1 Ladung, Coulomb-Gesetz, E-Feld

Größe: px
Ab Seite anzeigen:

Download "1 Ladung, Coulomb-Gesetz, E-Feld"

Transkript

1 ufgben zur Experimentlphysik II: Elektrosttik I Musterlösung Willim Hefter - 4//9 Lung, Coulomb-Gesetz, E-Fel. () Beingung ist hier F el F g Q 4πɛ r G m em m r Q Gm e m m 4πɛ 5, 7 3 C Die Entfernung fällt herus, ie beien Gesetze ufgrun ihrer Symmetrie beie proportionl zum bstnsurt sin. (b) Wsserstoff besitzt genu ein Proton, ht lso ie Lung e, 7 9 C, mit: e 5, 7 3 C, 6 9 C 3, 6 3 Ionen Ein Wsserstoffion ht ie Msse m N M, 66 7 kg, ie benötigte Gesmtmsse ist lso. Geometrische Beziehungen: x L sin θ sowie F el cos θ F g sin θ. Wir erhlten lso cos θ 4πɛ x mg sin θ 4πɛ x mg tn θ mg sin θ x x ( L πɛ mg ) /3 L mg 3. () Ds Gesmtrehmoment verschwinet. Die Lungen links trgen ein positives Drehmoment bei, ie rechts ein negtives un s Gewicht ein positives. Zusmmen ergibt sich Q L 4πɛ h + Wg(x L ) Q L 4πɛ h x L ( ) Q 4πɛ h Wg + 4. Wir setzen x, x 5cm. D ie beien Lungen unterschieliche Vorzeichen hben, knn sich ie Gleichgewichtslge nicht zwischen befinen. Ferner muss sie näher bei sein, ies ie schwächere Lung ist. Ferne gilt Superposition un ufgrun er -imensionlität können wir s E-Fel ls Sklr schreiben: x x x x x x lso: x 5cm ist eine Gleichgewichtslge. 4πɛ 4 (x x ) ( ) x 4 (x x )!

2 5. () Der Stb ist homogen gelen, lso gilt einfch λ L. (b) Ds Fel eines kleines Stbstückchens ist gere 4πɛ r λx 4πɛ (x + ) Ds Gesmtfel ergibt sich einfch urch Integrieren über en Stb: λ /L ˆL λ 4πɛ 4πɛ (L + ) [ ] L λ x + 4πɛ L (L + ) Ds Minuszeichen eutet ruf hin, ss s Fel weg vom negtiv gelenen Leiteeigt. (c) Für L ist (L + ) un 4πɛ Ws em Fel einer Punktlung entspricht. 6. Eine gelene Scheibe besteht us vielen gelenen Ringen mit Lungen σπrr. Ds Fel eines Rings wr E z r e z 4πɛ (R + z ) 3/ e zσπrr z 4πɛ (R + z ) 3/ Zur Bestimmung es Gesmtfeles integrieren wir einfch über ie Scheibe, lso E s ˆR E r ˆR σz e z ɛ r r (r + z ) 3/ [ σz e z ɛ (r + z ) / [ σz e z ɛ σ e z ɛ Fü oer R z geht ieses Fel über in [ ] R (R + z ) / z ] z (R + z ) / σ ez ɛ ws em mit em Guß schen Stz usgerechneten Fel entspricht. Mn sieht, ss s Guß sche Gesetz solche Berechnungen wesentlich vereinfchen knn. 7. Die ufgbe entspricht em schiefen Wurf, mn ht nur s Grvittionsfel urch ein E-Fel ersetzt. Ds E-Fel ist kv m e y E e y, v 6 6 m s ( e x + e y ) v ( e x + e y ). Die Beschleunigung finet mn us F el ee e y m e m E e y e y () Wir suchen lso s Mximum von y(t) v t t. Es ist ẏ(t) v t! t v. Eingesetzt in y(t) ergibt sich y mx, 56cm. lso könnte s Elektron ie obere Pltte treffen. (b) Wir suchen nun ie Zeit, für ie y. Eingesetzt un ufgelöst ergibt sich t v ± v 4 ]

3 wobei wir ie negtive Lösung verwenen, wir ie früheste Zeit wollen. Wir finen t 6, 43 9 s x(t ), 7cm Guß scher Stz. Ds E-Fel steht senkrecht uf llen Seiten usser er oberen un unteren, lso trgen nur iese bei. Im Fll er oberen Seite ist s Fel ntiprllel, bei er unteren Prllel zum Normlenvektor. lso ist, mit m : ɛ φ e ɛ ( E(m) E(3m)) 3, 54µC. () Mn betrchte eine Guß sche Oberfläche, ie vollstänig innerhlb es Leiters liegt, en Rn nicht umschliesst, jeoch en Hohlrum. Ds E-Fel muss überll uf ieser Fläche sein, wir sonst einen Strom im Leiter beobchten würen. Dies ist nicht er Fll. lso liegt eine Nettolung von C in er Oberfläche, ws wieerum beeutet, ss sich uf er Wn es Hohlrums eine Lung von 3 6 C befinen muss. (b) Nch ußen muss er Leiter wie eine einzelne Lung, bestehen us en rin enthltenen Einzellungen, ussehen. Folglich befinet sich uf er Oberfläche eine Lung von 3 6 C. 3. () Wir legen eine zylinrische Guß sche Oberfläche er Länge L un mit Rius r um ie gesmte nornung. us Symmetriegrünen muss s E-Fel überll uf er Oberfläche senkrecht stehen un prllel zum Normlenvektor sein, lso wir s Flußintegrl besoners einfch. Die eingeschlossene Lung ist gere Q, un E EπrL ɛ πɛ rl e r Ds Minuszeichen eutet n, ss s E-Fel nch Innen gerichtet ist. (b) Wir legen eine zylinrische Guß sche Oberfläche in ie Röhre rein, so ss sie ie innere Seite mit einschliesst, nicht jeoch ie äußere. D wir uns in einem Leiter befinen, ist s Fel, lso muss uch ie enthltene Lung gleich sein. uf em inneren Zyliner befinet sich ie Lung, folglich liegt uf er inneren Wn er Röhre ie Lung. Nch ußen hin muss ie nornung ie Gesmtlung vorzeigen, lso muss uf er äußeren Oberfläche nochmls ie Lung liegen. (c) Überlegung ist völlig nlog zu (), nur ss er Zyliner iesml nur en inneren Stb un somit ie Lung einschliesst. lso ist s Fel πɛ rl e r 4. Ds Fel einer leitenen Metlloberfläche ist gegeben urch σ ɛ. Die rbeit, ie s Fel m Elektron verrichtet, ist gere gleich W F el e σ ɛ. Lut ngbe ht s Elektron mit ev gere genug Energie, um ie Pltte zu erreichen, lso ist W e σ ɛ ev e J 4, 4 4 m 5. Die pssene Guß sche Oberfläche ist in llen Fällen ntürlich eine Kugelfläche 4πr. () r < : Die Kugel trägt ie Lung +, rus folgt ie homogene Lungsichte ρ k. Wir legen 4/3π 3 eine Guß sche Kugelfläche in ie Kugel un finen: Ds Fel ist rilsymmetrisch un überll prllel zum Normlenvektor, lso E E, lso: E E4πr ρ k 4 3 πr3 3 r 4πɛ 3 ɛ

4 (b) < r < b :Die eingeschlossene Lung ist hier gere ie Lung uf er inneren Kugel, lso : E E4πr ɛ 4πɛ r ws em beknnten Fel einer Punktlung entspricht. (c) Die Kugelschle ist leiten, lso liegen ie Lungen uf en Ränern un s Fel im Innern ist Null. () Ds System verhält sich wie eine Punktlung mit Gesmtlung, lso verschwinet essen Fel. (e) Die Lung uf er inneren Kugelschle wir influenziert urch ie er Kugel, muss sie lso usgleichen un muss her gere sein. lterntiv er Beweis über eine Guß sche Fläche, ie innerhlb er Kugelschle liegt. Die Lung uf er inneren Seite er Kugelschle ist gere gleich er Gesmtlung uf er Kugelschle, somit ist ie Lung uf er äußeren Seite gleich. 6. Wir legen eine Guß sche Kugelfläche in ie Kugelschle. m Ort < r < b ist ie eingeschlossene Lung nn gere gleich er Punktlung plus er inhomogenen Rumlung er Schle. Diese ist gegeben urch: Q ˆ V ˆr Q 4π Vρ us em Guß schen Stz folgt nn s Fel ˆr ˆ r π ϕ ˆπ r r π(r ) θ r sin θ r Q + ɛ ɛ r ɛ + 4πr ɛ Ds Fel ist homogen, flls ie rechte Seite unbhängig von r ist, lso muss r ɛ 4πr ɛ 3 Ds elektrosttische Potentil. Die Lungsichte ist gere ρ 4/3πR 3 un ie eingeschlossene Lung innerhlb einer Guß schen Fläche es Rius r < R ist nn Q ρ 4 3 πr3 r3 R 3. Für s Fel folgt us E Q ɛ r 4πɛ R 3. ) Es sei nun φ bei r. i. Die bhängigkeit es Potentils erhält mn über φ(r) φ() }{{} Nullpunkt ˆr ˆr φ(r) Er r 4πɛ R 3 φ(r) r 8πɛ R 3 4

5 ii. D φ() ist jees mit em Ergebnis us i) berechnete Potentil gere ie Potentilifferenz zum Mittelpunkt, für r R folgt φ(r) 8πɛ R iii. lle Punkte ußerhlb es Ursprungs hben negtives Potentil, lso ist er Ursprung gere er Punkt es höchsten Potentils. b) Hier müssen wiur Bestimmung es Potentils ners vorgehen. Wir kennen ie Formel für ie Potentilifferenz zwischen zwei Punkten, im Speziellen gilt hier eshlb ˆR φ(r) φ(r) r ˆR Er r r 4πɛ R 3 8πɛ R 3 (R r ) Die linke Seite enthält ber uch s beknnte Potentil uf er Oberfläche einer Punktlung, nämlich φ(r), lso ist Die Potentilifferenz zum Ursprung ist 4πɛ R φ(r) 8πɛ R 3 (R r ) φ(r) (3R r ) 8πɛ R 3 φ(r) φ() 8πɛ R 3 8πɛ R 8πɛ R Ds Potentil innerhlb er Kugel ist lso ners ls s in ) bestimmte, ie Differenz zwischen Oberfläche un Ursprung ber gleich. Dies liegt gnz einfch n er Definition es Nullpunkts. Die ngbe eines bsoluten Potentils ist irekt von iesem bhängig, bei einer Differenz kürzen sich ie Eichfktoren jeoch rus.. Ds sklre Potentil n einem beliebigen Ort ist einfch ie sklre Summe es Potentile er einzelnen Punktlungen. Mit l, 5m, b, 5m: () φ [ + ] 6kV 4πɛ l b (b) φ B [ 4πɛ b + ] 78kV l (c) Die kinetische Energie m nfng un Ene ist, lso entspricht ie rbeit gere W 3 φ 3 (φ φ B ), 5J () Die rbeit wir von einer externen Krft verrichtet, lso erhöht sich ie Energie es Systems. (e) Die elektrosttische Krft ist konservtiv, lso ist ie rbeit wegunbhängig. 3. Wir benötigen s Potentil eines lngen Drhtes. Ds Fel eines solchen Drhtes wr gegeben urch λ πɛ r Die Potentilifferenz zwischen zwei Punkten in iesem Fel ist gegeben urch ˆr f φ φ r f φ ri Er r i λ πɛ ln r i r f In unserem Fll ist φ ie Potentilifferenz zwischen em Drht (r i ) un em Zyliner (r f ), lso ist φ λ πɛ ln r 85V 5

6 Wir wollen einen usruck für λ, lso: Dmit wir s Fel zu λ φπɛ ln r φ r ln r () Oberfläche es Drhtes: r r φ r ln r, 36 8 V m (b) Oberfläche es Zyliners: r φ ln r 8, 8 3 V m 4. Die vollstänige Gleichung für s Potentil ist φ( r) ˆ 4πɛ V 3 r ρ( r ) r r Der beobchtete Punkt liegt jeoch uf e-chse,.h. er bstn zum Ring ist gere r r R + z un ein kleines Lungselement ist gere λs λrϕ. Ds Integrl vereinfcht sich lso uf ie Berechnung eines ϕ-integrls: φ(z) 4πɛ 4πɛ 4πɛ λr R + z πrλ R + z R + z ˆ π ϕ Ds E-Fel ist gegeben urch z φ 4πɛ (R + z ) 3/ e z In Übereinstimmung mit em Ergebnis us er Vorlesung. Die Berechnung es Potentils ist hier um einiges schneller ls ie es Feles. 5. Ds sklre Potentil lässt sich einfch ieren, her folgt φ(p) [ 5 4πɛ ] 5 8πɛ 6. Für eine Lung, ie sich urch eine Potentiltilifferenz bewegt, gilt φ 3 J 4 Kpzität un Konenstor. Wir gehen nlog zur Vorlesung vor. Ds Fel zwischen en beien Zylinern ist gegeben urch ˆ E ɛ πrlɛ 6

7 wobei ie Lung uf em inneren Zyliner bezeichnet. Die Spnnung (wir bruchen nur en Betrg) ist gegeben urch Die Kpzität ist nn einfch U ˆb Er C U πlɛ ln b πlɛ ln b πɛ L ln b. Selbes Vorgehen wie bei 7., nur ist s Fel 4πɛ r un U U ˆb Er 4πɛ [ ] b 4πɛ b [ b ] Un mit folgt für C C U 4πɛ b b Wir wollen nun ie Kpzität er Ere usrechnen, setzen lso R e 637km un schreiben C 4πɛ b lim C 4πɛ R e, 7µC b 3. Die uf em Konenstor er Kpzität C pf bei einer Spnnung von U 5V gespeicherte Lung ist C U 5µF. Wir nun ie Btterie bgeklemmt un ein zweiter Konenstor prllel geschltet, bleibt ie Lung erhlten, ber ie Spnnung sinkt, sich ie Kpzität erhöht. In einer Prllelschltung fällt über jeem Zweig ieselbe Spnnung b, lso gilt C C + C un CU (C + C )U C U C 43pF. 4. Die Kpzität es Plttenkonenstors ist gegeben urch C ɛ, ie Lung urch CU ɛ U. () Lung bleibt erhlten, ie Btterie bgeklemmt ist, lso ist ɛ U ɛ U U U. Die Spnnung veroppelt sich. (b) Die gespeicherte Energie in einem Konenstor ist gere CU, lso: E i ɛ U, E f ɛ (U) ɛ U : Die Energie veroppelt sich. (c) Die zum useinnerziehen erforerliche rbeit muss gere gleich em Unterschie er gespeicherten Energie sein, lso W ɛ U. 5 Mterie im elektrischen Fel: Dielektrik. Diese Betrchtungen gelten für Konenstoren mit E zur Oberfläche es Konenstors un es Dielektrikums. E, un σ gelten für en Plttenkonenstor ohne Dielektrikum. Mit em Stz von Guß stellt mn fest E E σ ɛ ɛ Ds Nettofel E im Dielektrikum wir von er Gesmtlung in erzeugt, es gilt lso E σ σ in ɛ 7

8 Lut Vorlesung muss ies entsprechen: Gleichsetzen un uflösen ergibt schliesslich E E ɛ r σ ɛ ɛ r σ in ɛ r ɛ r σ Dies ist < σ für ɛ r >, wie es er Fll sein sollte. Um uflösen ergibt P ɛ χ P σin zu zeigen: E ɛ (ɛ r ) E ɛ (ɛ r ) σ σ in P σin ɛ. In beien Fällen gilt weiter E ɛ Dies knn mn sich urch ein pr Berechnungen klr mchen (Übung!). Zur eigentlichen Berechnung reicht ber s Berechnen er Spnnung, um ie Kpzität per C U usrechnen zu können. Der Konenstor trägt ie Lung, ht ie Fläche un ein Fel ohne Dielektrik E. ) Prllelschltung: Es sin zwei Spnnungen zu berechnen, zwischen en Konenstorflächen, ie von unterschielichen Dielektrik beeckt sin, herrschen nämlich unterschieliche Spnnungen. Diese sin ˆ + U i E i s E i E ɛ i Wie setzt sich nun ie Gesmtspnnung us iesen beien Spnnungen zusmmen? Die ntwort ist: Entsprechen er Regel für eine Prllelschltung von Wierstänen,.h. U U + U E ɛ + Dmit ist ie Kpzität C U E ɛ E ɛ + ɛ (ɛ + ) Bei Verwenen er Regel für Prllelschltung von Konenstoren hätten wir irekt erhlten: C C + C ɛ ɛ + ɛ ɛ (ɛ + ) b) Reihenschltung: Dieser Fll ist einfcher, weil ie Gesmtspnnung U irekt zu berechnen ist. Die Dielektrik sollen ie Dicke un hben. ˆ + U E s E + E E + E ( E + ) ɛ ɛ Un ie Kpzität: C U E ɛ ( ) ɛ ( ) E ɛ + ɛ + Zur Kontrolle ie irekte Berechnung nch er Regel für Serienschltung von Konenstoren: C C + C ɛ ɛ / + ɛ ( ɛ ɛ / ɛ + ) 8

9 3. Die Lösung besteht rin, sich en Konenstor ls Prllelschltung von unenlich vielen unenlich ünnen Konenstoren mit en zwei in Reihe geschlteten Dielektrik zu enken. Ein solcher ünner Konenstor ht hier ie Fläche b x un ie Kpzität C ɛ b x (x) ɛ + (x) wobei (x) x un (x) x ie Dicken er beien Dielektrik sin. Wir vereinfchen zunächst en Bruch: )) (x) ɛ + (x) x ɛ + x ( ( ɛ ɛ x + ɛ Bei einer Prllelschltung ieren sich einfch ie Kpzitäten, ie Gesmtkpzität ist lso C ˆ C ɛ b ɛ ɛ ɛ b ɛ ɛ ɛ b ˆ [ ln ɛ ɛ ln x ( x + ( x + ɛ ( ɛ ) ɛ ɛ ) )] x Für ɛ ist ies zunächst ein singulärer usruck, nämlich. Wir können lso l Hospitl nwenen: ( ) lim C lim ɛ b ɛ ɛ ɛ ln ɛ ɛ ( ɛ ) lim ɛ ɛ b ɛ ɛ ɛ b ɛ ɛ Ws einem Konenstor mit einem Dielektrikum entspricht. ɛ ( ɛ ) x 9

1 Ladung, Coulomb-Gesetz, E-Feld

1 Ladung, Coulomb-Gesetz, E-Feld Lung, Coulomb-Gesetz, E-Fel. () Beingung ist hier ufgben zur Experimentlphysik II: Elektrosttik Lösungen Willim Hefter - 6//8 F el F g Q 4πɛ r G m em m r Q Gm e m m 4πɛ 5, 7 3 C Die Entfernung fällt herus,

Mehr

Einfache Elektrische Netzwerke

Einfache Elektrische Netzwerke un esstechnik Netzwerke un Schltungen Nme, Vornme Testt Besprechung:..8 Abgbe:..8 infche lektrische Netzwerke Aufgbe : Strommessung ( Wir berechnen zuerst ie Wierstäne,, un. m B messen wir Ströme bis zu

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

1. Ableitung von Funktionen mit einer Veränderlichen

1. Ableitung von Funktionen mit einer Veränderlichen . Ableitung von Funktionen mit einer Veränerlichen. Algebrische Interprettion Die Ableitung einer Funktion f f f+ f = lim. 0 = ist efiniert ls In Worten usgerückt ist ie Ableitung er Grenzwert er Änerungsrte

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Mathematische Grundlagen Physik für Maschinenbau/Elektrotechnik. Sommersemester 2011

Mathematische Grundlagen Physik für Maschinenbau/Elektrotechnik. Sommersemester 2011 Mthemtische Grunlgen Physik für Mschinenbu/Elektrotechnik Sommersemester 2 Vektoren Mechnik: Kräfte/Bewegungen llgemein beschrieben urch Richtung un Betrg Vektoren Vektoren: Objekte mit zwei (2D) oer rei

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Dirac sche Deltafunktion: ( =11 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Dirac sche Deltafunktion: ( =11 Punkte) Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Übungen zur Klssischen Theoretischen Physik III (Theorie C Elektrodynmik) WS -3 Prof. Dr. Alexnder Mirlin Bltt : Lösungen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Musterlösung für die Nachklausur zur Analysis II

Musterlösung für die Nachklausur zur Analysis II MATHEMATISCHES INSTITUT WiSe 213/14 DER UNIVERSITÄT MÜNCHEN Musterlösung für die Nchklusur zur Anlysis II Aufgbe 1 Gilt folgende Aussge? Eine im Punkt x R 2 prtiell differenzierbre Funktion f : R 2 R ist

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld. 28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Musterlösung Klausur Mathematik (Sommersemester 2012) 1. Aufgabe 1: (7 Punkte) Bestimmen Sie folgende Grenzwerte (ggf. mit der Regel von l Hospital):

Musterlösung Klausur Mathematik (Sommersemester 2012) 1. Aufgabe 1: (7 Punkte) Bestimmen Sie folgende Grenzwerte (ggf. mit der Regel von l Hospital): Musterlösung Klusur Mthemtik Sommersemester 22 Aufgbe : 7 Punkte Bestimmen Sie folgene Grenzwerte ggf. mit er Regel von l Hospitl: x 2 2 + x x2 x 2 un 2 x 2 + x x2 2 x + 2x3 x 2 4 x 2. Jeer Grenzwert:

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2 Lneswettbewerb themtik en-württemberg 001 Rune ufgbe 1 In einem Viereck sin ie Seiten, un gleich lng. ie Seite ht ie gleiche Länge wie ie igonle. iese igonle hlbiert en Winkel. Wie groß können ie Innenwinkel

Mehr

Theorie der Kondensierten Materie I WS 2016/2017

Theorie der Kondensierten Materie I WS 2016/2017 Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Theorie der Kondensierten Mterie I WS 06/07 Prof. Dr. A. Shnirmn Bltt PD Dr. B. Nrozhny, M.Sc. T. Ludwig Lösungsvorschlg.

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

AUFGABEN ZU KAPITEL 23

AUFGABEN ZU KAPITEL 23 AUFGABEN ZU KAITE 23 Antwort im ösungshnbuch für Stuenten (Stuent Solutions Mnul) www Antwort knn bgerufen weren im Worl Wie Web ilw Antwort ist in er interktiven ernsoftwre enthlten (Interctive erning

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1)

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1) Feler un Wellen WS 017/018 Musterlösung zum 6. Tutorium 1. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ(1) Sin mehrere Leiter vorhanen, befinen

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

Ein Hochpass überträgt hohe Frequenzen unverändert und schwächt tiefe mit einer Phasenverschiebung ab. Mit dem Ansatz Ue()

Ein Hochpass überträgt hohe Frequenzen unverändert und schwächt tiefe mit einer Phasenverschiebung ab. Mit dem Ansatz Ue() -Filter 1. Ziele In Lutsprecherboxen weren Frequenzweichen eingebut, um uf einen Hochtonlutsprecher nur hohe Frequenzen (Hochpss) un uf einen Tieftöner, Subwoofer tiefe Frequenzen (Tiefpss) zu geben. In

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11 Lösungsbltt zur Testklusur Festkörperphysik WS/ Aufgbe : ) Wie groß sind die Energien der drei niedrigsten Zustände in einem zweidimensionlen und einem dreidimensionlen Kstenpotentil? (Kntenlängen jeweils

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele 6. Lndeswettbewerb Mthemtik yern. Runde 00/04 ufgben und Lösungsbeispiele ufgbe 1 ie Seite [] eines reiecks wird über hinus bis zum Punkt so verlängert, dss = n gilt (n N n>1). ie Gerde durch und den Mittelpunkt

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe

Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe Institut für ngewndte und Eperimentelle Mechnik Technische Mechnik I ZÜ 3.1 ufgbe 3.1 Bestimmen Sie mit Hilfe der entsprechenden Guldin schen Regel die Höhe der Schwerpunkte von homogenen Blechstücken,

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Zusammenfassung: Beugung und Interferenz

Zusammenfassung: Beugung und Interferenz LGÖ Ks Ph 1 -stüni Schuljhr 016/017 Zusmmenfssun: Beuun un Interferenz Inhltsverzeichnis Mehrimensionle Interferenz bei zwei Erreern... 1 Beuun von Wellen n Splten... Interferenz beim Doppelsplt... 3 Interferenz

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q.

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q. TU München, 9.08.2009 Musterlösung Geladener Stab Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom Rolf Ripszam (a) Der Stab ist homogen geladen, also gilt einfach λ = L. (b) Das

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 015/16 Bltt 4 09.11.015 Übungen zur Vorlesung Differentil und Integrlrechnung I Lösungsvorschlg 13. Zu betrchten ist die durch 0 = 1 und

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Integration. Kapitel 8: Integration Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 17.

Integration. Kapitel 8: Integration Informationen zur Vorlesung:  wengenroth/ J. Wengenroth () 17. Integrtion Kpitel 8: Integrtion Informtionen zur Vorlesung: http://www.mthemtik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juli 2009 1 / 22 8.1 Motivtion Kpitel 8: Integrtion 8.1 Motivtion Ist die

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr