Fußpunktdreiecke und Fußpunktvierecke. Eckart Schmidt. Vorbemerkungen

Größe: px
Ab Seite anzeigen:

Download "Fußpunktdreiecke und Fußpunktvierecke. Eckart Schmidt. Vorbemerkungen"

Transkript

1 Voremerkngen Fßpnktdreieke nd Fßpnktiereke Ekrt hmidt Lotet mn on einem Pnkt P der Dreiekseene f die eitengerden, so erhält mn die Eken des Fßpnktdreieks on P. Einfhstes eispiel ist ds eitenmittendreiek ls Fßpnktdreiek der Umkreismitte, gleiheitig e-dreiek des herpnktes. Geometrish interessnter ist ds Höhenfßpnktdreiek [1], eenflls e-dreiek. er niht jedes Fßpnktdreiek ist e-dreiek. Die Fßpnktdreieke on Umkreismitte nd Höhenshnitt hen den gleihen Umkreis, den Nen-Pnkte-Kreis des Dreieks. Hintergrnd ist die isogonle Konjgiertheit der eiden Pnkte, die dher h rennpnkte eines erührkegelshnitts des Dreieks sind. Weiterhin stellt sih die Frge nh Entrtngen des Fßpnktdreieks. Für elhe Pnkte entrtet ds Fßpnktdreiek kolliner oder gleihseitig oder ls e- Dreiek? o liegen eknntlih die Fßpnkte on Umkreispnkten f der imson-gerden. Entsprehende Frgestellngen lssen sih eim Fßpnktierek ntershen. Die ereitng erfolgt nltish mit rentrishen Koordinten. sgngspnkt dieser sreitng r ein riefehsel mit Herrn ek [] üer piegeldreieke nd piegeliereke. Fßpnktdreieke isogonl-konjgierter Pnkte sgehend on einem egsdreiek seien die rentrishen Koordinten eines Pnktes P der Dreiekseene,,. Dnn sind die Fßpnkte der Lote f die eiten 0, 0, 0. Für den isogonl-konjgierten Prtner on P P * ergeen sih die Lotfßpnkte

2 0, 0, 0. entt erden die on-eeihnngen =,... mit =. lle sehs Fßpnkte hen om Mittelpnkt der treke PP* den gleihen stnd. Ein snthetisher eeis findet sih in [3]. Eine eitergehende Eigenshft isogonl-konjgierter Pnkte ist die rennpnkteigenshft für einen erührkegelshnitt des Dreiseits [4]. Der gemeinsme Umkreis der Fßpnktdreieke isogonl-konjgierter Pnkte ist dnn der Hptkreis des Kegelshnitts. Fßpnktdreieke nd e-dreieke Ds Fßpnktdreiek eines Pnktes P mss niht e-dreiek eines Pnktes Q sein. Für den Höhenshnitt stimmen diese eiden Dreieke r üerein nd die Fßpnktdreieke der Umkreismitte nd der Inkreismitte sind h e-dreieke, er ds Fßpnktdreiek des herpnktes mss kein e- Dreiek sein. lle Pnkte, deren Fßpnktdreiek h e- Dreiek ist, liegen f der sogennnten Dro-i mit der Gleihng [5] = 0, klish einer isogonl-inrinten kishen Kre mit dem Piot-Pnkt im sogennnten DeLonghmps-Pnkt X0 [6]. Die gehörigen e-pnkte liegen f der Ls-i mit der Gleihng [5] = 0, klish einer isotom-inrinten kishen Kre mit dem Piot-Pnkt X69 isotomes ild des Höhenshnitts. Entrtete Fßpnktdreieke Für Umkreispnkte entrtet ds Fßpnktdreiek eknntlih kolliner; die Fßpnkte der Lote on einem Umkreispnkt f

3 die Dreieksseiten liegen f der imson-gerden [7]. Dimetrle Pnkte des Umkreises hen orthogonle imson- Gerden, die sih f dem Nen-Pnkte-Kreis des Dreieks shneiden. Interessnter ist die Frge nh gleihseitigen Fßpnktdreieken. Hier sei der Miqel-Pnkt M eines eineshrieenen Dreieks ngesprohen, der gemeinsme hnittpnkt der Kreise k,,, k,, nd k,,. lle eineshrieenen Dreieke mit gleihem Miqel-Pnkt sind ähnlih nd ähnlihe eineshrieene Dreieke gleihen Umlfsinns hen denselen Miqel-Pnkt. Weiterhin shneiden die Gerden M, M, M die eitengerden nter dem gleihen Winkel [1]. Dmit git es nter den eineshrieenen gleihseitigen Dreieken gleihen Umlfsinns gen ein Fßpnktdreiek, ds Fßpnktdreiek des gehörigen Miqel-Pnktes. In den Kreisiereken M nd M gilt = M sinγ nd = M sinα, M M d.h. = = 1 nd somit =. M M Dher mss M f dem pollonis-kreis üer der eite liegen nd entsprehend f den pollonis-kreisen üer nd. Die gemeinsmen hnittpnkte der pollonis-kreise sind die isodnmishen Zentren X15 nd X16, die isogonlkonjgierten ilder der Fermt-Pnkte. Eine Konstrktion dieser gleihseitigen Fßpnktdreieke ergit sih nmittelr s der Miqel-Konfigrtion.

4 piegeldreieke piegelt mn einen Pnkt P der Dreiekseene n den eitengerden des Dreieks, so erhält mn ds piegeldreiek des Pnktes P. Es entsteht s dem Fßpnktdreiek drh eine entrishe trekng mit dem Fktor ei. Der isogonlkonjgierte Prtner on P ist der Mittelpnkt des Umkreises des piegeldreieks. ek stellt in [] die Frge nh der Perspektiität der piegeldreieke. s den Ekpnkten des piegeldreieks,, ergeen sih die Ektrnserslen f Grnd der geforderten Perspektiität müssen diese drei Gerden einen gemeinsmen hnittpnkt hen. Dies ist der Fll, enn die Determinnte der Gerdenkoordinten den Wert Nll ht. Eine sertng dieser Determinnte ergit die Gleihng = Dies ist die Gleihng der eknnten Neerg-i [5], einer isogonl-inrinten Zirklrkre mit dem Fernpnkt der Eler- Gerden ls Piot-Pnkt. Pnkte der Neerg-i sind.. die In- nd nkreismitten, der Höhenshnitt, die Umkreismitte, die Fermt-Pnkte nd die isodnmishen Zentren. Dei sind.. die Fermt-Pnkte die Perspektiitätsentren der gleihseitigen piegeldreieke der isodnmishen Zentren. Die Perspektiitätsentren... Z der piegeldreieke Pnkten der Neerg-i liegen f einer eiteren Zirklrkre, die mn s der Neerg-i

5 drh piegelng m Umkreis mit nshließender isogonlkonjgierter ildng erhält. ie ht die Gleihng [5], = 0, kl. ist inrint nter der Konjgtion, die die eiden Fermt-Pnkte ertsht nd ht den Piot-Pnkt X65 isogonlkonjgiertes ild der piegelng on H m Umkreis. Fßpnktiereke Nimmt mn den eitengerden =, =, = eines egsdreieks eine eitere Gerde d hin, so erhält mn ein Vierseit. Die ierte Gerde sei ls Tripolre eines Pnktes Q eshrieen, die die eitengerden on in den Pnkten U 0, V 0, W 0 shneidet. Die Gerden,,, d sind eitengerden des Viereks UW. Die Unsmmetrie in der eshreing ergit sih drs, dss ein Vierseit in rentrishen Koordinten eüglih eines Teildreiseits eshrieen ird. Fällt mn on einem Pnkt P die Lote f die Gerden,,, d, so erhält mn ds Fßpnktierek D. Ne sind nr die - leider sehr neqemen - rentrishen Koordinten on D D... Dmit ds Fßpnktierek kolliner entrtet, mss der Pnkt P f llen ier Umkreisen der Teildreiseite liegen. Dieser Pnkt

6 ist eknntlih der teiner-pnkt F des Vierseits, h ls Miqel- oder lifford-pnkt ngesprohen [8] F Die gemeinsme imson-gerde des teiner-pnktes gl. der ier Dreiseite ht dnn die Gleihng 0 = ei tärk [9] findet sih in einem eitrg üer den sogennnten Tngentilpnkt eines Viereks der Hineis, dss für diesen Pnkt ds Fßpnktdreiek pnktsmmetrish, d.h. einem Prllelogrmm entrtet. Diesen geometrish interessnten Vierekspnkt findet mn konstrkti.. im eiten hnitt der Kreise drh den teiner-pnkt nd ein Gegenekenpr des Viereks. D es ei einem Prllelogrmm f die Reihenfolge der Pnkte nkommt, ht der Tngentilpnkt in der hier geählten koordintenmäßigen eshreing eine sehr nüersihtlihe Drstellng ] [ ] [ T λ λ ] [ λ mit = λ. Ds Fßpnktierek des Tngentilpnktes ist ein Qdrt, enn ds Vierek UW orthogonle Digonlen ht. Fßpnktiereke mit Umkreis

7 shließend sei der Frge nhgegngen, für elhe Pnkte P die Fßpnkte,,, D der Lote f ier Gerden,,, d konklish liegen. Wertet mn die stndsgleiheit der Pnkte,,, D om Mittelpnkt der Pnkte P nd P* s, so erhält mn die Gleihng = 0 klish einer kishen Kre für die Pnkte P, die jedoh ohne eg der hier ntershten Frgestellng in [5] ls eispiel einer non-piotl isogonl irlr i näher eshrieen ird. ie geht drh die Pnkte,,, U, V, W nd F. ie ist inrint gegenüer der isogonl-konjgierten ildng gl. jedes der ier Teildreiseite nd h gegenüer der Inersion, die nd U, nd V, nd W ertsht. Die ildpnkte on P ei diesen ier ildngen sind identish. Diese i ist die Ortskre der rennpnkte der eineshrieenen Kegelshnitte der Gerden,,, d. Die Mittelpnkte der Pnkte P nd P* liegen f der sogennnten Neton-Gerden, die die Mittelpnkte der Gegenpnktepre nd U, nd V, nd W enthält. In [5] ird h eine Konstrktionsmöglihkeit der Kre ngegeen. Geometrish interessnt ist der Fll, dss,,, d einen erührkreis hen, ds Vierek UW lso ein Tngentenierek ist. Dies ist der Fll, enn der Pnkt Q f der Tripolren des Gergonne-Pnktes liegt. Dnn ereinfht sih die Gleihng der Zirklrkre = 0. klish Diese Kre ht einen Knotenpnkt in der Mitte des erührkreises nd ist inrint nter der Inersion mit Zentrm im teiner-pnkt, die Gegeneken des Vierseits ertsht nd die erührkreismitte ls Fipnkt ht. ie knn ls trophoide ngesprohen erden, d jede Inersion n einem Kreis m den Knotenpnkt eine rehtinklige Hperel ergit.

8 Litertr [1] E. Donth Die merkürdigen Pnkte nd Linien des eenen Dreieks. VE Detsher Verlg der Wissenshften, erlin [] H. ek P1059. PM 5/45. Jg. 003,.44. [3] R. Honserger Episodes in Nineteenth nd Tentieth entr Eliden Geometr. The Mthemtil ssoition of meri, [4] H.M. nd nd.f. Prr ome i res ssoited ith Tringle. Jornl of Geometr, Vol , 43. [5] J. P. Ehrmnn nd. Giert peil Isois in the Tringle Plne. http//perso. ndoo.fr/ernrd.giert/. [6]. Kimerling Enlopedi of Tringle enters.- http//.ensille.ed/k6/enlopedi. [7] E.M. hröder Geometrie eklidisher Eenen. höningh Verlg Pderorn 1985,. 81. [8] J.-P. Ehrmnn teiner s Theorems on the omplete Qdrilterl. Form Geometriorm, Volme [9] R. tärk nd D. mgrtner Ein merkürdiger Pnkt des Viereks. PM 1/44. Jg. 00,. 19 Ekrt hmidt - Hsenerg 7 - D 43 Risdorf http//ekrtshmidt. de ekrt_shmidt@t-online.de

Miquel-, Poncelet- und Bennett-Punkt eines Vierecks. Eckart Schmidt

Miquel-, Poncelet- und Bennett-Punkt eines Vierecks. Eckart Schmidt Miqel-, Ponelet- nd ennett-pnkt eines Viereks Ekrt hmidt Für eine rentrishe ehndlng on Viereken lssen sih ershiedene egsdreieke enten Hier erden d eines der Teildreieke, eines der Teildreiseite, ds Digonldreiek

Mehr

Gibt man die Ecke D des Vierecks vor, so ist das Restdreieck ABC das Anti-Ceva-Dreieck von D; damit ist folgende Koordinatenwahl möglich:

Gibt man die Ecke D des Vierecks vor, so ist das Restdreieck ABC das Anti-Ceva-Dreieck von D; damit ist folgende Koordinatenwahl möglich: rllelogrmme eines Viereks Ekrt hmidt Z einem Vierek lssen sih eineshrieene rllelogrmme z orgegeenen Mitten etrhten o erhält mn z zm herpnkt des Viereks ds Vrignon-rllelogrmm der eitenmitten In dieser sreitng

Mehr

Eine Anmerkung zur Neuberg-Kurve

Eine Anmerkung zur Neuberg-Kurve Eine nmerkung ur Neuerg-Kurve Ekrt hmidt Die usreitung etrifft ds PM-Prolem P1059 PM 5/45.Jg.00,.44 Der Punkt P in der Eene des Dreieks wird n dessen eiten gespiegelt. Die piegelpunkte P, P, P ilden ds

Mehr

Ceva-Dreiecke und Ceva-Vierecke. Eckart Schmidt

Ceva-Dreiecke und Ceva-Vierecke. Eckart Schmidt Ce-Dreieke und Ce-Viereke Ekrt Shmidt Vor dem Hintergrund des Stzes on Ce sei unter einem Ce-Dreiek ein eineshrieenes Dreiek erstnden, dessen Eken die Seiten des Bezugs-Dreieks in Verhältnissen teilen,

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen Punkte Ortsvektoren und Verindungsvektoren Punkte Ortsvektoren und Verindungsvektoren Zunähst im -dimensionlen: A 4 Gegeen sind die Punkte B 5 C 4 und D Koordintensystem. in einem krtesishen AB CD d Zu

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 8. Der Kreis lässt sih drh seinen Mittelpnkt nd seinen Radis darstellen. Man benötigt die Distanz om Masklikpnkt zm Kreismittelpnkt. Wenn diese kleiner (oder gleih) dem Radis ist, trifft der Masklikpnkt

Mehr

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales Vektorrehnung in der Eene Beweis des St des Thles Beispiel 3 St des Thles Mn eweise den St des Thles: Jeder Peripheriewinkel üer einem Kreisdurhmesser AB ist ein rehter Winkel. C 1 C C 3 Beweis: A M B

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

3 b 1 = 7. b = = 59, a = = 30, b) + = Aufgabe 6.1. fehlt Aufgabe 6.2 = = 0 = = 7; = = 2 = = 1.

3 b 1 = 7. b = = 59, a = = 30, b) + = Aufgabe 6.1. fehlt Aufgabe 6.2 = = 0 = = 7; = = 2 = = 1. Anlyishe Geomerie / Seie Lö () Lösngen zz Kpi iel l :: Skl lrrprrodk Afge fehl Afge ; ; ; Bei Vekoren müsse mn Prodke erehnen Afge Berehne ) ) ) ( ) d) ( ) e) ( )( ) 8 f) ( ) Anlyishe Geomerie / Seie Lö

Mehr

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o Lndeswettewer Mthemtik Bden-Württemerg 999 Runde ufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder

Mehr

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke .. Figuren Figuren sind zweidimensionle Geilde in der Eene. Die einfhsten Figuren sind Dreieke und Viereke.... Dreieke Bezeihnungen in Dreieken werden die Ekpunkte A, B, sowie die dzugehörigen Innenwinkel,,

Mehr

Rauten-Mitten-Kegelschnitte zu vier Geraden. Eckart Schmidt. 1. Vorbemerkungen

Rauten-Mitten-Kegelschnitte zu vier Geraden. Eckart Schmidt. 1. Vorbemerkungen Raten-Mitten-Kegelschnitte z ier Geraden 1 Vorbemerkngen Eckart chmidt Z ier Geraden g 1, g, g 3, g 4 erden Raten R 1 R R 3 R 4 betrachtet, deren Ecken entsprechend der Indizierng af den orgegebenen Geraden

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   FRIEDRICH W. BUCKEL Algerische Kurven. Ordnung ohne x-glied Üersicht üer lle möglichen Formen und Gleichungen Text Nr. 5301 DEO tnd 1. Juli 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR CHULATHEATIK 5301 Algerische Kurven.

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc EINFÜHRUNG IN DIE GEOMETRIE SS 05 50 DEISSLER skript05-temp.do 5 Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels

Mehr

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel.

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel. Dreieke Shüleruhseite 8 5 Dreieke uftkt Seiten 8, 9 Seite 8 Ds Rehtek knn niht mehr verformt werden, wenn mn zwei gegenüerliegende Eken mit einem 5er-Streifen verindet. Dmit ds Sehsek seine Form ehält,

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Probleme, SS 2017 Montg 12.6 $Id: dreiek.tex,v 1.33 2017/06/12 15:01:14 hk Exp $ 2 Dreieke 2.1 Dreieksberehnung mit Seiten und Winkeln Wir beshäftigen uns gerde mit den Konstruktionsufgben für

Mehr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr Geometrie Dreieke: Konstruktionen Kongruente Dreieke Dtei Nr. 11111 DEM Friedrih ukel Stnd: 19. Juni 2017 INTERNETILITHEK FÜR SHULMTHEMTIK www.mthe-d.shule 11111 Dreieke 1 Kongruenz 2 Inhlt 1. Konstruktion

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG. 1. Bemerkungen: Klammern von innen nach aussen auflösen; Punkt vor Strich a) =

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG. 1. Bemerkungen: Klammern von innen nach aussen auflösen; Punkt vor Strich a) = Lösngen Montg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Blok. Bemerkngen: Klmmern von innen nh ssen flösen; Pnkt vor Strih nd 0. / /. π d 9 9 99 00 Bemerkng z d Geht h ohne TR! Kürzen

Mehr

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten 66 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN 6 iefenshe in ngerihteten Grphen: Zeifhe Zsmmenhngskomponenten Der Algorithms ist gnz gen ersele ie im gerihteten Fll! Ailng 1 zeigt noh einml en gerihtete Fll n

Mehr

II Orientieren und Bewegen im Raum

II Orientieren und Bewegen im Raum Schüleruchseiten II Orientieren und ewegen im Rum Erkundungen Seite Seite ( ), ( ), D ( ), E ( ), F ( ), G ( ), H ( ) Ich sehe ws, ws Du nicht siehst Individuelle Lösungen Rechnen mit Vektoren uftrg )

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: ownlod Otto Myr Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ownloduszug us dem Originltitel: Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ieser ownlod ist ein uszug us dem Originltitel

Mehr

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten:

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten: Der Kosinusstz Dreieke lssen si mit drei ngen zu irer Figur, vollständig zeinen. D er die zeinerise Lösung eines Dreieks nit so genu und zudem ret ufwendig ist, muss es u einen renerisen Weg geen, die

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. 9 Rettungsring Umfng und Fläheninhlt von Figuren Begriffe: Umfng und Fläheninhlt 1 Muss der Umfng (u) oder der Fläheninhlt () erehnet werden? Kreuze n! u B C D E F G H Zun eines Grundstüks Rsenflähe eines

Mehr

Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht.

Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht. /0 Areitsltt Wurzel edeutet: Suhe die Zhl, die mit sih selst multipliziert gerde die Zhl ergit, die unter der Wurzel steht. Also: - suhe eine Zhl, die mit sih selst multipliziert, genu ergit. Die Lösung

Mehr

( 3 ( 5. Grundwissen. Die Lösungen zum Grundwissen stehen im Anhang. Mit Brüchen rechnen. 1 Vervollständige die Additionsmauern im Heft.

( 3 ( 5. Grundwissen. Die Lösungen zum Grundwissen stehen im Anhang. Mit Brüchen rechnen. 1 Vervollständige die Additionsmauern im Heft. 6 Die Lösungen zum stehen im nhng. Mit rühen rehnen 1 Vervollständige die dditionsmuern im Heft. ) ) 3 10 3 5 2 erehne. ) 13 65 88 d) 7 13 : 1 65 3 20 3 ) 2 7 1 36 e) 2 1 7 : 15 2 2 15 1 20 ) 2 7 2 1 36

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

7.1. Aufgaben zu Vektoren

7.1. Aufgaben zu Vektoren 7.. Afgben z Vektoren Afgbe : Vektoren in der Ebene ) Zeichne die folgenden Vektoren ls Ortsvektoren in eine pssende Koordintenebene (x -x -Ebene, x -x -Ebene oder x - x -Ebene) des krtesischen Koordintensystems.,,,

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck Downlod Mihel Frnk sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm, Dreiek Downloduszug us dem Originltitel: sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm,

Mehr

Kürschaksche 2n-Ecke (II)

Kürschaksche 2n-Ecke (II) Kürschksche n-ecke II Kürschksche n-ecke II Fortsetzung des Beweises der Linderholmschen Vermutung: n = 4 Betrchtet mn ds Kürschksche Achteck A A... A 8 mit den Seiten A k A k = und A k A k+ = mit k 4

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung m 29.11.2012 Algorithmishe Geometrie: Shnitte von Streken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Lndes Bden-Württemberg und

Mehr

G1 Trigonometrie. G1 Trigonometrie. G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschaften

G1 Trigonometrie. G1 Trigonometrie. G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschaften G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschften Seitenverhältnisse und Winkel in rechtwinkligen Dreiecken Beispiel: Wenn in einem Dreieck ABC zum Beispiel die Seite genu so

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag Lösungen Dienstg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN Dienstg Blok.. - 4 3y 6 3-6y 3-3 y -. - 3y 4 - y 9 - y -93. y 0,,y Sämtlihe Lösungsmethoden liefern hier whre Aussgen. Z. Bsp. «0 0».

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Durch die Umformung ergibt sich eine Schaltfunktion mit einer minimalen Anzahl von Verknüpfungsoperationen, nämlich 2.

Durch die Umformung ergibt sich eine Schaltfunktion mit einer minimalen Anzahl von Verknüpfungsoperationen, nämlich 2. 2 Die shltlgerishe Umformung von Shltfunktionen in Normlform soll m Beispiel er Umformung einer Mxterm-Normlform in eine Minterm-Normlform gezeigt weren. Beispiel: y = ) ( ) ( ) ( Es ietet sih ie Anwenung

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtishes Institut Prof. Dr. F. Vllentin ufge ( + 7 = 0 Punkte) Einführung in die Mthemtik des Opertions Reserh Sommersemester 0 en zur Klusur (7. Juli 0). Es seien M = {,..., n },

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken.

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken. Fhreit üer den Beweis der Eistenz der Euler shen Gerde in eenen Dreieken. Verfßt von Ing. Wlter Höhlhumer im Mi und ergänzt im Juli Eistenz der Euler shen Gerde Eistenz der Euler shen Gerde Eistenz der

Mehr

Ähnlichkeitssätze für Dreiecke

Ähnlichkeitssätze für Dreiecke Klsse 9 Mth./Ähnlihkeitssätze S.1 Let Ähnlihkeitssätze für Dreieke Def.: Die Verkettung (Hintereinnderusführung) einer zentrishen Strekung mit einer Kongruenzbbildung heißt Ähnlihkeitsbbildung. Zwei Figuren,

Mehr

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt 1 4 Hperel 4.1 Die Hperel ls Kegelschnitt Wird ein Kreiskegel mit dem hlen Öffnungswinkel α von einer Eene σ geschnitten, die mit der Kegelchse einen Wink β < α einschliesst, so entsteht ls Schnittkurve

Mehr

Das geteilte Quadrat

Das geteilte Quadrat 1 Ds geteilte Qudrt Puzzles from round the world by Dik Hess 19. Juli 001 Gegeben sei ein Qudrt mit der Seitenlänge. Ds Qudrt soll in zwei untershiedlihe Rehteke geteilt werden, wobei ds kleine Rehtek

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Mathe-Tandem Geometrie - Partnerrechnen im

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Mathe-Tandem Geometrie - Partnerrechnen im Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Kohls Mthe-Tndem Geometrie - Prtnerrehnen im 9.-10. Shuljhr Ds komplette Mteril finden Sie hier: Shool-Sout.de Mthe-Tndem Geometrie für ds

Mehr

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19 Alger Vorlesung (.Teil) Mg. Dniel Zeller INHALTSVERZEICHNIS 0. Linere Gleihungen mit zwei Vrieln... 9 Eine linere Gleihung in Vrilen... 9 Geometrishe Deutung einer lineren Gleihung in Vrilen... Gleihungssystem

Mehr

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hmurger Beiträge zur Angewndten Mthemtik Grundlgen der Lehre Hier: Die Strhlensätze R. Ansorge Nr. 016-09 April 016 Grundlgen der Lehre Hier: Die Strhlensätze. R. Ansorge 1 Einleitung Owohl die Strhlensätze

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

Einige elementargeometrische Sätze über Dreiecke

Einige elementargeometrische Sätze über Dreiecke Seite I Einige elementrgeometrische Sätze üer Dreiecke Durch drei nicht uf einer Gerden gelegene (d.h. nicht-kollinere) Punkte A, B, C in der euklidischen Eene ein Dreieck ABC mit Seiten,, c und (Innen-)Winkeln,,

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, III

KOMPETENZHEFT ZUR TRIGONOMETRIE, III Mthemtik mht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, III 1. Aufgenstellungen Aufge 1.1. Zur Shneelsterehnung wird der Neigungswinkel α des in der nhstehenden Aildung drgestellten Dhes enötigt. Dei gilt:

Mehr

Kegelschnitte. Geschichte der Kegelschnitte

Kegelschnitte. Geschichte der Kegelschnitte Kegelschnitte Kegelschnitte ds sind geometrische Figuren, die sich ergeen, wenn mn einen Kegel und eine Eene einnder schneiden lässt. Wir unterscheiden 3 Tpen von Kegelschnitten: Prel, Ellipse und Hperel.

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr