Physikaufgabe 104. arccos 1 2.

Größe: px
Ab Seite anzeigen:

Download "Physikaufgabe 104. arccos 1 2."

Transkript

1 Home Sarseie Impressum Konak Gäsebuch Aufgabe: Zeigen Sie an einem Beispiel, daß die Naurgeseze universell sind, d.h. unabhängig vom gewählen Bezugssysem gelen. Zeigen Sie ferner, daß die Raumkrümmung in einem beschleunigen Bezugssysem mindesens einmal pro Periode eine Singulariä durchläuf. Lösung: Gegeben sei die Kreisbewegung eines Massenpunkes mi konsaner Geschwindigkei. Wir zeigen, daß das zweie Newonsche Gesez in einem Sysem, das mi einem Randpunk fes verbunden is, denselben Wer für die Beschleunigung liefer wie das Inerialsysem. Der Randpunk beschreibe demnach eine Zykloide, die genau dann enseh, wenn man einen Punk auf dem Kreisumfang feshäl und den Kreis wie bei der Rollbewegung eines Rades längs einer Geraden abspul. Beweg sich der Punk auf einem Kreis mi Radius R mi konsaner Winkelgeschwindigkei ω, so ensprich die Geschwindigkei des Kreismielpunks der besagen Umlaufgeschwindigkei. In karesischen Koordinaen ausgedrück lauen die Bewegungsgleichungen der Zykloide in Parameerdarsellung: ( = ( ω ω ( = ( 1 cos ω. x R sin, y R Die Bahngleichung folg daraus durch Inegraion, y ydy y x = = R Ry y Ry y R arccos 1. Da die Gleichung nich explizi nach y aufgelös werden kann, müssen in diesem Fall alle kinemaischen Größen direk aus der Parameerdarsellung hergeleie werden. Bahnkurve der Zykloide y(x x In Parameerdarsellung erhalen wir als Berag des Radiusvekors den Ausdruck ( ω ω ( ω r = x + y = R + sin 1 cos, Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 1

2 wobei der Radius mi der x-achse den Polarwinkel y 1 cosω ϕ = arcan = arcan x ω sinω einschließ. Die Kreisfrequenz ω = π T ensprich einer gewöhnlichen Kreisbewegung mi konsaner Geschwindigkei der Periodendauer T. Die Phase is anfangs 9, wird nach der halben Umlaufdauer null und geh danach auf 9 zurück. Bahnkoordinaen und Radius sind in nachfolgender Abbildung dargesell. Karesische Bahnkoordinaen und Radius 6 5 x( y( r( x(; y(; r( Die Geschwindigkeiskomponenen lauen in karesischen Koordinaen: ( = ω ( ω ( = ω sin ω. x R 1 cos, y R Daraus besimm sich die Bahn- bzw. Tangenialgeschwindigkei zu ω = + = ( 1 cos = sin. v x y ωr ω ωr In ebenen Polarkoordinaen haben wir dafür den Ausdruck v= r + r ϕ, wobei sich die Bahngeschwindigkei zusammensez aus der Radialgeschwindigkei v r ωr( ω ωcosω ( ω sinω ( 1 cosω xx + yy = r = = x + y + und der Transversalgeschwindigkei Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie

3 v ϕ Physikaufgabe 14 R( sin ( 1 cos ( ω sinω ( 1 cosω xy yx ω ω ω ω = r ϕ = = x + y Karesische Geschwindigkeiskoordinaen und Bahngeschwindigkei _x( _y( v( _x(; _y(; v( In die lezere geh wegen ω( ωsinω ( 1 cosω ( ω sinω ( 1 cosω xy yx ϕ = = + + x y die zeiabhängige Winkelgeschwindigkei ein Polarkoordinaen der Geschwindigkei v r( v? ( v( vr (; v? (; v( Dami sind alle Ableiungen bis zur ersen Ordnung vollsändig beschrieben. Im Gegensaz zur Bahngeschwindigkei sind die Komponenengeschwindigkeien nich symmerisch zur Halbperiode. Die Komponenengleichungen der Beschleunigung sind in karesischen Koordinaen gegeben durch Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 3

4 ( ( = ω sin ω, x R = ω cos ω, y R wobei der Berag der Beschleunigung konsan is: a = x + y =ω R. Die Beschleunigung ensprich beragsmäßig exak der Radialbeschleunigung einer Kreisbewegung mi konsaner Geschwindigkei im Inerialsysem, und dami is gezeig, daß die physikalischen Geseze unabhängig vom jeweiligen Bezugssysem sind. 4 3 Karesische Koordinaen der Beschleunigung Bx( By( 1 Bx(; By( Die Radialbeschleunigung erhalen wir durch ensprechende Umformung der Terme bzw. zu ( xx + yy x + y + xx + yy xx + yy x y xyxy + x y r = = x + y x y x + y + x + y ( xy yx x y xyxy + x y r ϕ = = x + y x + y a r r 3 3 xx + yy R( sin ( 1 cos ( ω sinω ( 1 cosω ω ω ω ω r = ϕ = = x + y + Für die Transversalbeschleunigung folg aus. Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 4

5 ( + ( xy xy xx yy xy xy r ϕ = 3 x + y x + y und r ϕ = der Ausdruck ( xx + yy ( xy xy x 3 + y ω R( ωcosω sinω ( ω sinω ( 1 cosω xy xy aϕ = r ϕ+ r ϕ = =. x + y Polarkoordinaen der Beschleunigung a r( a? ( 1 ar (; a? ( Das bedeue für die Beschleunigung nichs anderes, als daß diese unabhängig vom jeweiligen Koordinaensysem is: ( xx + yy + ( xy xy r ϕ. a= a + a = = x + y x + y Längs einer Zykloide is die Beschleunigung also konsan, 1 und für ihre Krümmung gil xy yx 1 K = =. 3 ω x + y 4Rsin Wie man sieh, ha die Zykloide ses eine negaive Krümmung, wobei der Krümmungsradius ρ gegeben is durch den Berag des Kehrwers der Krümmung 1 Das folg aus der Kreisbewegung mi konsaner Geschwindigkei. Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 5

6 1 ω ρ = = 4Rsin. K Krümmung der Zykloide K( Man erkenn ebenfalls, daß der Krümmungsradius niemals unendlich werden kann. Für die Koordinaen ξ und η des Krümmungskreismielpunks erhalen wir dami die Ausdrücke y x = x = R( ω+ sin ω, K x + y x η = y+ = R( 1 cos ω. K x + y Der Krümmungsradius wird maximal, wo Bahngeschwindigkei und Normalbeschleunigung maximal werden, und er is null, wo die Krümmung unendlich is, d.h. in der Singulariä. 1.5 Bahnkurve des Krümmungskreismielpunks (x; y (9; 1 y(x bzw. ( x bzw. 9 Wie bei der Kreisbewegung läß sich nämlich die Beschleunigung zerlegen in eine Tangenialbeschleunigung Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 6

7 xx + yy ω cos x + y a = v= = ω R und eine Normalbeschleunigung a n = = = ω R R x + y ω sin. v xy yx Für die aufsummieren Beragsquadrae heiß das: v n ω a= a + a = v + = R, R wobei in ebenen Polarkoordinaen für die Komponenen bzw. a a n ( ϕ + ϕ( ϕ+ ϕ r r r r r r = r + r ϕ ( ϕ+ ϕ ϕ( ϕ r r r r r r = r + r ϕ gil. Tangenial- und Normalkomponene sind hierbei punksymmerisch zu den Eckweren bzw. spiegelsymmerisch um eine Achse senkrech zur Halbperiode. 4 3 Polarkoordinaen der Beschleunigung a ( a n( 1 ar (; a? ( Schließlich erhalen wir den Berag der Beschleunigung in Polarkoordinaen aus der Formel ( ϕ ( ϕ ϕ a = r r + r + r, Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 7

8 und für die Krümmung in Polarkoordinaen ergib sich ( ϕ+ ϕ ϕ( ϕ r r r r r r K = 3 r + r ϕ, womi wir die Zykloide vollsändig beschrieben haben. Jeder Punk auf dieser Zykloide durchläuf irgendwann einen Punk unendlicher Krümmung, die einem verschwindenden Krümmungsradius ensprich und mi einer Singulariä zusammenfäll. Dieser Punk kann willkürlich gewähl werden. Wir haben ihn in den zeilichen Nullpunk verleg. Wenn wir also annehmen, daß das Universum einen Drehimpuls besiz und somi ein beschleuniges Bezugssysem darsell, so komm auch für das All irgendwann ein Zeipunk, wo sich der Raum in diesem Punk zu einer Singulariä zusammenzieh. Die Frage der Gleichzeiigkei und des vierdimensionalen Raum-Zei-Koninuums, d.h. wann und wo die Singulariä im All aufri, haben wir hierbei nich berache. Sicher is nur, daß es sie aus Symmeriegründen geben muß. Nimm man umgekehr an, daß das All keinen Drehimpuls ha, könne der Raum niemals in einer Singulariä enden. Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 8

9 Anhang % Zykloide clear all R = 1; % Kreisradius T = 1; % Periodendauer n = 11; % Zahl der Süzsellen omega = *pi/t; % Kreisfrequenz for i = 1:n (i = (i-1/(n-1*t; % Zei x(i = R*(omega*(i-sin(omega*(i; % x-koordinae y(i = R*(1-cos(omega*(i; % y-koordinae r(i = sqr(x(i^ + y(i^; % Radialer Absand xp(i = R*omega*(1-cos(omega*(i; % Geschwindigkei in x-richung yp(i = R*omega*sin(omega*(i; % Geschwindigkei in y-richung v(i = sqr(xp(i^ + yp(i^; % Bahngeschwindigkei vr(i = (x(i*xp(i+y(i*yp(i/r(i; % Radialgeschwindigkei vphi(i = (x(i*yp(i-y(i*xp(i/r(i; % Transversalgeschwindigkei xp(i = R*omega^*sin(omega*(i; % Beschleunigung in x-richung yp(i = R*omega^*cos(omega*(i; % Beschleunigung in y-richung ar(i = (x(i*xp(i+y(i*yp(i/r(i; % Radialbeschleunigung aphi(i = (x(i*yp(i-y(i*xp(i/r(i; % Transversalbeschleunigung a(i = (xp(i*xp(i+yp(i*yp(i/v(i; % Tangenialbeschleunigung an(i = (xp(i*yp(i-yp(i*xp(i/v(i; % Normalbeschleunigung K(i = an(i/v(i^; % Krümmung rho(i = abs(1/k(i; % Krümmungsradius xi(i = x(i-yp(i/k(i/v(i; % x-koordinae des Krümmungskreismielpunks ea(i = y(i+xp(i/k(i/v(i; % y-koordinae des Krümmungskreismielpunks end % Nichdefiere Grenzwere vr(1 = ; ar(1 = 4*pi^; aphi(1 = ; a(1 = 4*pi^; an(1 = ; xi(1 = ; rho(1 = ; % Abbildungen figure(1 plo(x,y xlim([ *pi*r] ylabel('$y(x$','inerpreer','laex' xlabel('$x$','inerpreer','laex' ile('bahnkurve der Zykloide' figure( plo(,x xlim([ T] ylim([ *pi*r] xlabel('$$','inerpreer','laex' ylabel('$x(, y(, r($','inerpreer','laex' Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 9

10 plo(,y,'r' plo(,r,'k' ile('karesische Bahnkoordinaen und Radius' legend({'$x($','$y($','$r($'},'inerpreer','laex'; figure(3 plo(,xp xlim([ T] xlabel('$$','inerpreer','laex' ylabel('$\do x(, \do y(, v($','inerpreer','laex' plo(,yp,'r' plo(,v,'k' ile('karesische Geschwindigkeiskoordinaen und Bahngeschwindigkei' legend({'$\do x($','$\do y($','$v($'},'inerpreer','laex'; figure(4 plo(,xp xlabel('$$','inerpreer','laex' ylabel('$\ddo x(, \ddo y($','inerpreer','laex' plo(,yp,'r' ile('karesische Koordinaen der Beschleunigung' legend({'$\ddo x($','$\ddo y($'},'inerpreer','laex'; figure(5 plo(,vr xlim([ T] xlabel('$$','inerpreer','laex' ylabel('$v_{r}(, v_{\phi}(, v($','inerpreer','laex' plo(,vphi,'r' plo(,v,'k' ile('polarkoordinaen der Geschwindigkei' legend({'$v_{r}($','$v_{\phi}($','$v($'},'inerpreer','laex'; figure(6 plo(,ar xlabel('$$','inerpreer','laex' ylabel('$a_{r}(, a_{\phi}($','inerpreer','laex' plo(,aphi,'r' ile('polarkoordinaen der Beschleunigung' legend({'$a_{r}($','$a_{\phi}($'},'inerpreer','laex'; figure(7 plo(,a xlabel('$$','inerpreer','laex' ylabel('$a_{r}(, a_{\phi}($','inerpreer','laex' plo(,an,'r' ile('polarkoordinaen der Beschleunigung' Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 1

11 legend({'$a_{}($','$a_{n}($'},'inerpreer','laex'; figure(8 plo(,k xlim([ T] ylim([-8*r ] ylabel('$k($','inerpreer','laex' xlabel('$$','inerpreer','laex' ile('krümmung der Zykloide' figure(9 plo(x,y xlim([ *pi*r] xlabel('$x$ bzw. $\xi$','inerpreer','laex' ylabel('$y(x$ bzw. $\ea(\xi$','inerpreer','laex' plo(xi,ea, 'r' ile('bahnkurve des Krümmungskreismielpunks' legend({'$(x, y$','$(\xi, \ea$'},'inerpreer','laex'; figure(1 plo(,rho xlim([ T] ylabel('$\rho($','inerpreer','laex' xlabel('$$','inerpreer','laex' ile('krümmungsradius der Zykloide' Copyrigh 18, Manfred Hiebl. Alle Reche vorbehalen. Seie 11

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Physikaufgabe 97. Abbildung 1. Das Weltall dargestellt als ein zweidimensional sich aufblähender Ballon

Physikaufgabe 97. Abbildung 1. Das Weltall dargestellt als ein zweidimensional sich aufblähender Ballon Home Sarseie Impressum Konak Gäsebuh Aufgabe: Zeigen Sie, daß sih das All mi Lihgeshwindigkei ausdehn und danah wieder zusammenzieh, und daß die Wellinien geshlossene Orhodromen sind, die durh die Singulariä

Mehr

Mechanik. 1 Kinematik

Mechanik. 1 Kinematik Mechanik Kinemaik - Beschreibung der Bewegung eines Körpers durch Or, Geschwindigkei und Beschleunigung - Körper wird als Punkmasse (PM) beschrieben.. Modell der Punkmasse und Koordinaensseme (KS) Def.

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Demo-Text für Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel.

Demo-Text für  Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel. Funkionen und Kurven Differenialgeomerie Tex Nummer: 5 Sand: 9. März 6 Demo-Tex für www.mahe-cd.de INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mahe-cd.de 5 Differenialgeomerie Vorwor Das Thema Kurven is

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimenalphysik 1 1 Fakulä für Physik Technische Universiä München Bernd Kohler & Daniel Singh Bla 1 - Lösung WS 214/215 23.3.215 Ferienkurs Experimenalphysik 1 ( ) - leich ( ) - miel ( )

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Dipl.-Mah. Sebasian Schwarz SS 015 17.05.015 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zum 6. Übungsbla

Mehr

Basiswissen Physik 11. Jahrgangsstufe

Basiswissen Physik 11. Jahrgangsstufe Basiswissen Physik 11. Jahrgangssufe 1. Einfache lineare Bewegungen a) Darsellung von Bewegungen im Koordinaensysem Unerscheide sorgfälig die in der Zei zurückgelege Srecke s() von der zur Zei eingenommenen

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Esau und Jakob 1 Einführung 2 Situation 2.1 Geschichte 2.2 Geometrische Situation

Esau und Jakob 1 Einführung 2 Situation 2.1 Geschichte 2.2 Geometrische Situation Hans Walser, [546a], [33b] Esau und Jakob Einführung Diese Sudie is ensanden aus meiner eigenen Schwierigkei, mir bei zwei gleichzeiigen Bewegungen den Weg des einen Punkes aus Sich des anderen Punkes

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michael Buhlmann Mahemaikaugaben > Analysis > Funkionenscharen Augabe: Unersuche die ganz raionale Funkionenschar + 8 mi Parameer > 0 au: Nullsellen, Hoch- und Tiepunke, Monoonie, Wendepunke, Krümmung,

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

2. Kinematik punktförmiger Körper

2. Kinematik punktförmiger Körper . Kinemaik punkförmier Körper Beschleuniun: Körper werden als Massenpunke idealisier. Beweun im -dimensionalen Raum d( ) a( ) ɺ ( ) ɺɺ ( ) d Konenion: : Zei [s] (,y,) : Or [m] : Geschwindikei [m/s] a :

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Sinus und Cosinus im rechtwinkligen Dreieck ( )

Sinus und Cosinus im rechtwinkligen Dreieck ( ) Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Michael Ho, M. Sc. M. Sc. SS 6 9.7.6 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zur Übungsklausur Aufgabe

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung von Teilchenbewegung Kinemaik: Quaniaive

Mehr

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

Parameterdarstellung von Kurven

Parameterdarstellung von Kurven Parameerdarsellung von Kurven Ebene Kurven In der, -Ebene wird der Vekor R in Abhängigkei eines Parameers dargesell. Man kann die Kurve auch als Bewegung eines Massepunkes in Abhängigkei von der Zei inerpreieren.

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg)

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg) Lösung Abiurprüfung 2 Grundkurs (Baden-Würemberg) Analysis, Aufgabe I.1. a) ( x) = 1 [( x)3 9 ( x)]= 1 ( x3 + 9x)= 1 ( x3 9x) = ( x) Somi is (x ) punksymmerisch zum Ursprung. ( x) = 1 (x3 9x)= x(x 2 9)=

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 3. Aufgaben Tag 3

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 3. Aufgaben Tag 3 für Physier WS 5/6 Reihen Zeigen Sie, dass die folgenden Reihen onvergieren und die angegebenen Summen haben. Dabei is f die -e Fibonacci-Zahl a + = 4 Wir fassen die gegebene Reihe als Grenzwer der Folge

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x) Abschlussprüfung Berufliche Oberschule 9 Mahemaik Technik - A I - Lösung Teilaufgabe. Gegeben is die reelle Funkion f( x) in der Definiionsmenge ID f = IR. Teilaufgabe. (4 BE) Unersuchen Sie das Verhalen

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

ervoanriebsechnik.de Weiere Unerlagen, die im Zusammenhang mi diesem Dokumen sehen: Applicaion Guide: Ideale Geriebeunersezung /5 Regel für Posiionier

ervoanriebsechnik.de Weiere Unerlagen, die im Zusammenhang mi diesem Dokumen sehen: Applicaion Guide: Ideale Geriebeunersezung /5 Regel für Posiionier ervoanriebsechnik.de / Regel für Direkanriebe Posiionierung mi Rampen 5 Winkelgeschwindigkei [rad/s] ω(, 0 5 0 0 0. 0. 0. 0.4 0.5 0.6 0.7 0.8 0.9 Zei [s] APPLICAION GUIDE Handbuch yp: Applicaion Guide

Mehr

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynamik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 8. März Aufgabe (9 Punke) Ein Zahnrad 3 wird über eine Sange on einem Kolben 5 angerieben. Dieses Zahnrad greif in

Mehr

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2.

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2. Miniserium für Schule und Berufsbildung 05 Bei der Bearbeiung der Aufgabe dürfen alle Funkionen des Taschenrechners genuz werden. Aufgabe : Analysis Gegeben is eine Funkionenschar durch f () = e mi R;

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynaik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 7. März 05 Aufgabe (7 Punke) Das Rad (Radius r ) roll i der Winkelgeschwindigkei. I Punk A (Absand r / o Mielpunk) is

Mehr

Analysis 3.

Analysis 3. Analysis 3 www.schulmahe.npage.de Aufgaben. Ermieln Sie die erse Ableiung. Vereinfachen Sie. a) fx) = e x x 3) b) fx) = ln x x + 4. Ermieln Sie die folgenden unbesimmen Inegrale. e x 5 a) e x dx b) dx

Mehr

Abb. 1: Kreis, Durchmesser und Punkt. Abb. 2: Kreisradius abtragen

Abb. 1: Kreis, Durchmesser und Punkt. Abb. 2: Kreisradius abtragen Hans Walser, [209042] Winkeldrielung Worum geh es? Winkeldrielung mi Hilfe einer Hundekurve. 2 Die Hundekurve Wir beginnen mi einem Kreis und einem horizonalen Durchmesser (Abb. ). Auf dem Kreis wählen

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

Abiurprüfung Mahemaik 007 Baden-Würemberg (ohne CAS) Pflicheil - Aufgaben Aufgabe : ( VP) Bilden Sie die erse Ableiung der Funkion f mi f () + = ( sin ). Aufgabe : ( VP) ln Berechnen Sie das Inegral e

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

ABITURPRÜFUNG 2002 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeiszei: Hilfsmiel: 70 Minuen Taschenrechner (nich programmierbar, nich grafikfähig) Tafelwerk Der Prüfungseilnehmer wähl von den Aufgaben A1 und

Mehr

Formelsammlung (Fundamentum, ohne zusätzliche Blätter) Grafikfähiger Taschenrechner CAS im Prüfungsmodus (zurückgesetzt)

Formelsammlung (Fundamentum, ohne zusätzliche Blätter) Grafikfähiger Taschenrechner CAS im Prüfungsmodus (zurückgesetzt) BM Mahemaik T Schwerpunk_6 / 0 - Serie Seie: /7 Abschlussprüfung BM Mahemaik Schwerpunk TAL Teil Prüfungsdauer 90 Minuen, ohne Hilfsmiel Formelsammlung (Fundamenum, ohne zusäzliche Bläer Grafikfähiger

Mehr

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt.

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt. 16 2.3 Sprungfunkion, Rampenfunkion Delafunkion Diese 3 Signale haben als Anregungssignale am Eingang eines Sysems besondere Bedeuung für die lineare Sysemheorie erlang. Sprungfunkion: ( σ ( ), 1( ) )

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5 Seie von 5 Aufgabe : Eine ganzraionale Funkion. Grades habe die Nullsellen ; ;. Ihr Schaubild gehe durch P( 6). Besimme die Exremsellen. Skizziere den Graphen der Funkion. allgemeine Form einer Funkion.

Mehr

Vielseitige Darstellungen von Drehstromsignalen

Vielseitige Darstellungen von Drehstromsignalen Vielseiige Darsellungen von Drehsromsignalen Die Leisungs- und Energie-Analysaoren Qualisar+ dienen zur soforigen Darsellung aller wesenlichen Eigenschafen eines Drehsromnezes. Zeiliche Darsellung Die

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung KW /15 Prof. Dr. R. Reifarh, Dr. J. Glorius Übungen zur Experimenalphysik II Aufgabenbla 3 - Lösung Aufgabe 1: a) Die Laung q im Volumen V beräg: q = ρ(r) V = ρ(r)4πr r = 4πAr 3 r Für ie Laung Q erhalen

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Schwingungen. 1 Schwingung als periodischer Vorgang

Schwingungen. 1 Schwingung als periodischer Vorgang -I.D1- D Schwingungen 1 Schwingung als periodischer Vorgang 1.1 Definiion Voraussezungen für das Ensehen einer mechanischen Schwingung sind eine zur Gleichgewichslage gerichee rückreibende Kraf und die

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

Exoplaneten auf elliptischen Bahnen

Exoplaneten auf elliptischen Bahnen Exoplaneen auf ellipischen Bahnen Sefan Völker 1 1 AG Physik- und Asronomiedidakik der Friedrich-Schiller-Universiä Jena 1 Inhalsverzeichnis 1 Einleiung 3 1.1 Wie schwer darf ein Exoplane sein?.........................

Mehr

II. Kinematik gradliniger Bewegungen

II. Kinematik gradliniger Bewegungen II. Kinemaik gradliniger Bewegungen Kinemaik, von dem griechischen Verb kineo = ich bewege, nenn man den grundlegenden Zweig der Mechanik, der den zeilichen Ablauf einer Bewegung im Raum durch mahemaische

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz Der Primzahlsaz, Teil Vorrag zum Seminar zur Funionenheorie, 07.05.0 Raffaela Biesenbach Diese Arbei beschäfig sich mi der Herleiung des Primzahlsazes. Dazu werden Definiionen und Säze aus dem Sri zur

Mehr