6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten"

Transkript

1 66 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN 6 iefenshe in ngerihteten Grphen: Zeifhe Zsmmenhngskomponenten Der Algorithms ist gnz gen ersele ie im gerihteten Fll! Ailng 1 zeigt noh einml en gerihtete Fll n nh etrhten ir in Ailng 2 en ngerihteten Fll f em nlogen Grphen (Knten " " sin mknten, üer ie entekt ir.) y 3/6 z 2/9 s 1/10 11/16 t F C 4/5 x C 7/8 C 12/13 C 14/15 Ailng 1: Ds Ergenis er iefenshe f einem gerihteten Grphen y z [s] s 3/ 2/ 1/ t 7/ 4/ x 5/ 6/ 8/ Ailng 2: orhergener Grph, ngerihtete Vrinte Im ngerihteten Grphen gilt: eim ersten Gng rh eine Knte stößt mn f einen eißen Knoten (Knte: ) f einen gren Knoten (Knte: ) niht f einen shrzen Knoten (Knte: F oer C)

2 67 G Π s z y x t Π [z] = s, Π [y] = z, Im ngerihteten Fll er iefenshe ist festzhlten: Jee Knte ir zeiml etrhtet: {, } ei DFS-isit() n ei DFSisit(). Mßgelih für en Kntentyp (mknte, Rükärts-, Vorärts-, Krezknte) ist ie etrhtng: (i) {,} mknte eim ersten etrhten on {,} finet sih ein eißer Knoten. (ii) {,} Rükärtsknte eim ersten Gehen on {,} finet sih ein ereits grer Knoten (iii) eim ersten Gehen knn sih kein shrzer Knoten finen. Deshl git es eer Krez- noh Vorärtsknten. Der Weiße-Weg-Stz gilt hier ollkommen nlog. Kreise erkennen ist gnz eenflls nlog mit iefenshe möglih. Der egriff er strken Zsmmenhngskomponente ist niht sinnoll, Weg (, ) im ngerihteten Fll eenso (,) ist. Stttessen: zeifh zsmmenhängen. Untershie zishen G 1 = n G = Löshen ir in G 1 einen elieigen Knoten, hängt er Rest noh zsmmen. Für,, im Grphen G 2 gilt ies niht! Für en Rest ieses Kpitels gilt nn folgene Konention: A jetzt gehen ir nr immer on zsmmenhängenen, gerihteten Grphen s. 2? Definition 6.1(zeifh zsmmenhängen): G\{} ist zeifh zsmmenhängen G ist zsmmenhängen für lle V. G \ {} = (V \ {},E \ {{,} V }). Ws ist ie eetng zeifh zsmmenhängen? Stz 6.1(Menger 1927): G zeifh zsmmenh. Für lle, V, git es zei isjnkte Wege zishen n in G.

3 68 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN G: G\{}: G zsmmenhängen, niht zeifh zsmmenhängen G: ehte: strk zsmmenh. G\{}: zeifh zsmmenh. n jzente Knten fehlen G zeifh zsmmen hängen zeifh zsmmenh. G niht zeifh zsmmenhängen, G\{} niht zsmmen hängen G: G\{}: lso G zeifh zsmmenh. Ds heißt, Wege (, 1,2,, m,), (, 1, 2,, m,) mit { 1,, m } { 1,, m} = Ø eeis erfolgt f üerrshene Weise später. Ein inktier eeis im h Grphentheorie on Reinhr Diestel. Die Rihtng ist einfh. ehte noh, ist, so tt es er Weg (,), mit leerer Menge on Zishenknoten (lso nr 1 Weg). Nn gilt es ieerm niht zeifh zsmmenhängene Grphen in seine zeifh zsmmenhängenen estnteile z zerlegen, in ie zeifhen (Zsmmenhngs- )Komponenten. eispiel 6.1:

4 69 Knoten in zei zeifhen Zsmmenhngskomponeten Forml Definition 6.2(zeifhe Komponenten): Ein eilgrph H = (W,F) on G ist eine zeifhe Komponente H ist ein mximler zeifh zsmmenhängener eilgrph on G (mximl ezüglih Knoten n Knten). () Jee Knte ist in gen einer zeifhen Komponente. () Sin H 1 = (W 1,F 1 ),,H k = (W k,f k ) ie zeifhen Komponeten on G = (V,E), so ist F 1,,F k eine Prtition (Einteilng) on E. F i F j = Ø für i j,f 1 F k = E. eeis. () Sei lso H 1 H 2 zeifh zsmmenhängen, nn ist H = H 1 H 2 zeifh zsmmenhängen: Für s H 1,, ist H\{} zsmmenhängen (egen Mximlität). Eenso s H 2. Für = ist, immer noh ist, H \ {} zeifh zsmmenhängen. Also egen Mximlität zeifhe Komponenten H 1 H 2. () F i F j = Ø egen (). D Knte (,) zeifh zsmmenhängen ist, ist nh Definition jee Knte on E in einem F 1. ei Knoten gilt () oen niht:

5 70 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN ezeihnng: Eine Knte, ie eine zeifhe Komponente ist, heißt rükenknte gehört z 3 zeifhen Komponenten. ist ein typisher Artikltionspnkt. Definition 6.3(Artikltionspnkt): ist Artikltionspnkt on G G\{} niht zsmmenhängen. emerkng 6.2: ist Artikltionspnkt gehört z 2 zeifhen Komponenten eeis. Ist Artikltionspnkt. Dnn git es Knoten,,,, so ss jeer Weg on nh on er Art (,,,,) ist. (Sonst G \ {} zsmmenhängen) Also, niht in einer zeifhen Komponente. Dnn ist jeer Weg on er Art (,, 1,, 2,,2), so ss 1, 2 niht in einer zeifhen Komponente sin. Sonst ist G \ {} Weg (,, 1, 2,) (ohne ), Wiersprh. Also hen ir 1 2 ershieene Komponenten. Die Knte { 1,} gehört z einer Komponente (eentell ist sie seler eine), eenso {, 2 }. Die Komponenten er Knten sin ershieen, 1, 2 in ershieenen Komponenten liegen. Alos liegt in en eien Komponenten. Gehört lso z > 2 Komponenten. Dnn k n 2 Knten on { i,} in ershieenen Komponenten. Et 1, 2. Aer 1 n 2 in 2 ershieenen Komponenten. Also git es, so ss in G \ {} kein Weg 1 2 existiert. Denn egen 1 2 mss = sein n Artikltionspnkt.

6 71 Grphentheoretishe eeise sin niht gnz so leiht! Artikltionspnkte n iefenshe? (1) (2) Art.Pkt. Art.Pkt. 1/8 2/7 3/6 1/8 2/7 3/6 Art.Pkt G Π 4/5 4/5 Art.Pkt. Rükärtsknte (3) Alternti z (2) 4/5 3/6 1/8 2/7 Rükärtsknte Art.Pkt. G Π Ws hen ie Artikltionspnkte in llen gennnten Fällen gemeinsm? Der Artikltionspnkt (sofern niht Wrzel on G Π ) ht einen Sohn in G Π, so ss es on em Sohn oer Nhfolger keine Rükärtsknte zm ehten Vorgänger git! (1) Gilt ei,. ist kein Artikltionspnkt n s Kriterim gilt h niht. (2) ist Artikltionspnkt, Sohn erfüllt s Kriterim., erfüllen es niht, sin h keine Artikltionspnkte. (3) Hier zeigt er Sohn on n, ss ein Artikltionspnkt ist. Also keinesegs immer ersele Sohn! Ws ist, enn er Artikltionspnkt Wrzel on G Π ist?

7 72 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN 6/7 1/8 2/5 3/4 G Π zei Söhne! Stz 6.2(Artikltionspnkte erkennen): Sei ein Knoten on G n sei eine iefenshe gelfen. (Erinnerng: G immer zsmmenhängen). ) Ist Wrzel on G Π. ist Arikltionspnkt G Π 2Söhne. ) Ist niht Wrzel on G Π. ist Artikltionspnkt nr is zrük etl. leer minestens einer existent (knn Wrzel sein) Ds heißt, ht einen Sohn (hier ), so ss on em n llen Nhfolgern in G P i keine (Rükärts-)Knten z ehtem Vorgänger on. eeis. ) G \ {} niht zsmmenhängen, mit Artikltionspnkt. Ht nr einen Sohn, nn Rükärts knten A rh A nn G \{} zsmmenhängen. (Können in G \{} üer sttt gehen.) Also ist kein Artikltionspnkte. Ist ohne Sohn, nn ist er kein Artikltionspnkt.

8 73 ) In G{} kein Weg, lso ist Artikltionspnkt. Gelte ie ehptng niht, lso ht keinen Sohn ie in G Π. 1. Fll ht keinen Sohn. Dnn in G Π Rükärts knten In G \ {} fehlen ie Rükärtsknten n {,}. Also leit er Rest zsmmenhängen. ist kein Artikltionspnkt. 2. Fll ht Söhne, er keinen ie in er ehptng Dnn: G Π Rükärtsknten minestens is oer eiter zrük In G \ {} leien ie eingetrgenen Rükärtsknten, ie niht mit inzient sin, stehen. Also ist G \ {} zsmmenhängen. Also ist kein Artikltionspnkt A rh A. Wie knn mn Artikltionspnkte erehnen? Wir müssen für lle Söhne in G Π issen, ie eit es on ort s zrük geht. Definition 6.4: Sei DFS(G) gelfen, lso G Π orliegen.

9 74 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN ) Für Knoten ist ie Menge on Knoten L() gegeen rh L() = oer Vorgänger on n es git eine Rükärtsknte on oer em Nhfolger z. ) l[] = Min{[] L()} ist er Lo-Wert on. (l[] hängt on Lf on DFS(G).) Folgerng 6.1: Sei DFS(G) gelfen n niht Wrzel on G Π. ist Artikltionspnkt ht Sohn in G Π mit l[] []. ehte: l[] = [] Artikltionspnkt. Keine Äqilenz. l [] < [] 6/7/6 1/8/1 2/5/2 3/4/3 Rükärts l [] 6/7/6 1/8/1 2/5/1 3/4/3 6/6/1 1/8/1 2/7/1 3/4/1 Rükärts

10 6.1 erehnng on l[] erehnng on l[] G Π l []=[] l [] s [] Lo Wert er Kiner n Rükärtsknten on. l [] s [] n Rükärtsknten on s. Korrektheit: Inktion üer ie iefe es eilmes 6.2 Algorithms (l-werte) Moifiktion on DFS-isit(): MDFS-isit(). l[]=[] //hier ol[] = eiß. for eh Aj[] o{ if (ol[] == eiß){ Π[] = ; MDFS-isit(); l[] = MIN{l[], l[]} } if (ol[] == gr) n (Π[] ){ l[] = MIN{l[], []} //[]! niht l[], keine Itertion. } } Dmit können ir Artikltionspnkte in Linerzeit erkennen. Es leien ie zeifhen Komponenten z finen. Seien ie l-werte gegeen. Nn 2. iefenshe folgenermßen:

11 76 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN Knoten, er entekt ir, f einem Keller speihern. G Π Sei jetzt l[] []. Am Ene on DFS-isit() Keller is (!) sgeen. Ist zeifhe Komponente. ieer oen rf shreien. eispiel 6.3: 1/10/1 2/9/1 3/8/1 e 6/7/6 4/5/4 Kellerinhlt: l[] [] Asge, e Asge e, Asge,, m Ene.

12 6.3 Algorithms (Zeifhe Komponenten) DFS(G); /* moifiziert für l-werte */ DFS(G); /* in erselen(!) Reihenfolge ie 1. mit ol[]= */ NDFS-isit();. foreh Aj[] o if ol[]== then Pi[]=, f Keller; NDFS-isit(); if l[] [] then Asge is inklsie noh hinz sgeen; en en en 6.3 Algorithms (Zeifhe Komponenten) eeis. Korrektheit inkti üer s = # Zeifhe Komponenten on G. Inktionsnfng: s = 1 Asge nr m Ene, kein Artikltionspnkt. Also korrekt. Inktionsshlss Gelte ehptng für lle(!) Grphen mit s 1 zeifhen Komponenten. Zeige ies für G mit s + 1 Komponenten. Wir etrhten ie 2. iefenshe es Algorithms. Die l-werte stimmen lso ereits, egen er Koorektheit er 1. iefenshe. Wir etrhten en m G Π, elher er gleihe ie ei er 1. iefenshe n 2. iefenshe ist. G Π Geht h ei Wrzel l Wert > [] Sei NDFS-isit() er erste Afrf, nh m ie Asge erfolgt. Dnn ist l[] []. Ist l[] = [], nn ist ltt (sonst orher Asge) n, ir sgegeen n kommt f ie Kellerspitze. Ist l[] = [], nn Asge es Kellers is n kommt ieer f ie Kellerspitze. Dmit ir eine zeifhe Komponente sgegeen. (Mehr knn niht z gehören, eniger niht, isher kein Artikltionspnkt). Nh Asge er Komponente

13 78 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN liegt eine Sittion or, ie in DFS-isit() ftritt, enn ir en Grphen etrhten, in em {,} n ie neren sgegegenen Knoten gelösht sin. Af iesem ist ie Inktionsorssetzng nenr n er Rest ir rihtig sgegeen.

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A Innenrm-Lsrennshler H 22 Ein- oer Dreiolige sührng Bemessngs-Snnng 12, 25 n 8,5 Bemessngs-Srom n 12 Inhl: DRIESCHER - Innenrm-Lsrennshler n Lsshler- Siherngs-Kominion H 22 nh EN 60265-1 n EN 62271-105

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Shortest Path Algorithmus von Edsger Dijkstra

Shortest Path Algorithmus von Edsger Dijkstra Shortest Pth Algorithmus von Esger Dijkstr Mihel Dienert 16. Dezemer 2010 Inhltsverzeihnis 1 Shortest Pth Algorithmus 1 1.1 Grphen................................. 1 1.2 Knoten..................................

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen Kp. 4.2 inäre Schäme ff Kp. 4.: VL-äme Professor r. Lehrsthl für lgorithm Engineering, LS11 Fkltät für Informtik, TU ortmnd Motition Wrm soll ich hete hier leien? lncierte äme rchen Sie immer wieder! Ws

Mehr

Bruchrechnen. Faßt man zwei Drittel eines Ganzen zusammen, so schreibt man 3. Bezeichnungen bei Brüchen: Der Bruch als Quotient:

Bruchrechnen. Faßt man zwei Drittel eines Ganzen zusammen, so schreibt man 3. Bezeichnungen bei Brüchen: Der Bruch als Quotient: Bruhrehnen Zerlegt mn ein Gnzes (einen Li Brot, eine Torte, einen Apfel, einen Geletrg, eine Kreisflähe, ein Rehtek, eine Streke,... ) in,,... gleihe Teile, so heißt ein solher Teil (Bruhteil es Gnzen)

Mehr

Musterfragen HERMES 5.1 Foundation

Musterfragen HERMES 5.1 Foundation Musterfrgen HERMES 5.1 Fountion Inhlt Seite 2 A Seite 3 Einführung Multiple-Choie-Frgen HERMES ist ein offener Stnr er shweizerishen Bunesverwltung. Die Shweizerishe Eigenossenshft, vertreten urh s Informtiksteuerungsorgn

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Hilfsrelais HR 116. Bilfinger Mauell GmbH

Hilfsrelais HR 116. Bilfinger Mauell GmbH Bilfinger Muell GmH Hilfsrelis HR 11 Die Hilfsrelis ienen zur glvnishen Trennung, Kontktvervielfhung un Trennung zwishen Hilfs- un Steuerstromkreisen. Bilfinger Muell GmH Inhltsverzeihnis Inhlt Seite Anwenung

Mehr

Dreiecke und Vierecke

Dreiecke und Vierecke reieke un Viereke Viereke Welhe esoneren Viereke sin eknnt, ws zeihnet esonere Viereke us? Impuls uf Seiten, Winkel, Symmetrie!.) s Qurt: Ein Qurt esitzt folgene Eigenshften: lle Seiten sin gleihlng. (

Mehr

Stabile Hochzeiten wie und warum?

Stabile Hochzeiten wie und warum? Stile Hohzeiten wie un wrum? Tg er Mthemtik HU erlin 25. pril 2009 Stefn elsner TU erlin, Mthemtik felsner@mth.tu-erlin.e Ws sin stile Hohzeiten? Gegeen: Menge von ruen, M Menge von Männern, = M. Jee Person

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206 Felix Brndl Münhen ZDfB_Ü01_SW_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 30 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Lesen Sie den folgenden Text zuerst

Mehr

Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34

Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34 Inhlt Shritte plus 5 Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34 Shritte plus 6 Lektion 8...39 Lektion 9...44 Lektion 10...49 Lektion 11...54

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

CREATE YOUR OWN PERFUME BUSINESS CONCEPT. Der Duft für Ihr erfolgreiches Business

CREATE YOUR OWN PERFUME BUSINESS CONCEPT. Der Duft für Ihr erfolgreiches Business CREATE YOUR OWN PERFUME BUSINESS CONCEPT Der Duft für Ihr erfolgreihes Business DAS BUSINESS CONCEPT Fszinieren einfh. In wenigen Shritten zum iniviuellsten Weregeshenk er Welt. Wollen Sie sih von Ihren

Mehr

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps 1 GeshäftsdiGrmme Wenn mn eine deutshe Üersetzung des Begriffes usiness hrts suht, so ist mn mit dem Wort Geshäftsdigrmme gnz gut edient. Wir verstehen unter einem Geshäftsdigrmm die Visulisierung von

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 Die Wirtshfts- un Sozilwissenshftlihe Fkultät er Universität Bern erlässt, gestützt uf Artikel 39 Astz

Mehr

G4_S01 Seite 2. Licht und Farbe (Fortsetzung) Untersuchung des neuen T-Shirts

G4_S01 Seite 2. Licht und Farbe (Fortsetzung) Untersuchung des neuen T-Shirts Emil un Anres gehen in ein Kleiungsgeshäft, um ein ornges T-Shirt zu kufen. Auf em Nhhuseweg öffnen sie ihre Einkufstshe, um einem Freun s neue ornge T-Shirt zu zeigen. Sie sin üerrsht, ss s T-Shirt rot

Mehr

Prüfungsvorbereitung Maler/-in und Lackierer/-in

Prüfungsvorbereitung Maler/-in und Lackierer/-in #04900_003_00-AH 18.05.2010 17:32 Uhr Seite 1 Friehelm Dukt, Konr Rihter, Günter Westhoff Prüfungsvorereitung Mler/-in un Lkierer/-in Gesellenprüfung Fhrihtung Gestltung un Instnhltung 3. Auflge Bestellnummer

Mehr

DV1_Kapitel_5.doc Seite 5-1 von 36 Rüdiger Siol 12.09.2009 16:31

DV1_Kapitel_5.doc Seite 5-1 von 36 Rüdiger Siol 12.09.2009 16:31 Rvensurg-Weingrten Vorlesung zur Dtenverreitung Tehnishe Informtik Inhltsverzeihnis 5 TECHNISCHE INFORMATIK...5-2 5. ENTWURF DIGITALER SYSTEME...5-2 5.2 KOMBINATIONSSCHALTUNGEN (SCHALTNETZE)...5-3 5.2.

Mehr

Vertragsbedingungen MAILOFANT Stand Januar 2011

Vertragsbedingungen MAILOFANT Stand Januar 2011 Vertrgseingungen MAILOFANT Stn Jnur 2011 1 Funktionsweise 1.1 Beshreiung Der MAILOFANT ist ein revisionssiheres wesiertes E-Milrhiv, welhes E-Mils unveränerr un lükenlos rhiviert. 1.2 Anlge es Arhivs Der

Mehr

Kapitel 7 Kalender, Erinnerungen und Kontakte

Kapitel 7 Kalender, Erinnerungen und Kontakte Kpitel 7 Klener, Erinnerungen un Kontkte Zu einem orentlihen Smrtphone gehören ntürlih uh eine usgereif- te Klener- un Erinnerungsfunktion un eine gute Kontktverwltung. Beim iphone reiten lle iese Funktionen

Mehr

Autogene Milchzahntransplantation

Autogene Milchzahntransplantation Ein Falleriht Autogene Milhzahntransplantation Dirk Nolte et al. Die autogene Milhzahntransplantation ist eine relativ unekannte Methoe es Einzelzahnersatzes, ie erstaunlih gute klinishe Ergenisse liefert.

Mehr

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern!

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern! DEUTSCH GRAMMATIK VERBPOSITION S. 0 Im Septemer LEICHT Shreien Sie Sätze! Beginnen Sie mit den grün mrkierten Wörtern! der Herst / m. Septemer / eginnt ds Oktoerfest / in Münhen / findet sttt die Österreiher

Mehr

Richtlinie Wohnungsbau

Richtlinie Wohnungsbau es Lnes Brnenurg für ie Üernhme von Bürgshften zur Förerung es Wohnungswesens Gemeinsmer Runerlss es Ministeriums er Finnzen un es Ministeriums für Sttentwiklung, Wohnen un Verkehr - jetzt: Ministerium

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Sie das Gerät aus und überprüfen Sie den Lieferumfang. Netzkabel. Trägerbogen/Plastikkarten-Trägerbogen DVD-ROM

Sie das Gerät aus und überprüfen Sie den Lieferumfang. Netzkabel. Trägerbogen/Plastikkarten-Trägerbogen DVD-ROM Instlltionsnleitung Hier eginnen ADS-2100 Lesen Sie zuerst die Produkt-Siherheitshinweise, evor Sie ds Gerät einrihten. Lesen Sie dnn diese Instlltionsnleitung zur korrekten Einrihtung und Instlltion.

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: 3-938744-76-6. FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: 3-938744-76-6. FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005 KASTNER AG ds medienhus FIT_ÜS_Kndidten-/Prueferletter_Oktoer_5 FIT IN DEUTSCH Üungsstz Kndidtenlätter/Prüferlätter ISBN: 3-938744-76-6 Fit in Deutsh. Üungsstz Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Übungssatz 01 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-79-0. FIT2_ÜS01_Kandidaten-/Prueferblaetter_Juli_2005

Übungssatz 01 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-79-0. FIT2_ÜS01_Kandidaten-/Prueferblaetter_Juli_2005 KASTNER AG ds medienhus FIT2_ÜS01_Kndidten-/Prueferletter_Juli_2005 FIT IN DEUTSCH 2 Kndidtenlätter/Prüferlätter ISBN: 3-938744-79-0 Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen 13 Shreien 21 Sprehen 25

Mehr

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck Downlod Mihel Frnk sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm, Dreiek Downloduszug us dem Originltitel: sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm,

Mehr

Die Philosophisch-historische Fakultät der Universität Bern. erlässt

Die Philosophisch-historische Fakultät der Universität Bern. erlässt Stuienpln für s Bhelor- un Mster-Stuienprogrmm Estern Europen Stuies / Osteurop-Stuien / Étues e l Europe orientle er Universität Bern in Zusmmenreit mit er Universität Friourg vom 1. August 2009 Die Philosophish-historishe

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Chemisches Gleichgewicht

Chemisches Gleichgewicht TU Ilmenu Chemishes Prktikum Versuh Fhgebiet Chemie 1. Aufgbe Chemishes Gleihgewiht Stellen Sie 500 ml einer 0,1m N her! estimmen Sie die genue onzentrtion der hergestellten N mit zwei vershiedenen Anlysenmethoden

Mehr

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Hnuh für en Shnellstrt Revision A MAfee Firewll Enterprise Control Center Version 5.3.1 In iesem Hnuh für en Shnellstrt finen Sie llgemeine Anweisungen zum Einrihten von MAfee Firewll Enterprise Control

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

McAfee Firewall Enterprise

McAfee Firewall Enterprise Hnduh für den Shnellstrt Revision C MAfee Firewll Enterprise Version 8.3.x In diesem Hnduh für den Shnellstrt finden Sie kurzgefsste Anweisungen zum Einrihten von MAfee Firewll Enterprise. 1 Üerprüfen

Mehr

Kleines Deutschlandquiz

Kleines Deutschlandquiz Kleines Deutshlndquiz 0 Stimmen diese Aussgen üer Deutshlnd? Kreuzen Sie n. d e f g h i j k l Die Bundesrepulik Deutshlnd esteht us 6 Bundesländern. Jedes Bundeslnd ht einen eigenen Bundesknzler / eine

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederun 1. Motivtion / Grundlen 2. Sortierverfhren 3. Elementre Dtenstrukturen / Anwendunen 4. Bäume / Grphen 5. Hshin 6. Alorithmische Geometrie 3/1, Folie 1 2010 Prof. Steffen Lne - HD/FbI - Dtenstrukturen

Mehr

3 Exzisionstechniken und Defektdeckungen in speziellen Lokalisationen

3 Exzisionstechniken und Defektdeckungen in speziellen Lokalisationen 95 3 Exzisionstehniken und Defektdekungen in speziellen Loklistionen 3.1 Kopf-Hls-Region Voremerkungen Die Häufigkeit störender Veränderungen sowie enigner und mligner kutner Neuildungen im Kopf-Hls- Bereih

Mehr

McAfee Firewall Enterprise, Multi Firewall Edition

McAfee Firewall Enterprise, Multi Firewall Edition Shnellstrt Hnuh Revision A MAfee Firewll Enterprise, Multi Firewll Eition Version 8.3.x In iesem Hnuh für en Shnellstrt finen Sie llgemeine Anweisungen zum Einrihten von MAfee Firewll Enterprise, Multi

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Shnellstrt Hnuh Revision A MAfee Firewll Enterprise Control Center Version 5.3.x In iesem Hnuh für en Shnellstrt finen Sie llgemeine Anweisungen zum Einrihten von MAfee Firewll Enterprise Control Center

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

AT = λ TB. Kapitel 5: Teilverhältnisse und Ähnlichkeit. Definition Teilverhältnis λ. Allgemeiner

AT = λ TB. Kapitel 5: Teilverhältnisse und Ähnlichkeit. Definition Teilverhältnis λ. Allgemeiner Definition Teilverhältnis Definition Teilverhältnis Üung Kpitel 5: Teilverhältnisse und Ähnlihkeit Definition Teilverhältnis λ λ T T llgemeiner T λ T T T T T ist innerer Teilpunkt, flls λ > 0 T ist äußerer

Mehr

Kapitel 6 E-Mails schreiben und organisieren

Kapitel 6 E-Mails schreiben und organisieren Kpitel 6 E-Mils shreien und orgnisieren Die Kommuniktion vi E-Mil ist heute essenziell. Und Ihr M ist estens gerüstet für den Empfng, ds Verfssen und die Orgnistion von E-Mils. Wie Sie effektiv mit dem

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

Prüfen von Kunststoffen

Prüfen von Kunststoffen Prüfen von Kunststoffen Prüfen von Kunststoffen -Mehnishe Prüfungen Kureit - Lngeit -Chemish Physikishe Prüfungen Strukturnyse -Thermonyse Rheoogie Dihte Wssergeht Spnnungsriss -Mikroskopie Lihtmikrosk.

Mehr

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz Seminr zum norgnish-hemishen Prktikum I Quntittive Anlyse Prof. Dr. M. Sheer Ptrik Shwrz itertur A. F. Hollemn, E. Wierg, ehruh der Anorgnishen Chemie, de Gruyter Verlg, Berlin, New York (Ahtung, neue

Mehr

FB Technologie und Management. Das de Morgansche Theorem. Kombinationsschaltungen (Schaltnetze) Rangfolge der 3 Grundoperationen

FB Technologie und Management. Das de Morgansche Theorem. Kombinationsschaltungen (Schaltnetze) Rangfolge der 3 Grundoperationen FB Tehnologie un Mngement Komintionsshltungen (hltnetze) Eingngsvektor X Komintorishes ystem (hltnetz) y y Ausgngsvektor f(x) n y m Dtenverreitung (Kpitel 5 Tehnishe Informtik) Drstellung er ignle X hltnetz

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Ingwer Borg. Zentrum für Umfragen, Methoden und Analysen, Mannheim Universität Gießen

Ingwer Borg. Zentrum für Umfragen, Methoden und Analysen, Mannheim Universität Gießen Ingwer Borg Zentrum für Umfrgen, Methoden und Anlysen, Mnnheim Universität Gießen 1 Als Ausgngspunkt unserer Betrhtungen verwenden wir einen Fll, der typish ist für die Verwendung der MDS in den Sozilwissenshften.

Mehr

Übungssatz 02 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-85-5. FIT2_ÜS02_Kandidaten-/Prueferblaetter_April_2006

Übungssatz 02 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-85-5. FIT2_ÜS02_Kandidaten-/Prueferblaetter_April_2006 KASTNER AG ds medienhus FIT2_ÜS02_Kndidten-/Prueferletter_April_2006 FIT IN DEUTSCH 2 Üungsstz 02 Kndidtenlätter/Prüferlätter ISBN: 3-938744-85-5 Üungsstz 02 Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen

Mehr

Millenium 3 Kommunikationsschnittstelle M3MOD Benutzerhandbuch der Betriebsunterlagen 04/2006

Millenium 3 Kommunikationsschnittstelle M3MOD Benutzerhandbuch der Betriebsunterlagen 04/2006 Millenium 3 Kommuniktionsshnittstelle M3MOD Benutzerhnuh er Betriesunterlgen 04/2006 160633103 Üerlik Hilfe zur Verwenung er Betriesunterlgen Einleitung Die Betriesunterlgen sin eine von er Progrmmierumgeung

Mehr

Getriebe und Übersetzungen Übungsaufgaben

Getriebe und Übersetzungen Übungsaufgaben Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen Quelle: Ai-Prüfungen des Lndes Bden-Württeerg 1 HP 1996/97-1 Shiffsufzug Bei der Bergfhrt uss von jeder Motor-Getrieeeinheit eine Krftdifferenz von

Mehr

ZDfB_Ü01_HV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter. HÖRVERSTEHEN ZEIT: ca.

ZDfB_Ü01_HV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter. HÖRVERSTEHEN ZEIT: ca. Felix Brndl Münhen ZDfB_Ü01_HV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT:. 30 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 TELEFONISCHE MITTEILUNGEN Teil

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

GESTRA SPECTORcom-Gateway. Kessel- und Brennersteuerung Durch das Intranet, Internet oder GSM-Netz ins Kesselhaus

GESTRA SPECTORcom-Gateway. Kessel- und Brennersteuerung Durch das Intranet, Internet oder GSM-Netz ins Kesselhaus GESTRA -Gtewy - un steuerung Durh s Intrnet, oer GSM-Netz ins hus Die Systemvorteile im einzelnen Mit em -Gtewy ist es GESTRA gelungen, ie Welt er steuerung mit er er Wsserseite zu verinen. Ein kleines,

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Inhalt, Formelsammlung:

Inhalt, Formelsammlung: Inlt, Fomelsmmlung: Geometie Ds llgemeine Deiek Spezielle Deieke Vieeke Regelmäßige Vieleke Keisfläen Pismen Pymien un Kegel 5 Pymien- un Kegelstümpfe 6 Kugel 6 Zentise Stekung un ie Stlensätze 6 Stz es

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Ja, klar! Das weiß ich.

Ja, klar! Das weiß ich. J, klr! Ds weiß ih. Einstieg ins Modul 1: Wir und die nderen Areit mit den Aildungen S. XXX Lösung: 1G; 2K; 3C; 4E; 5F; 6H; 7B; 8D; 9I; 10J; 11L; 12A Einführung der Begriffe Sprehen, Shreien, Lesen und

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Controlling als strategisches Mittel im Multiprojektmanagement von Rudolf Fiedler

Controlling als strategisches Mittel im Multiprojektmanagement von Rudolf Fiedler von udolf Fiedler Zusmmenfssung: Der Beitrg eshreit die Aufgen des Projektontrollings, insesondere des strtegishen Projektontrollings. Für die wesentlihen Aufgenereihe werden prktikle Instrumente vorgestellt.

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2014) Prof Dr Jens Teuner Leitung der Üungen: Mrcel Preuß, Sestin Breß, Mrtin Schwitll, Krolin

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

45 Würzburg Maidbronn Rimpar Gramschatz

45 Würzburg Maidbronn Rimpar Gramschatz ürzurg Mironn Rimpr Grmshtz gültig : 01.04.2013, Drukzeitpunkt: 21.03.2013 15:38:59, eite: 1 Fhrt er Linie F BB ürzurg, örthstrße -, Busf./ Bussteig 6 5.32 6.00 6.30 6.55 6.55 7.37 8.20 9.00 9.30 10.00

Mehr

Antrag auf Gewährung von Leistungen nach dem Unterhaltsvorschussgesetz (UVG)

Antrag auf Gewährung von Leistungen nach dem Unterhaltsvorschussgesetz (UVG) Antrg uf Gewährung von Leistungen nch em Unterhltsvorschussgesetz (UVG) n em Mont er Antrgstellung! 'l Mont rückwirken (>Angen unter Nr. 12 erforerlich) Bifte zugehöriges Merklft sorgfältig urchlesen'

Mehr

Modelltest 1 ZERTIFIKAT DEUTSCH. www.telc.net

Modelltest 1 ZERTIFIKAT DEUTSCH. www.telc.net Modelltest 1 ZERTIFIKAT DEUTSCH B1 www.tel.net INHALT Hinweis für Kursteilnehmende 03 Die Prüfung zum Zertifikt Deutsh (Üersiht) 4 Shriftlihe Prüfung Leseverstehen 6 Sprhusteine 12 Hörverstehen 16 Shriftliher

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr

Rock? Passt der. Personen beschreiben

Rock? Passt der. Personen beschreiben 10 Psst der Rok? Personen eshreien Denken Sie n drei Personen. Ws ist für die Personen typish? Mhen Sie Notizen. Ws gefällt Ihnen ( )? Ws finden Sie niht so gut ( )? Wie sieht die Person us? jung / lt

Mehr

Haus B Außenwand, Sockel

Haus B Außenwand, Sockel Hus B 18 Außenwnd, Sokel 19 Innenwnd, Bodenpltte 20 Außenwnd, Fundment 21 Innenwnd, Fundment 22 Außenwnd, Deke, Fenster 23 Innenwnd, Deke, Tür 24 Außenwnd, Trufe 25 Außenwnd, Ortgng 26 Außenwnd, Eke 27

Mehr

Lesen Sie diese Installationsanleitung, bevor Sie das Gerät verwenden, um es richtig einzurichten und zu installieren.

Lesen Sie diese Installationsanleitung, bevor Sie das Gerät verwenden, um es richtig einzurichten und zu installieren. Instlltionsnleitung Hier eginnen MFC-6490CW Lesen Sie iese Instlltionsnleitung, evor Sie s Gerät verwenen, um es rihtig einzurihten un zu instllieren. WARNUNG Wrnungen, ie ehtet weren müssen, um Verletzungsgefhr

Mehr

Unterwegs. 1 Ordnen Sie zu. 2 Sehen Sie die Fotos an. Was meinen Sie? Sprechen Sie. 3 Sehen Sie die Fotos an und hören Sie. vierzig 40 LEKTION 11

Unterwegs. 1 Ordnen Sie zu. 2 Sehen Sie die Fotos an. Was meinen Sie? Sprechen Sie. 3 Sehen Sie die Fotos an und hören Sie. vierzig 40 LEKTION 11 11 Unterwegs 1 2 5 6 FOLGE 11: MÄNNER! 1 Ordnen Sie zu. ds Auto die Tnkstelle die Grge der Führerusweis A B C D... ds Auto......... 2 Sehen Sie die Fotos n. Ws meinen Sie? Sprehen Sie. d Foto 1: Ws will

Mehr

Mäxchen ein Würfelspiel

Mäxchen ein Würfelspiel Mäxhen ein Würfelspiel A A1 Betrhten Sie ds Foto. Ws mhen die Personen? 2 + 5 Fünfundzwnzig..., hlt, nein: zweiundfünfzig. 3 + 2 Dreier Psh Ds glue ih niht. Ds will ih sehen. Ertppt! Du hst j nur eine

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Lektion 14 Test Lösungen

Lektion 14 Test Lösungen Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Lösungn X Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j X js jn jm Angymnsium gut ist? Wir kommn jr j js X jn jm Mont pünktlih unsr

Mehr

international 2 Lesen Sie die Geschichte von Spiele Leben im Kursbuch. Ordnen Sie dann die Sätze.

international 2 Lesen Sie die Geschichte von Spiele Leben im Kursbuch. Ordnen Sie dann die Sätze. 1 Zwishenspiel: Spiele leen 1 Ws eeuten ie Wörter? Ornen Sie zu. Im Glüksspiel sin Gel: Mn muss es n eine Bnk oer eine Person zurükzhlen. Shulen knn mn s eigene Tun kontrollieren un Ziele erreihen. Wer

Mehr