Das lineare H-unendlich Problem

Größe: px
Ab Seite anzeigen:

Download "Das lineare H-unendlich Problem"

Transkript

1 Das lineare H-unendlich Problem Salah-Eddine Sessou Seminarvorrag vom. Juli 6. Problemsellung Bild z P x u K Der Regler (Konroller)K ha zei Eingänge, x und den exogenen Eingang. Das H-unendlich Problem beseh darin, einen Regelkreis zu sabilisieren und die Wirkung von (exogen Eingang) au den Ausgang z zu minimieren. K soll kausal und linear sein und bilde die Konrolle u x u = K (.) x is die Lösung zur Dierenialgleichung: xɺ = Ax B B u x () = (.), ir berachen Cx z = Du (.3) in dem D D = I

2 . Das Endlich-Horizon Problem Das Endlich-Horizon Problem erlaub uns den Schlüssel zu einer srukurieren Lösung zu inden. In diesem Abschni berachen ir das zeivariane Sysem (.) und (.3). In dem D D = I, ür alle Zeien. Die Konrolle u is erzeug durch (.) in dem K kausal und linear is. Sei K die Menge aller Regler. Das Ziel is, einen Regler K K zu inden, sodass das geschlossene Sysem in Bild ( z z γ ) d x ( ) x( ) ε, [, ] (.5) erüll. Für alle L [,] und ε > und eine Marix nich negaiv deini. Und paramerisieren solche Regler, enn sie exisieren. Angenommen, γ >. Der erm x ( ) x( ) enn ir berachen. ird verende um einen sabilisierenden Regler zu erhalen. Beziehung zur Spielheorie Wir haben einen Designer und die Naur, die gegeneinander spielen, in dem das Ziel des Designers is,ein K K auszuählen, so dass (.5) erüll is, obei das Ziel der Naur is, das zu verhindern, in dem sie ein maximales ausähl ( Sörgrösse). Wir deinieren die Kosenunkion: ( γ ) ( ) ( ) J ( k,,, ) = z z d x x, (.) in der k ein Regler, is eine Sörung und eine beliebige nich negaive Marix. Wenn Designer ein K ausähl und Naur ein, is J ( k,,, ) die Kosenunkion von Designer obei J ( k,,, ) is ür Naur ein Geinn. Deshalb ill der Designer J ( k,,, ) minimieren und Naur ill J ( k,,, ) maximieren. Deiniion: Das Spiel ha einen Saelpunk, enn es exisier ein Paar ür alle L [,] und K K gil: ( k, ), sodass J ( k,,, ) J ( k,,, ) J ( k,,, ) (.)

3 Wir merken, dass k der bese Regler is in K obei der schlechese exogene Eingang in L [,] is. Die Exisenz des Saelpunks is eine noendige Bedingung, dass ein Regler (.5) erüll. Um das zu sehen: Wenn ein ˆk K erüll (.5) dann J ( kˆ,,, ) ür alle L [,]. also J ( k,,, ) = ür alle K K da x () = und K = so J ( kˆ,,, ) J ( kˆ,,, ) J ( k,,, ) Für alle L [,] und K K Dann is klar, dass = die schlechese Sörung is, desegen assen ir zusammen, dass das Paar ( k ˆ,) immer ein Saelpunk is ann immer ˆk (.5) erüll. Desegen können ir einen Reglerkandidaen suchen, indem ir die noendigen Bedingungen erser-ordnung ür die Exisenz eines Saelpunks unersuchen.. Noendige Bedingungen erser-ordnung Angenommen, es exisier eine Konrolle u und eine Sörung Sei x das zugehörige Zusandragekorie in dem erüll: erüllen (.) xɺ = Ax B B u, x () =. (.3) Minimierungsproblem: Angenommen ixier und u gesör zu u = u ηuɶ Sei xɺ = Ax B B u, x () = subrahieren (.3) haben ir = ηɶ, x x x In dem xɶ erüll: x ɺɶ = Ax ɶ Bu ɶ, x ɶ () = So xɶ ( ) = Φ(, τ ) B ud ɶ τ, (.4) in dem Φ (.,.) die Überragungsmarix zu A is.

4 Direk Ersezung in (.) ergib sich: u minimier (,,, ) ( = ) ( ) ( ) J u x C Cx u u γ d x x ( x C Cx u u ) d x ( ) x ( ) η ɶ ɶ ɶ ( η x ɶ C Cx ɶ u ɶ u ɶ ) d x ɶ ( ) x ɶ ( ) J ( u,,, ) dann muss der erm ( x C Cx u u ) d x ( ) x ( ) ɶ ɶ ɶ =. (.5) ersezen (.4) in (.5) bekommen ir uɶ ( B λ u ) d = (.6) in dem λ is die adjungiere Variable, deinier als ( ) = Φ (, ) C Cx d Φ (, ) x ( ) λ τ τ (.7) da uɶ is beliebig erhalen ir u = B λ (.8) Maximierungsproblem: Is analog zum Minimierungsproblem. obei hier u u ixier is und zu = ηɶ ir assen zusammen: = γ B λ (.3) gesör is Zei-Punk-Rander Problem (ZPRB): Die Dynamik der Laubahn des Saelpunks und die dazugehörige Dynamik der adjungieren Variablen können ir in (ZPRB ) zusammenassen. Dierenzieren (.7) haben ir da Φ (, ) = I ɺ ( ) = A λ C Cx, λ ( ) x ( ) λ = Kombinieren ir dieses mi (.3) und (.8) (.3) haben ir ( xɺ A BB λ BB ) x = ɺ λ C C A λ (.5)

5 mi Randbedingung: x () = λ( ) x ( ) (.6) Wie bereis gezeig, dami die Konrolle Saelpunk is, muss u = B λ gelen. = γ B λ u und der exogene Eingang ein in dem λ Lösung von ZPRB is. Obohl das eine noendige Bedingung is, haben ir noch nich gezeig, dass der Saelpunk exisier. Die (ZPRB) ha die rivial Lösung x und λ. Ob es neben dieser Lösung eine andere Lösung gib, erden ir im Folgenden unersuchen..3 Die Riccai-Gleichung Wir haben das Formal von u und, aber ir haben nich den Regler k dargesell. Wir zeigen, dass x und λ eine Verbindung mi Riccai-Dierenialgleichung (RDG) haben. Sei Φ (, ) die Überragungsmarix zu (.5): indem dann H d (, ) H (, ) d Φ = Φ, Φ (, ) = I (.7) A ( BB λ B B ) = C C A x ( ) Φ(, ) Φ(, ) x ( ) = λ( ) Φ (, ) Φ (, ) λ( ) (.8) bei eliminieren λ ( ) = x ( ) erhalen ir mi λ = x ( ) und λ ( ) in (.8), Benuzung der Randbedingung ( ) P( ) x ( ) P( ) = ( Φ (, ) Φ (, ) )( Φ (, ) Φ (, ) ) so lang Invers exisier in [, ]

6 x ir haben schon u = B P( ) x = ( B P( ) ) und deshalb k = ( B P( ) ) is Kandida Regler und P is die Lösung zu RDG : Pɺ = A P PA P B B B B P C C, P( ) = (.) ( γ ) Wir können noieren, dass ir die Konrolle als u = B P( ) x schreiben können,enn RDG eine Lösung ha, die der Inverierbarkei von Φ (, ) Φ(, ) im Zeiinervall [,] equivalen is. Unser Ziel is jez im Res dieses Abschnis zu zeigen, dass RDG (.) eine Lösung in [,] ha exisier ein Regler k der (.5) erüll. heorem.: Angenommen, dass RDG (.) eine Lösung in [, ] ha, deinieren: u = B Px (.) daraus olg: γ = B Px (.) J ( k,,, ) = u u γ (.3) [ ] [ ],,,, ür jeden Regler k und jeden Eingang, enn u = u dann (.5) is erüll ür ε >, das bedeue, u = B Px is die Lösung ür das H -Regler Problem in der Zei [,]. Beeis: Da P( ) = und x () = ür jede u und is d (,,, ) = ( ) J k z z γ x Px d d da d ( x Px ) = x ɺ Px x Px ɺ x Px ɺ d ersezen xɺ und P ɺ bekommen ir

7 ( γ ɺ ) J ( k,,, ) = x C Cx u u ( x A B u B ) Px x Px x P( Ax B B u d = ( ( ɺ ) γ ( ) ( ) x C C A P PA P x u u B u B Px x P B B u d = ( ( γ ) γ ( ) ( ) x P B B B B Px u u B u B Px x P B B u d γ γ γ = ( ) ( ) = u B Px ( u B Px) d B Px ( B Px) d u u γ [ ] [ ],,,, es bleib zu zeigen, dass (.5) is erüll sei L bilde direk Ersezung sehen ir xɺ = ( A B B P) x B K = K = B Px γ ( u u ) = in (.3) haben ir J ( k,,, ) = γ ür ε posiiv ε = γ / L = γ ε [ ],, L [ ],, [ ],, [ ],, zu zeigen : P is nich negaiv deini : Angenommen (.) ha eine Lösung in [, ] Deinieren dann ( γ ) ( ) ( ) J ( k,,, ) = z z d x x J ( k,,, ) = u u γ x ( ) P( ) x( ) [ ] [ ],,,, da x ( ) P( ) x( ) = J ( k,,, ) γ [ ],, J ( k,,, ) ür alle und (.6) is ahr ür jede x( ), dann olg dass P( ) ür alle [, ].

8 .4 Noendigkei Bisher haben ir gezeig, dass jeder Regler der (.5) erüll ein Saelpunk ür Dierenial Spiel sein muss. Bei Analyse der Noendigen-Bedingung-Erser-Ordnung ür eine Saelpunk haben ir (ZPRB) erhalen, dass jede Saelpunk-Sraegie gegeben is durch u = B λ, = γ B λ in dem die adjungiere Variable eine Lösung von (ZPRB) is. Wir haben dann gezeig,dass λ als Funkion von x sein kann, vorausgesez, die RDG ha eine Lösung in [,]. Bei heorem (.) haben ir gezeig, dass die Exisenz einer Lösung der RDG asächlich eine genügende Bedingung ür die Exisenz einer Lösung von H- unendlich Regler Problem. Es bleib uns zu zeigen, dass RDG eine Lösung ha enn H- unendlich Regler Problem eine Lösung ha. Daür müssen ir zur Frage zurückkehren ob (ZPRB) nich nur die rivial Lösung ha. Die Frage kann anhand der Exisenz der konjugieren Punke beanore erden. Deiniion: Zei Zeien und,, sind konjugiere Punke von ZPRB (.5), enn es eine nich riviale Lösung zu (.5) gib, sodass x( ) = und λ ( ) = x( ) ür ein gegebenes ixieres. Lemma.: Sei Φ (, τ ) die Übergangsmarix zu ZPRB (.5), die Marix Φ (, ) Φ(, ) is singulär genau dann, enn und konjugiere Punke sind. Daraus schließen ir von diesem Lemma, dass RDG eine Lösung in [,] ha enn es kein [,] gib, ür das und konjugiere Punke sind. Lemma.3: Sei zei beliebige Zeien und. Die eindeuige Lösung zu ZPRB (.5) is die riviale Lösung x( ) λ( ). heorem.4: Berachen ir das lineare Sysem (.) mi Ausgang (.4) und Kosen (.) mi alls es exisier ein Regler ˆk K sodass J ( kˆ,,, ) ε ür alle L [,] und > ε, dann [, ] und sind nich konjugiere Punke. Daraus olg auch, dass die Marix Φ (, ) Φ(, ) nich singulär is ür alle [, ] und die RDG (.) ha eine Lösung in [,].,[, ] heorem (.) (.4) lassen zur Schlussolgerung kommen, dass ein kausaler linearer Regler exisier, der (.5) erüll RDG eine Lösung in [,] ha.

9

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse 3. Auoregressive Prozesse (AR-Modelle 3.. AR(-Prozesse Definiion: Ein sochasischer Prozess ( heiß auoregressiver Prozess der Ordnung [AR(-Prozess], wenn er der Beziehung (3.. genüg. ( is darin ein reiner

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung.

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung. 1 Lie-Gruppen 1. Lie-Algebren Im lezen Vorrag haben wir bereis das Konzep der Lie-Algebren kennengelern. Zunächs werde ich noch einige weiere grundlegende Definiionen dazu angeben. In diesem Kapiel sei

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Die Exponentialfunktion

Die Exponentialfunktion Die Eponenilunkion Deiniion Es sei eine posiive reelle Zhl,,. Eine Funkion R + R R : heiß Eponenilunkion. Die posiive reelle Zhl heiß Bsis und die reele Zhl R Eponen der Funkion. Mnchml heiß uch Wchsumskor.

Mehr

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen 454 Erforderliche Kennnisse: Höhere Analysis Elemenare Lösungsmehoden für gewöhnliche Differenialgleichungen Was is eigenlich eine Differenialgleichung? Eine Differenialgleichung is eine Gleichung, in

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

7 Das lokale Ito-Integral

7 Das lokale Ito-Integral 7 Das lokale Io-Inegral 7.3 Ein lokales L p -Maringal is uner einer gleichgradigen Inegrierbarkeisbedingung ein L p -Maringal 7.4 Rechsseiig seiges (seiges), lokales L p -Maringal 7.5 Seige, lokale Maringale

Mehr

Mathematik 1 für Maschinenbau, M. Schuchmann (SoSe 2013) Aufgabenblatt 5 (Ebenen)

Mathematik 1 für Maschinenbau, M. Schuchmann (SoSe 2013) Aufgabenblatt 5 (Ebenen) Mahemaik für Machinenbau, M. Schuchmann (SoSe ) Aufgabenbla 5 (Ebenen) ) Geuch i eine Gleichung der Ebene E durch die Punke A(; -; ); B(; ; -) und C(; ; ) in Parameerform. ) Schreibe in Koordinaenform:

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Akuarielle und finanzmahmaische Bewerung I Xiaoying Xu Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof Schmidli,

Mehr

Musterlösung Serie 10

Musterlösung Serie 10 Prof. D. Salamo Aalysis I MATH, PHYS, CHAB HS 04 Muserlösug Serie 0. a Wir bereche mi der biomische Formel e cos ix + e ix x = = =0 =0 e ix e i x = =0 e i x Da = gil, öe wir i der leze Summe die Terme

Mehr

5. Übungsblatt zur Differentialgeometrie

5. Übungsblatt zur Differentialgeometrie Insiu für Mahemaik Prof. Dr. Helge Glöckner Dipl. Mah. Rafael Dahmen 5. Übungsbla zur Differenialgeomerie (Aufgaben und Lösungen) SoSe 3.05.0 Gruppenübung Aufgabe G9 (Submersionen und Unermannigfaligkei)

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Analysis 3.

Analysis 3. Analysis 3 www.schulmahe.npage.de Aufgaben. Ermieln Sie die erse Ableiung. Vereinfachen Sie. a) fx) = e x x 3) b) fx) = ln x x + 4. Ermieln Sie die folgenden unbesimmen Inegrale. e x 5 a) e x dx b) dx

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mahemaik der Universiä Hamburg WiSe 26/27 Dr. Hanna Peywand Kiani Hörsaalübung 3 Differenialgleichungen I für Sudierende der Ingenieurwissenschafen Lineare Differenialgleichungssyseme Die ins

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Anfangswertprobleme gewöhnlicher Differentialgleichungen

Anfangswertprobleme gewöhnlicher Differentialgleichungen 13. Großübung Anfangswerprobleme gewöhnlicher Differenialgleichungen gesuch: mi T und y () = f(, ), y( ) = y (1) y( j+1 ) = y( j ) + j+1 j f(s, y(s)) ds () Idee: Erseze Inegral durch Quadraurformel Näherungen

Mehr

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz Der Primzahlsaz, Teil Vorrag zum Seminar zur Funionenheorie, 07.05.0 Raffaela Biesenbach Diese Arbei beschäfig sich mi der Herleiung des Primzahlsazes. Dazu werden Definiionen und Säze aus dem Sri zur

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Dipl.-Mah. Sebasian Schwarz SS 015 17.05.015 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zum 6. Übungsbla

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

Abbildungsmaßstab und Winkelvergrößerung

Abbildungsmaßstab und Winkelvergrößerung Abbildungmaßab und Winkelvergrößerung Abbildungmaßab Uner dem Abbildungmaßab vereh man da Verhälni /, wobei der Audruck ein negaive Vorzeichen erhäl, wenn da ild verkehr wird. Alo Abbildungmaßab V: Winkelvergrößerung

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

4.1 OLS a) OLS-Schätzung der Koeffizienten der Strukturform

4.1 OLS a) OLS-Schätzung der Koeffizienten der Strukturform 4. Schäzmehoden 4. 4. OLS a) OLS-Schäzung der Koeffizienen der Srukurform OLS liefer verzerre und nich konsisene Schäzungen der Koeffizienen der Srukurform inerdependener Modelle, weil i.a. Sörvariable

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Mahemaik: Mag. Schmid Wolfgang Arbeibla 7. Semeer ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Im Raum möche man naürlich nich nur Geraden ondern auch Flächen darellen. Diee Flächen bezeichne man al

Mehr

Charakterisierung des Systems R C. Faltungsintegral. Faltungsintegral (anschaulich) Faltungsintegral (anschaulich) 1. Übertragungsfunktion zb

Charakterisierung des Systems R C. Faltungsintegral. Faltungsintegral (anschaulich) Faltungsintegral (anschaulich) 1. Übertragungsfunktion zb Charakerisierung des Sysems. Überragungsfunkion zb Falungsinegral 2. Impulsanwor (Anwor auf δ()) δ() R C h() Gleiche Ergebnis wie Spannungseiler! Impulsanwor: Inverse Fourierransformaion Falung_4_2_5.pp

Mehr

Regelungs- und Systemtechnik 3

Regelungs- und Systemtechnik 3 Regelng Mecharonischer yseme, Regelngs- nd ysemechnik 3 Kaiel 5: Riccai-Oimal-Regler ro. Dr.-Ing. Li Fachgebie imlaion nd Oimale rozesse O Herleing nd nwendng des Riccai-Oimal-Reglers R l Vorkennnisse:

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Stochastische Analysis

Stochastische Analysis Sochasische Analysis Maringale und sochasisches Inegral Franz Hofbauer Einleiung Sei (Ω, A, P ) ein Maßraum mi P (Ω) = 1. Die messbaren Mengen, das sind die Mengen in der σ-algebra A, werden als Ereignisse

Mehr

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt.

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt. Lineare Funkionen. Lösungen Lö LÖÖSSUUNNGGEENN ZZUUM.. KPPI IITTEELL ZZUU UUFFGGEE..: : a) as Pfeildiagramm zeig keine Funkion, da von h kein Pfeil ausgeh und von a zwei Pfeile. b) Is eine Funkion, denn

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michael Buhlmann Mahemaikaugaben > Analysis > Funkionenscharen Augabe: Unersuche die ganz raionale Funkionenschar + 8 mi Parameer > 0 au: Nullsellen, Hoch- und Tiepunke, Monoonie, Wendepunke, Krümmung,

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt)

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt) ) Neoklassisches Wachsumsmodell (ohne echnischen Forschri).1) Problemsellung (Arbeismark) Das Problem, das von Solow - dem Begründer der neoklassischen Wachsumsheorie - angegangen wurde, bezog sich auf

Mehr

3. Partielle Differentialgleichungen

3. Partielle Differentialgleichungen 3.. Grundlagen und Klassifikaion Welche Ordnung haben diese Gleichungen?? 3.4.1 Lineare parielle Differenialgleichungen. Ordnung Analogie: Klassifikaion Kegelschnie 1 3.4.3 Korrek geselle Probleme Anfangs-

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

1. Schularbeit (6R) 24. Okt. 1997

1. Schularbeit (6R) 24. Okt. 1997 . Schularbei (6R). Ok. 997. Vereinfache und selle das Ergebnis mi posiiven Hochzahlen dar. Es sind dabei alle Rechenschrie anzugeben: 7 x x y 8 : x x y. Löse die folgende Wurzelgleichung ohne Verwendung

Mehr

Übungsblatt 8 Musterlösung

Übungsblatt 8 Musterlösung Numerik gewöhnlicher Differenialgleichungen MA - SS6 Übungsbla 8 Muserlösung Aufgabe 7 Schriweienseuerung) Im Folgenden soll die Differenzialgleichung y ) = f,y)) = sign)y, y ) = e, im Zeiinervall [, ]

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt.

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt. 16 2.3 Sprungfunkion, Rampenfunkion Delafunkion Diese 3 Signale haben als Anregungssignale am Eingang eines Sysems besondere Bedeuung für die lineare Sysemheorie erlang. Sprungfunkion: ( σ ( ), 1( ) )

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08 Phillips Kurve (Blanchard Ch.8) 310 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Kapitel 14: Steuern. Hauptidee: Steuern verändern das Wettbewerbsgleichgewicht und führen zu Wohlfahrtsverlusten.

Kapitel 14: Steuern. Hauptidee: Steuern verändern das Wettbewerbsgleichgewicht und führen zu Wohlfahrtsverlusten. Kapiel 14: Seuern Haupidee: Seuern verändern das Webewerbsgleichgewich und führen zu Wohlfahrsverlusen. Aren von Seuern Mengenseuer: Jede gehandele Mengeneinhei des Gues wird mi einer Seuer von belase

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Versicherungstechnik

Versicherungstechnik Operaions Research und Wirschafsinformaik Prof. Dr. P. Rech // Marius Radermacher, M.Sc. DOOR Aufgabe 33 Versicherungsechnik Übungsbla 10 Abgabe bis um Diensag, dem 20.12.2016 um 10 Uhr im Kasen 19 Der

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

Prüfungsaufgaben Wiederholungsklausur

Prüfungsaufgaben Wiederholungsklausur NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur

Mehr

Versicherungstechnik

Versicherungstechnik Operaions Research und Wirschafsinformaik Prof Dr P Rech // Marius Radermacher, MSc DOOR Aufgabe 30 Versicherungsechnik Übungsbla 9 Abgabe bis zum Diensag, dem 13122016 um 10 Uhr im Kasen 19 Berachen Sie

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

Stochastische Automaten und Quellen

Stochastische Automaten und Quellen KAPITEL 2 Sochasische Auomaen und Quellen Sei A ein Sysem allgemeiner Ar (z.b. ein physikalisches Sysem oder eine Nachrichenquelle), das wir zu diskreen Zeipunken = 0, 1,... beobachen. Wir nehmen an: (SA

Mehr

Inhaltsverzeichnis. 4 Gleichgewichte Der Fluss einer Differentialgleichung... 97

Inhaltsverzeichnis. 4 Gleichgewichte Der Fluss einer Differentialgleichung... 97 Inhalsverzeichnis Differenialgleichungen erser Ordnung 5. Allgemeine Definiion und Beispiele... 5.2 Lineare Differenialgleichungen......3 Lösungsmehoden für spezielle Typen von Dgln..Ordnung... 3.3. Die

Mehr

Schlanke Baumzerlegungen von Graphen

Schlanke Baumzerlegungen von Graphen Parick Bellenbaum Schlanke Baumzerlegungen von Graphen 12. Dezember 2000 Diplomarbei am Mahemaischen Seminar der Universiä Hamburg Zusammenfassung Berache man zwei Teile einer Baumzerlegung eines endlichen

Mehr

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft KA LK M2 13 18. 11. 05 I. ANALYSIS Leisungsfachanforderungen Für jedes > 0 is eine Funkion f gegeben durch f (x) = x + 1 e x ; x IR. Der Graph von f sei G. a) Unersuche G auf Asympoen, Nullsellen, Exrem-

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Multiple Regression: Übung 1

Multiple Regression: Übung 1 4. Muliple Regression Ökonomerie I - Peer Salder 1 Muliple Regression: Übung 1 Schäzung einer erweieren Konsumfunkion für die Schweiz Wir unersuchen die Abhängigkei der Konsumausgaben der Schweizer Haushale

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen WS 15/16. Vorlesung. Teil 1b. Rechnen modulo n

Kryptologie. Bernd Borchert. Univ. Tübingen WS 15/16. Vorlesung. Teil 1b. Rechnen modulo n Krypologie Bernd Borcher Univ. Tübingen WS 15/16 Vorlesung Teil 1b Rechnen modulo n Modulo Rechnen a mod n is definier als Res von a bei Division durch n (a aus Z, n aus N) a + b mod n = a mod n + b mod

Mehr

Mathematik für das Ingenieurstudium. 4. Juli 2011

Mathematik für das Ingenieurstudium. 4. Juli 2011 Mahemaik ür das Ingenieursudium Jürgen Koch Marin Sämple 4. Juli 0 .6 Beweise 43 Beispiel.3 (Ungleichungen) a) Die Ungleichung + 4 < 6 is ür alle -Were deinier. Zur Besimmung der Lösungsmenge berechnen

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr