 006 1) Ein Deic t folgende Mße: c = 9 m = 0 m = 18 β = 8 ) Wie reit ist die Deicsole? ) Wie groß ist der trpezförmige Querscnitt des Deices? Runde uf zwei Stellen

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Einheit 5: Vektoren, Geraden, Ebenen

Einheit 5: Vektoren, Geraden, Ebenen iturkurs Einheit 5: Vektoren, Gerden, Eenen Michel Göthel 12. pril 2017 1 Vektoren Vektoren sind Pfeilklssen mit gleicher Länge und gleicher Richtung. Jeder Vektor wird durch einen Repräsentnten eindeutig

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Markieren Sie die Integralausdrücke, die den Flächeninhalt der markierten Fläche berechnen:

Markieren Sie die Integralausdrücke, die den Flächeninhalt der markierten Fläche berechnen: Aufge C (X/N) Mrkieren Sie ie Integrlusrüke, ie en Fläheninhlt er mrkierten Flähe erehnen: A) f () g() g() f () B) ( f () g() ) + ( f () g() ) C) f () g() D) ( f () g() ) ( g() f () ) E) f () g() F) f

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

ÜBUNGSAUFGABEN SERIE 04

ÜBUNGSAUFGABEN SERIE 04 Elementreometrie ÜBUNGSAUFGABEN SERIE 04 AUFGABE 1: Beweisen Sie den folenden Stz: Stz 2.10: Die Nceinnderusfürun mit ist eine Verscieun. Zum Beweis verwenden wir Stz 2.9: Eine Beweun verscieden von der

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü F-Studiengng Angewndte lektronik SS 8 Üungsufgen zu Mthemtik Vektor- und Mtrizenrechnung 9 Die ckpunkte des Dreiecks ABC seien durch ihre Ortsvektoren OA ( ) OB (7) und OC (8) gegeen Berechnen Sie die

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

( ), Lösungen zum Übungsblatt Differentialrechnung. für Funktionen einer Variablen für Naturwissenschaftler (HM1) = +

( ), Lösungen zum Übungsblatt Differentialrechnung. für Funktionen einer Variablen für Naturwissenschaftler (HM1) = + Lösungen zum Üungsltt Differentilrechnung für Funktionen einer Vrilen für Nturwissenschftler HM Aufge rechtsseitige Aleitung: f f und eenflls ist die linksseitige Aleitung f lso esitzt f in eine uneigentliche

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Aufgabe 1, Musterlösung

Aufgabe 1, Musterlösung Musterlösungen Klusur Mechnik I vom 6. März 8 Seite von ufge, Musterlösung ür ds drgestellte System estimme mn die uflgerrektionen. Geg.:, M, q, Ges.: uflgerrektionen q., G!. ) * / G. + Lösungsvorschlg

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Zusammenfassung: Abstände, Winkel und Spiegelungen

Zusammenfassung: Abstände, Winkel und Spiegelungen Zusmmenfssung: Astände, Winkel und Spiegelungen Inhltsverzeichnis Astände 1 Winkel 5 Spiegelungen 7 Für Experten 1 Astände Astnd Punkt Punkt: Schreiweise: Den Astnd zweier Punkte A und B ezeichnet mn mit

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag Lösungen Dienstg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN Dienstg Blok.. - 4 3y 6 3-6y 3-3 y -. - 3y 4 - y 9 - y -93. y 0,,y Sämtlihe Lösungsmethoden liefern hier whre Aussgen. Z. Bsp. «0 0».

Mehr

Name, Vorname Matrikel-Nr. Studienzentrum. Wirtschaftsingenieurwesen. Klausur-Kennzeichen. WB-WMT-P Datum Abgegebene Arbeitsbögen

Name, Vorname Matrikel-Nr. Studienzentrum. Wirtschaftsingenieurwesen. Klausur-Kennzeichen. WB-WMT-P Datum Abgegebene Arbeitsbögen Nme, Vonme Mtikel-N. Studienzentum Studiengng Modul At de Leistung Klusu-Kennzeichen Witschftsingenieuwesen Mthemtik Püfungsleistung WB-WMT-P-9 Dtum 9.. Ausgegeene Aeitsögen Ausgegeene Aeitslätte Ot, Dtum

Mehr

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors - 1-2 Vektolge 2.1 Definition eines Vektos - Skle - Vektoen Def.: Q Ende Ein Vekto ist eine mthemtische Göße, die duch Ange von: P Anfng PQ - Mßhl (Mßeinheit) - Richtung Vollständig eschieen ist. Speielle

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr