6. Numerische Filterung: Polfilter, Diffusion und Lärmfilter. 6.1 Polfilter

Größe: px
Ab Seite anzeigen:

Download "6. Numerische Filterung: Polfilter, Diffusion und Lärmfilter. 6.1 Polfilter"

Transkript

1 6. Numeice Fileug: Polfile Diffuio ud Lämfile 6. Polfile De e geige zoale ieuabad i Poläe efode eie e uze Zeici de da Modell ieffizie mac. Diee Naceil wid veige idem ma ab eie beimme Beie die ieue albie we ma ic vo eie iebeie zu äce dem Pol äe. Abbildug: Audüug de ieue i Poläe ifüug i die globale Weemodellieug 45

2 Die Halbieug de ieue lä ic u bei gazalige ieuazal ducfüe. Dae i e ivoll die ieuazal o zu wäle da bei Faozelegug mefac de Fao aufi. Mi 44 ieue öe ma die Halbieug 3-mal ducfüe da die ieuazal auf dem Beieei um de Pol gazzalig ei mu ud egib. I dieem Beiiel euliee i de Näe de Südol folgede zoale ieuabäde 3 4 π π π π /8 48.5m / m / m 3 /44 4.9m 4 Da de Abad bei de 4. Beie am geige aufäll i diee fü die Zeicibeimmug auclaggebed. So eale wi ez mi Pa ud ρ.3 g/m 3 aufgud de Sabiliäieium eie maimale Zeici vo 5.5. De Zeici i fa um de Fao 7 göße al de de ic oe Audüug de ie egab. la i ez alledig oc wie ma meidioale Ableiuge bzw. meidioale Miel bilde we ieue fele. Da wid gelö idem ma vo eie lieae Ieolaio ebauc mac. De eulieede Fele i geig da ic meidioale Ableiuge ud Miel u auf meidioal beacbae ieue beziee. ifüug i die globale Weemodellieug 46

3 ifüug i die globale Weemodellieug Diffuio Nebe Welle ud Scwiguge wede i amoäice Modelle auc Diffuioozee beciebe. Diee diee au agmaice üde of u de läug vo meeoologice Felde die aufgud zu oe adiee umeice Pobleme beeie (z.b. bei de Foogeee). Die Sabiliä de Zeiiegaio vo Diffuioozee lä ic aad de eidimeioale Diffuiogleicug 0 ueuce. Miel zeiee Diffeeze ud dem Lea-Fog-Scema fide wi folgede Diffeezefomulieug Mi dem Welleaaz eulie da ( ) µ i ) e( µ

4 ifüug i die globale Weemodellieug 48 Dami eale wi folgede Mai-leicug ( ) [ ] o o 0 4 µ ud die igewee laue ( ) [ ] ( ) [ ] 4 4 ± µ µ ν Da ei igewe oiiv i i da Lea-Fog Scema bei Diffuioozee iabil ud fü die Löug ugeeige! ollzie ma igege die Iegaio mi dem ule-owäcema o egib ic µ µ Al Sabiliäieium eale wi ez < /( ) da -(µ). Da owä-efae eige ic omi fü die Iegaio we da Kieium efüll wid. a mi dem Lea- Fog efae ombiie wede we ma de Diffuiozeici mi dem ule- owä-efae ac dem Lea-Fog-Zeici ducfü.

5 ifüug i die globale Weemodellieug 49 I äice eomeie ceib ic die Diffuio-leicug wie folg: ( ) 0 Soll de Diffuioem fü de Imul agewede wede i zu beace da die Awedug de Lalace-Oeao auf eoe zu Zuazeme fü die mi de Kümmug de Koodiae-Liie zuammeäge. Diee id ibeodee i Poläe vo Bedeuug. Die Awedug de Lalace-Oeao auf de ecwidigeiveo egib (die Heleiug vebleib al Übugaufgabe): ( ) ( ) i i i i a i i Die eialomoee öe im Zuge de ydoaice Aoimaio veacläig wede.

6 ifüug i die globale Weemodellieug 50 Mi Diffuio egebe ic ez die folgede äumlic dieiiee leicuge: [ ] a a M u f u u d φ ρ [ ] a a M u f v v d φ ρ [ ] ( ) ( ) M a d wobei M de Diffuiooeffiziee bezeice.

7 Die Wiug vo Diffuio wid bei folgede Simulaio de Wellebece deulic. Die Bilde zeige die Zeiewiclug de oeielle oiciy (fabige Ioliie) ud de Widveoe (Pfeile) eie ic becede Roby-Hauwiz Welle. Simulaio oe Diffuio Simulaio mi Diffuio (M 05m/) ifüug i die globale Weemodellieug 5

8 6.3 Lämfileug (Fileug vo Tägeicweewelle) i Weevoeagemodell wid mi auelle Aalye de Amoäe iiialiie. Meie wede o ae Tägeicweewelle im Modell augelö wie ie i de Realiä ic aufee. ud dafü id Fele bei de Aalye de e iomogee Beobacuge ud die umeice Näeuge i dem Modell. Ma a diee Poblem auf veciedee Weie löe: - ewedug eie gefilee Modell (z.b. ei quaigeooice Modell) - Löug de Balace-leicug bei gegebee Temeau- ud Ducfelde - Poeio de Afagzuade auf Roby-Welle-Mode (Nomalmode-Iiialiieug) - Dyamice Iiialiieug I diee oleug wid u die e eiface dyamice Iiialiieug ac Temeo (976) beciebe. Dabei wede N f owä- ud Rücwäzeicie vo de eigelice Weevoeage beece. Da Zeicema laue fü alle aiable: * d ** * d * ** 3 ifüug i die globale Weemodellieug 5

9 De Fileeffe a aad eie eiface Scwigugdiffeeialgleicug demoie wede. ei folgede dyamice Syem gegebe (I) df d ν (II) ν F Ma ie leic duc ieze vo (II) i (I) da da Syem eie amoice Scwigug mi de Fequez ν beceib. Ma beece mi dem efae ac Temeo (976) * ** 3 νf νf ** νf ν ( ν ) ( ν ) Die Amliude de Scwigug imm alo bei edem Zeici um de Fao (-ν ) ab. Hocfequee Welle (Tägeicweewelle) wede im egleic zu iedefequee Welle (Roby-Welle) äe i de Zei gedämf. i wicig da bei de Fileugozedu eie ieveible Teme beücicig wede da diee zu Amlifiaio vo Söuge füe. Da lä dic z.b. leic aad de eiface ieveible leicug d ν acweie. ifüug i die globale Weemodellieug 53

10 Abildug: Zeieie de voegeage geooeielle Höe bei 500Pa a eiem fee O (0W 50N) fü veciedee Aweduge de dyamice Iiialiieug ac Temeo (976). Dabei wude die Azal de Fileugzeicie vaiie. ifüug i die globale Weemodellieug 54

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben.

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben. Pof. D. Jüge Rot Didati de eometie alte Pizip d Satz vo Cavaliei dlage des olmebegiffs (eiscließlic Satz vo De) olme de d des stmpfs Kgelvolme d Kgelobefläce Pizip vo Cavaliei Boaveta Cavaliei (598 47;

Mehr

Simulationsbasierte stochastisch dynamische Programmierung

Simulationsbasierte stochastisch dynamische Programmierung Simulaiobaiere ochaich dyamiche Programmierug OLIVER MUßHOFF, BERLIN NORBERT HIRSCHAUER, BERLIN Abrac Deciio ree, repreeig he backward recurive dyamic programmig approach, are ofe o flexible eough o aalyze

Mehr

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar.

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar. ysikkurs i Raen des Forbildungslerganges Indusrieeiser Facricung arazeuik anuar 008 Lösungen Wärelere Aufgabe : Eine Drucasflasce (V50l) sei gefüll i icksoff uner eine Druck von 00 bar. ϑ a) Wieviel ol

Mehr

Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an.

Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an. System- ud Gerätetecik Projekt Kocplatte Uterrictsleitug: Bucer Name: Datum: Seite C C C Sie abe u die Kocplatte repariert ud das Prüfprotokoll fertiggestellt Als der Kude die Kocplatte bei Ie abolt, will

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier Die eideutige Duplizierug ud Replizierug mit spezielle Supplemetsysteme Rudolf Pleier D-92694 tzerict, Mai 2015 Ialtsverzeicis 1 1 Die xistez ud izigeit der Duplizierug ud der Replizierug mit Termigescäfte...

Mehr

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Messug 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Ziel der Meßübug: Besimmug des Bresoffverbrauchs, des spezifische Bresoffverbrauchs, Aggregawirkugsgrades,

Mehr

- - Forelalug EEOEH i achiebau (ad vo:.. ) Größe Forelzeiche Eihei Elekriche paug [ol] Elekriche roärke [pere] rodiche Elekricher Widerad, Wirkwiderad, eiaz Ω [Oh] Elekricher eiwer, G Wirkleiwer, odukaz

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

2. METHODE NACH ARCHIMEDES

2. METHODE NACH ARCHIMEDES . METHODE NACH ARCHIMEDES Dem Recer gleic, der eie Kräfte ammelt, um eie Krei zu mee, ud ict fidet, ud auf de Leratz it, der ötig wäre,... 0 Date Aligieri Arcimede vo Syraku Mit dem eierzeit größte griecice

Mehr

3 Leistungsbarwerte und Prämien

3 Leistungsbarwerte und Prämien Leisugsbarwere ud Prmie 23 3 Leisugsbarwere ud Prmie Zie: Rechemehode zur Ermiug der Barwere ud Prmie bei übiche Produe der Lebesversicherug. 3. Eemeare Barwere ud Kommuaioszahe Barwer eier Erebesfaeisug

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

3 Ebene elektromagnetische Wellen

3 Ebene elektromagnetische Wellen 3 bene elekomagneisce Wellen nscaulice Besceibung 6 3 bene elekomagneisce Wellen In diesem bscni weden ebene elekomagneisce Wellen in omogenen Medien beandel. Dabei sollen die fü die Besceibung elekomagneisce

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER

HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER I. VERGABEKRITERIEN 1. D i e g a s t i e r e n d e Gr u p p e k o m m t a u s e i n e m a n d e r e n B u n d e s l a n d. 2. D i e g e p l a n t

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen ORMESRI Zuammehäge zwche de etale Stoffezahle etale Reflexogad ( ( geamt ( ( fü läche etale Retamogad ( a ( b a b Setale amogad ee laaallele latte au otoem homogee Medum ( ( mt

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Optische Systeme. Inhalte der Vorlesung. Aufgabe. Erzeugung eines aufrechten Bildes

Optische Systeme. Inhalte der Vorlesung. Aufgabe. Erzeugung eines aufrechten Bildes Ihalte der Vorleug 5. Optiche Syteme Martia Gerke 9..007. Grudlage der Welleoptik. Abbildede optiche Syteme. Fotograie. Plaplatte ud Releioprime.3 Schäretiee.4 Gaußcher Strahl.5 upe / Mikrokop.6 Blede

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1 C Eicher Aaysis Study Ceter ETH Zürich HS 015 Summe Die Summe vo mehrere Zahe a 1, a,, a a mit Hife des Summezeiches geschriebe werde a 1 + a + + a a Hier heisst Laufvariabe oder Summatiosidex ud 1 bzw

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

by Hasler, Heiniger, Lehmann

by Hasler, Heiniger, Lehmann by Hasler, Heiiger, Lehma Ihaltsverzeichis 4..005 Seite vo 7 Seite Nr: Ihalt: 0 - Ihaltsverzeichis 0 - Pflichteheft 03 - Drehmometberechug (Drehatrieb) 04 otoreauslegug (Drehatrieb) 05 Kotrollberechug

Mehr

Am Spitzenbach. Königswinter Denkmal Königswinter Fähre. Oberdollendorf Nord

Am Spitzenbach. Königswinter Denkmal Königswinter Fähre. Oberdollendorf Nord Köigswit Bo-Obkassl Ramsdof Bo bf s Bul kt Augusti igbug Bf s 66 igbug Bf Kust- ud Ausstllugshall d Budspublik Dutschld Abdgym Kkhaus igbug Gym Wi Zg lh lm chul Md t F Rhi-ig kt Augusti Foto: Pssamt Budsstadt

Mehr

Rechensystem-Modelle zur Kapazitätsplanung

Rechensystem-Modelle zur Kapazitätsplanung 2. orddeutche Kolloquium Recheytem-Modelle zur Kapazitätplaug 2. orddeutche Kolloquium ordaademie Elmhor. Mai 2007 Güter Totzauer FH OL/Otfrielad/WHV Emde Kapazitätplaug DKoll2007 0 2. orddeutche Kolloquium

Mehr

Bericht zur Prüfung im Oktober 2014 über Mathematik der Personenversicherung (Grundwissen)

Bericht zur Prüfung im Oktober 2014 über Mathematik der Personenversicherung (Grundwissen) UTSCH KTURVRIIGUG e.v. Berich ur rüfug im Okober 24 über hemik der eroevericherug (Grudwie Jürge Srobel (Köl m..24 wurde i Köl die viere rüfug über hemik der eroevericherug (Grudwie ch der rüfugordug der

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

3 Grundlegende Prinzipien der astronomischen Interferometrie

3 Grundlegende Prinzipien der astronomischen Interferometrie 00 neeomeie in e Asonomie 3 Gunlegene Pinipien e asonomishen neeomeie 3. Foplanung monohomaishe elekomagneishe Wellen 3.. Helmhol-Gleihung Wi beahen elekomagneishe ahlung im Rahmen eine skalaen Theoie.

Mehr

PN Handwerk. GC-Online UGL-Schnittstelle Schnelleinstieg

PN Handwerk. GC-Online UGL-Schnittstelle Schnelleinstieg PN Handwek GC-Onine UGL-Schniee Schnenieg Inha GC-Onine UGL-Schniee... 3 Gundneungen fü den auomaichen Daenauauch... 3 Daanom-Daen aben... 4 Akionen de Handweke... 7 Beeung (Liefeaag)... 7 Abaag... 7 Abaag

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Foreau Ihatverzeihi: NAE Nahrihtetehi ud aewadte Eetroi hea Uterput Seite Grudae Beodere Merae vo LWL - Wee-eihe-Duaiu - Arte vo Lihttrahu - Weeäe de Lihte - Aubau ud Arte vo LWL -3 Brehuidex eie Mediu

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

Steuerplanung Sommersemester 2008 2 SWS Teil IV

Steuerplanung Sommersemester 2008 2 SWS Teil IV Otto-vo-Guericke-Uiverität Magdeburg Lehrtuhl für BWL, ibeodere Betriebwirtchaftliche Steuerlehre Steuerplaug Sommeremeter 2008 2 SWS Teil IV Jae: Steuerplaug 1 Ihaltüberblick 1 Eiführug Steuerplaug ud

Mehr

Das ist das Schaltungskonzept einer Bitspeicherzelle in einem SRAM. gate

Das ist das Schaltungskonzept einer Bitspeicherzelle in einem SRAM. gate 9. Speiheelemete Die Wiug vo Rüoppluge Shaltetze habe eie haateitihe Eigehaft: ie ethalte eie Rüoppluge. Welhe Wiug eie Rüopplug habe a, oll a folgedem Beipiel gezeigt wede. 1 1 1 1 1 1 Duh die Rüoppluge

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

Formeln Informationsund Systemtechnik

Formeln Informationsund Systemtechnik EUROA-ACHBUCHREIHE fü elekoecnice un elekonice Beufe omeln Infomionun Syemecnik Auoen Monik Bugmie Suieniekoin Sug Ulic G.. eye Dipl.-Ing., Anly fü Meienecnik Kln Ben Gimm Oeuien Leoneg, Sinelfingen Gego

Mehr

Vo r d ä c h e r-ca r p o r t s. Vo r d ä c h e r-ca r p o r t s a u s Sta h l Ed e l s ta h l u n d. Gl a s. En g i n e e r i n g

Vo r d ä c h e r-ca r p o r t s. Vo r d ä c h e r-ca r p o r t s a u s Sta h l Ed e l s ta h l u n d. Gl a s. En g i n e e r i n g a u s Sta h l Ed e l s ta h l u n d Gl a s 2 Ve r z i n k t e Sta h l k o n s t r u k t i o n m i t g e k l e bt e n Ec h t g l a s- s c h e i b e n Da c h ü b e r s p a n n t d i e Fr ü h s t ü c k s

Mehr

ev. Jugend Böckingen Freizeit Programm 2015

ev. Jugend Böckingen Freizeit Programm 2015 v. Jugd Böckig Fzt Poga 2015 Zltlag fü 9-13 Jähig 2. - 15. August 2015 Wi sog fü gaos ud uvgsslich Fzt i Mt ds Hohloh Walds, i Etthaus kl gütlich Dof. Dikt vo Bauhof ba gibt s täglich fischst Milch du

Mehr

9 Differenzierbare Funktionen

9 Differenzierbare Funktionen 9 Differezierbare Fuktioe Lerziele: Kozept: Ableitugbegriff Reultat: Ketteregel Defiito. E ei I R ei Itervall. Eie Fuktio f : I R eißt ifferezierbar im Pukt a I, fall er Grezwert f (a) := lim x a f(a;x)

Mehr

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule Passive Neweke Diffeenialgleichungen H. Fiedli Dasellung de passiven auelemene Widesand Kondensao Spule du U R I( ) I U& di( ) ( ) U L L I& d d Mi diesen Definiionen lassen sich alle passiven Kombinaionen

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale Mefacntegale Mae ene Quade: M wenn de Quade nomogen t: (,, ) M (,, ) M N M N N (,, ) M lm (,, ) (,, ) dd d N Integal de Funkton (,, ) üe da olumen. Mefacntegale mt kontanten Integatongenen Integaton mefac

Mehr

Nutzung der Ergebnisse von Ringvergleichen und Methodenvalidierungen zur Ermittlung der Messunsicherheit

Nutzung der Ergebnisse von Ringvergleichen und Methodenvalidierungen zur Ermittlung der Messunsicherheit Nutzug der Ergebie vo igvergleiche ud Methodevalidieruge zur Ermittlug der Meuicherheit Abtract Deutch Wolfgag ichter I der chemiche Aalytik werde ebe der Bottom-u -Methode ach GUM auch Todow -Verfahre

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen Übersicht Datestrukture ud Algorithme Vorlesug 6: (K) Joost-Pieter Katoe Lehrstuhl für Iformatik 2 Software Modelig ad Verificatio Group 1 Substitutiosmethode Rekursiosbäume http://moves.rwth-aache.de/teachig/ss-15/dsal/

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

HISTORIE DAS BESTIMMTE INTEGRAL

HISTORIE DAS BESTIMMTE INTEGRAL HITORIE Die Itegralrecug ettad urprüglic au dem Prolem, de Ialt olcer eee Bereice zu erkläre, die vo elieige Kurve egrezt werde. Die Itegralrecug ediet ic daei der Uterucug vo Grezwerte ud ägt eg mit der

Mehr

1. Flächen und Räume (Buch Seite 69-71)

1. Flächen und Räume (Buch Seite 69-71) Löungen zu Teraining Texaufgaben Hee/Scrader. Fläcen und Räue (Buc Seie 69-7) Aufgabe Größe eine Pflaerein A Sein : ASein = 0c 0c= 0, 0, = 0, 0 Wie iele Pflaereine brauc die Fira nun für den Plaz? 500

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Übungsheft. Das. Deutsch2. Rechtschreib- und Grammatiktraining. Mein Deutschmeister-Pass. Stefanie Drecktrah. Name: Klasse:

Übungsheft. Das. Deutsch2. Rechtschreib- und Grammatiktraining. Mein Deutschmeister-Pass. Stefanie Drecktrah. Name: Klasse: Rechtschrei- un Grammatitrainin Stefanie Drectrah Deutsch2 Das Üunsheft Name: Klasse: Mein Deutschmeister-Pass Deutschmeister Seite Datum Anzahl er richti elösten Aufaen Wie leicht fiel mir as? 1 8 2 20

Mehr

o e Die Vorteile von Stand Up Paddling: Pierce Brosnan Draufstellen, lospaddeln und Spaß haben, lautet die Devise!

o e Die Vorteile von Stand Up Paddling: Pierce Brosnan Draufstellen, lospaddeln und Spaß haben, lautet die Devise! ! E M O S E W A D N SUP IS EASY A STAND UP PADDLING de eue Tedspot Piece Bosa Piece Bosa paddelt, Jeife Aisto macht s ud viele weitee Hollywood-Stas sid davo begeistet: Stad Up Paddlig, die eue Tedspotat

Mehr

Bestimmung von Vertrauensintervallen (Konfidenzintervallen) bei unbekannten Wahrscheinlichkeiten

Bestimmung von Vertrauensintervallen (Konfidenzintervallen) bei unbekannten Wahrscheinlichkeiten Bestimmug vo Vertrauesitervalle (Kofidezitervalle bei ubekate Warsceilickeite Beispiel : Es soll utersuct werde, wie viele 8-järige Erstwäler bei der äcste Budestagswal wäle gee werde. Dazu werde 600 Persoe

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Ableitungen. Manfred Hörz. ..., f (x n. ,..., x i. ,..., x n ) +Δ x,..., x n

Ableitungen. Manfred Hörz. ..., f (x n. ,..., x i. ,..., x n ) +Δ x,..., x n Ableituge Mafred Hörz. Partielle Ableitug Hat eie Fuktio mer als eie Variable ud leitet ma pro Variable ab, idem ma die adere als kostat betractet, so sprict ma vo partielle Ableituge. Alle Ableituge zusamme

Mehr

Sechs Module aus der Praxis

Sechs Module aus der Praxis Modu l 1 : V o r b e r e i tung für d a s Re i te n L e r n s i tuatio n : De r e r ste Ko n ta k t K i n d u n d P fe r d d a r f : 1 2 0 m i n. D i e K i n d e r so l l e n d a s P f e r d, s e i n e

Mehr

Computer-Graphik 2 SS 10

Computer-Graphik 2 SS 10 5/3/10 lausthal omputer-raphik I. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Frühe Beispiele / Motivatio Beispiele für : Parameter t auf der erade Kotevektor bei B-Splies u,v-parameter bei

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils Physikalische Aalyse der Dimesioierugsgrudlage zur Ewicklug eier ehode zur Kozipierug ud Opimierug eies Elekromobils Auore: K. Brikma, W. Köhler Lehrgebie Elekrische Eergieechik Feihsraße 140, Philipp-eis-Gebäude,

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Rapid Control Prototyping

Rapid Control Prototyping Rapid orol Prooypig Alexader Kuzieov THM Üerich Modellildug dyaicher Syee Ideifiaio dyaicher Syee Modellaierer Ewurf vo Regelreie Modellaiere Te Echzeifähige Ipleeierug Rapid orol Prooypig: Ziele Aufelle

Mehr

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen Sympoium EME 2005 5. - 7. Septembe 2005 d Titel de Beitage: Namen de Autoen: Name de Votagenden Fima, Dienttelle: Anchift: Emailadee: Numeiche Feldbeechnung im VCC EME - aktuelle Sachtand und zukünftige

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Wir können auch unkompliziert Ihre eigenen Zeichen, Logos, etc. in bestehende oder neue Schriftsätze integrieren. Kontakt: piktogramme@creadrom.

Wir können auch unkompliziert Ihre eigenen Zeichen, Logos, etc. in bestehende oder neue Schriftsätze integrieren. Kontakt: piktogramme@creadrom. . ü ü ü ü ü ü,, Ü ü,,, ä. ö,, ( 000, ). () - ä. ü,., ä ü, ü. ü ä. ö,,. ä. : @. ) ) -. >.. ) ü ä. ü. _ 0 _ (-) Ω ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) * * 5%... ä. ä ü ( ). Ω = Ω 0 4 5 6 0 4 5 6,,,, ü ö é ü.

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Meine ersten Erfahrungen in Südkorea

Meine ersten Erfahrungen in Südkorea e -Moder d u o -Tradi3 Zwische -live ch - just-were-i a e -B lli ga a w G Busa's-View-from-oe-o f-its-moutais Meie erste Erfahruge i Südkorea VON Wie hat dich deie Familie aufgeomme? Vor meiem Abflug habe

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Institut für Physik und Physikalische Technologien der TU Clausthal Okt. 2002 Experimentalphysik VI (Festkörperphysik) WS 2002/2003

Institut für Physik und Physikalische Technologien der TU Clausthal Okt. 2002 Experimentalphysik VI (Festkörperphysik) WS 2002/2003 Ititut ür Phyik ud Phyikaliche Techologie der TU Clauthal Okt. 00 Experimetalphyik VI (Fetkörperphyik) WS 00/00 4 Gitterdyamik 4. Gitterchwiguge Schwiguge der Gitteratome lae ich al Sytem vo gekoppelte

Mehr

SPIRALE AUS RECHTECKEN

SPIRALE AUS RECHTECKEN SPIRALE AUS RECHTECKEN Die Rechtecke sid aus eiem Papierblatt im Format DIN A4 durch sukzessives Halbiere herausgeschitte ud da "über Eck" eu ageordet worde. Welche Folge bilde die Flächeihalte der Rechtecke

Mehr

Klausur Analysis I (WS 2010/11) mit Lösungen

Klausur Analysis I (WS 2010/11) mit Lösungen Humboldt-Uiversität zu Berli Istitut für Matematik Prof. Dr. B. Kummer Klausur Aalysis I (WS 00/) mit Lösuge Vorbemerkuge: Wäle Sie aus de vorgegebee Ausgabe 8 aus! Trage Sie am Ede i der folgede Tabelle

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

So schaffst du deine Ausbildung. Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE. Bildelement: Jugendliche in der Schule

So schaffst du deine Ausbildung. Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE. Bildelement: Jugendliche in der Schule Bildelement: Jugendliche in der Schule Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE So schaffst du deine Ausbildung Bildelement: Logo SO SCHAFFST DU DEINE AUSBILDUNG Schließ deine Ausbildung

Mehr

Ausgewählte Kapitel der Energieelektronik 1, Fach Nr. 5931

Ausgewählte Kapitel der Energieelektronik 1, Fach Nr. 5931 Augewählte Kapitel der Eergieeletroi 1, Fach Nr. 5931 Prof. Dr.-g. H. Alt Aychromachie Der Aychromotor it der am meite verwedete dutriemotor. Er a diret (mit Motorchutzchalter) a Drehtrometz agechloe werde

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Udo Jürgens. für Männerchor a cappella. Text: Wolfgang Hofer Musik: Udo Jürgens. Chorbearbeitung: Pasquale Thibaut. Singpartitur

Udo Jürgens. für Männerchor a cappella. Text: Wolfgang Hofer Musik: Udo Jürgens. Chorbearbeitung: Pasquale Thibaut. Singpartitur Ud ügens fü Männech a cappel Text: Wlfgang Hfe Musik: Ud ügens Cheaeitung: Pasquale Thiaut Singpatitu Aangement-Veg Pasquale Thiaut 4497 Kach tel: 0561/970105 wwwaangementvegde Ud ügens Text: Wlfgang Hfe

Mehr

Mit Ideen begeistern. Mit Freude schenken.

Mit Ideen begeistern. Mit Freude schenken. Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug

Mehr

Irrationalität und Transzendenz. 1 Algebraische Zahlen

Irrationalität und Transzendenz. 1 Algebraische Zahlen Vortrag im Rahme des Prosemiars zur Aalysis, 12.6.26 Marti Woitalla Der Vortrag beschäftigt sich mit dem Thema, welche Zahle als Lösug eies Polyoms i Q[X] auftrete öe. Außer de ratioale Zahle x a =, a

Mehr

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe.

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe. Musterlösug Vortragsübug Blatt 4 Vorwort. Variate der harmoische Reihe. Folgede Aussage wird i der achfolgede Musterlösug ab ud a gebraucht ud öte sich für Sie auch außerhalb der HM durchaus als ützlich

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr