Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Größe: px
Ab Seite anzeigen:

Download "Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln"

Transkript

1 Mthemtishe Probleme, SS 2017 Montg 12.6 $Id: dreiek.tex,v /06/12 15:01:14 hk Exp $ 2 Dreieke 2.1 Dreieksberehnung mit Seiten und Winkeln Wir beshäftigen uns gerde mit den Konstruktionsufgben für Dreieke mit gegebenen Seiten beziehungsweise Winkeln. Wir kennen bereits den SSS-Stz bei dem lle drei Seiten gegeben sind sowie die SWS- und SSW-Sätze bei denen zwei Seiten und ein Winkel vorgegeben werden. Es verbleibt nur noh der SWW-Stz bei dem eine Seite und zwei Winkel beknnt sind. Als Vorbereitung für diesen Stz wollen wir wiederum beweisen ds die Winkelsumme im Dreiek immer π ist. Stz 2.5 (Winkelsumme im Dreiek) Sei = ABC ein Dreiek und bezeihne, β, γ die Winkel von in den Stndrdbezeihnungen. Dnn gilt + β + γ = π. l C γ β r n w v A u β B m h g Beweis: Durh eventuelles Umbenennen der Eken A, B, C können wir nnehmen ds 14-1

2 Mthemtishe Probleme, SS 2017 Montg 12.6 orientiert ist. Bezeihne m die Verbindungsgerde von A und B, g die von B und C und h die von C und A. Nh 1.Lemm 5.() existiert eine Gerde n R 2 mit C n und m n. Weiter bezeihne u m den Strhl mit Strtpunkt A und B u, u m den Strhl mit Strtpunkt B und A u, v g den Strhl mit Strtpunkt B und C v, v g den Strhl mit Strtpunkt C und B v, w h den Strhl mit Strtpunkt C und A w sowie w h den Strhl mit Strtpunkt A und C w. Bezeihnet H die Hlbebene mit ffinen Rnd g die A niht enthält, lso A / H, so ist r := H n n nh 1.Lemm 18 ein Strhl mit Strtpunkt C. Wählen wir einen Punkt R r\{c} so liegen A und R uf vershiedenen Seiten von g. Shließlih seien l der r gegenüberliegende Strhl und v v g der Strhl mit Strtpunkt C. Es gilt (w, v ) = γ und nh dem Stufenwinkelstz 1.Stz 34.() sind uh (r, w ) = (BAC) = und (l, v ) = (u, v) = β. Für die diesen Winkeln jeweils gegenüberliegenden Winkel folgen dmit uh (l, w) = und (v, r) = β. Nh Lemm 4 liegen r und B uf derselben Seite von h und d l und r nh 1.Lemm 18 uf vershiedenen Seiten von h liegen, sind l und B uf vershiedenen Seiten von h. D ABC orientiert ist liegt B links von w, lso ist l rehts von w und nh Aufgbe (18.) gilt π < (w, l) < 2π, und wegen (l, w) = 2π (w, l) uh 0 < (l, w) < π. Wieder d ABC orientiert ist liegt A und dmit uh w links von v, lso ist w rehts von v und wieder nh Aufgbe (18.) ist π < (v, w) < 2π, lso ergibt (w, v ) = 2π (v, w) uh 0 < (w, v ) < π. Shließlih liegt r uf der nderen Seite von g ls A und ein weiteres Ml d ABC orientiert ist, ist r rehts von v, lso links von v und Aufgbe (18.) liefert 0 < (v, r) < π. Dmit hben wir σ := + β + γ = (l, w) + (w, v ) + (v, r) = (l, w) + (w, v ) + (v, r). Folglih untersheidet sih σ (0, 3π) nur um ein Vielfhes von 2π von (l, r) = π, es muss lso σ = π sein. Dmit können wir nun zur Dreiekskonstruktion mit zwei gegebenen Winkeln kommen. D die Winkelsumme 180 ist, spielt es dbei keine Rolle welhe Winkel vorgegeben werden, sind zwei Winkel beknnt so stehen bereits lle drei Winkel fest. Der entstehende Stz ist dnn der sogennnte Kongruenzstz Seite Winkel Winkel, lso SWW, und zur Berehnung der fehlenden Seitenlängen verwenden wir den sogennnten Sinusstz, den wir zunähst einml formulieren und beweisen wollen. Hierzu bruhen wir den Begriff der Höhen eines Dreieks, ist ein Dreiek und A eine Eke von so nennt mn ds Lot von A uf die Verbindungsgerde l der beiden nderen Eken von die Höhe von durh A beziehungsweise die Höhe von uf l, der Lotfußpunkt H von A uf l heißt dnn der Höhenfußpunkt von uf l. Oft werden uh die Streke H A oder deren Länge h := H A ls die Höhe bezeihnet, dss ds Wort Höhe ddurh mit drei vershiedenen Bedeutungen belegt ist, ist zwr etws unglüklih ber üblih. Ist = ABC so bezeihnet mn die Höhenfußpunkte beziehungsweise die Höhen von 14-2

3 Mthemtishe Probleme, SS 2017 Montg 12.6 durh A, B, C in den Stndrdbezeihnungen ls H, H b, H beziehungsweise h, h b, h. Stz 2.6 (Der Sinusstz) Sei ein Dreiek mit Seiten, b, und Winkeln, β, γ in der Stndrdbezeihnung. Dnn gilt sin = sin β = sin γ b und bezeihnet h, h b, h die Höhen uf den jeweiligen Seiten, b, so hben wir h = sin β = b sin γ, h b = sin = sin γ, h = b sin = sin β, Beweis: Wir beginnen mit der Aussge über die Höhen und dbei reiht es h = b sin zu zeigen, die nderen Gleihungen gehen us dieser durh Umbezeihnungen hervor. Wir shreiben h = h. Im Fll = π/2 fllen h und b zusmmen und wegen sin(π/2) = 1 ist in diesem Fll sofort h = b sin. Wir können lso π/2 nnehmen und es treten drei möglihe Fälle uf. b h b h h b p p p Fll 1 Fll 2 Fll 3 Im ersten Fll ist 0 < < π/2 und h liegt im Dreiek. Dnn lesen wir den Sinus von im links uftuhenden rehtwinkligen Dreiek b und hben sin = h/b, lso h = b sin. Im zweiten Fll ist 0 < < π/2 weiterhin ein spitzer Winkel ber h liegt ußerhlb des Dreieks. Dnn verlängern wir die Seite wie gezeigt zu einem rehtwinkligen Dreiek und in diesem lesen wir den Sinus von wieder ls sin = h/b b, hben lso wieder h = b sin. Im letzten Fll ist π/2 < < π ein stumpfer Winkel. Betrhten wir dnn ds links uftuhende rehtwinklige Dreiek ACH wobei H der Fußpunkt von h = h uf AB ist, so liegt in diesem bei A der Winkel π n, lso ist sin = sin(π ) = h b lso erneut h = b sin. Der eigentlihe Sinusstz ist jetzt eine unmittelbre Folgerung, wegen und wegen sin β = b sin γ ist sin β b = sin γ sin = sin γ hben wir uh sin = sin γ. 14-3

4 Mthemtishe Probleme, SS 2017 Montg 12.6 Dmit ist der Sinusstz vollständig bewiesen. Nun kommen wir zum finlen Kongruenzstz SWW: Stz 2.7 (Dreieksberehnung bei einer Seite und zwei Winkeln) Seien > 0 und 0 <, β < π gegeben. Dnn existiert genu dnn ein Dreiek = ABC mit AB = und Winkeln bei A und β bei B wenn + β < π ist. In diesem Fll ist bis uf Kongruenz eindeutig bestimmt und es gelten sin = sin( + β), b = sin β sin( + β), γ = π β. Beweis: D die Winkelsumme im Dreiek nh Stz 5 gleih π ist, ist die Bedingung + β < π notwendig für die Existenz eines pssenden Dreieks. Nun nehme umgekehrt + β < π n. Dnn trgen wir eine Streke AB der Länge AB = b und bilden im Winkel einen von A usgehenden Strhl und im Winkel β einen von B usgehenden Strhl so, dss diese beiden Strhlen uf derselben Seite H der AB enthltenden Gerden liegen und sih gegenüberliegen. Nh dem Prllelelxiom 1.Stz 34.(b) shneiden sih die beiden Strhlen in einem Punkt C H und dnn ist ABC ein Dreiek mit AB = und Winkel bei A und β bei B. Dmit ist die Existenzussge bewiesen, und wir kommen nun zur Eindeutigkeit. Sei lso ein beliebiges Dreiek des gesuhten Typs gegeben. Dnn ist γ = π β und mit dem Sinusstz Stz 6 folgen = sin sin γ = sin sin(π ( + β)) = und ebenso b = sin β sin γ = sin β sin( + β). Insbesondere ist bis uf Kongruenz eindeutig bestimmt. sin sin( + β) Zusmmenfssend hben wir dmit die folgenden Kongruenzussgen eingesehen: Zwei Dreieke sind genu dnn kongruent wenn sie in llen drei Seiten, in zwei Seiten und dem von ihnen eingeshlossenen Winkel, in zwei Seiten und dem der längeren Seite gegenüberliegenden Winkel, in einer Seite und zwei Winkeln übereinstimmen. 14-4

5 Mthemtishe Probleme, SS 2017 Montg Ähnlihe Dreieke Wir htten zwei Dreieke kongruent gennnt wenn sie sih durh eine Bewegung der Ebene ineinnder überführen lssen und htten uns überlegt ds dies genu dnn der Fll ist wenn in ihnen entsprehende Seiten gleih lng sind. Wir wollen diesen Begriff nun noh etws bshwähen und sogennnte ähnlihe Dreieke einführen. Definition 2.1 (Ähnlihe Dreieke) Mn nennt zwei Dreieke, ähnlih zueinnder wenn in ihnen entsprehende Winkel kongruent sind, wenn lso in den Stndrdbezeihnungen =, β = β und γ = γ gelten. Mit den Kongruenzsätzen des vorigen Abshnitts ist es uh leiht einige Ähnlihkeitskriterien für Dreieke nzugeben. Stz 2.8 (Chrkterisierungen ähnliher Dreieke) Seien, zwei Dreieke deren Seiten und Winkel gemäß der Stndrdbezeihnungen ls, b,,, β, γ beziehungsweise, b,,, β, γ bennnt sind. Dnn sind die folgenden Aussgen äquivlent: () Die Dreieke und sind ähnlih. (b) Entsprehende Seiten hben dieselben Verhältnisse, lso b = b, =, b = b. () Ein Pr entsprehender Winkel und ds Verhältniss der ngrenzenden Seiten sind gleih. (d) Ds Verhältniss zweier entsprehender Seiten und die der jeweiligen größeren Seite gegenüberliegenden Winkel sind gleih. (e) Zwei Pre entsprehender Winkel sind gleih. Beweis: () (e). Klr nh Stz 5. ()= (b). Nh dem Sinusstz Stz 6 gilt b = sin sin β sin = = sin β b und die Gleihheit der nderen Verhältnisse ergibt sih nlog. (b)= (). Nh Stz 1 gilt ( ) b = ros 2b ( ( 1 b = ros b b )) ( ( 1 b = ros 2 + b b )) =,

6 Mthemtishe Probleme, SS 2017 Montg 12.6 und nlog ergeben sih uh β = β und γ = γ. ()= (). Klr d die Impliktion von () nh (b) bereits gezeigt ist. ()= (b). Sei etw b/ = b / und =, die nderen beiden Fälle ergeben sih dnn durh Umbezeihnungen. Nh Stz 3 gilt ( ) 2 b = b b os = 1 + ( b ) 2 2 b os = b, und nlog folgt uh / = /. ()= (d). Klr d die Impliktion von () nh (b) bereits gezeigt ist. (d)= (). Behte ds durh ds Verhältnis zweier Seiten festgelegt ist welhes die größere der beiden ist, dher entsprehen sih uh die der größeren Seite gegenüberliegenden Winkel in beiden Dreieken. Bis uf Umbezeihnungen können wir b/ = b / und β = β nnehmen. Mit Stz 2 folgt = os β + (b ) 2 (b sin 2 β = os β + und wir hben die Sitution von () hergestellt. ) 2 sin 2 β =, Als ein Beispiel wollen wir einml ds sogennnte Mittendreiek diskutieren. C B S m A A C B Gegeben sei ein Dreik = ABC mit Seiten, b, und Winkeln, β, γ. Dnn bilden wir den Mittelpunkt A der Streke BC, den Mittelpunkt B der Streke AC und shließlih den Mittelpunkt C der Streke AB, es gelten lso A B = A C = 2, B A = B C = b 2 und C A = C B =

7 Mthemtishe Probleme, SS 2017 Montg 12.6 Mit diesen drei Mittelpunkten bilden wir dnn ds sogennnte Mittendreiek A B C und wir wollen einsehen ds dieses zu ähnlih ist und hlb so große Seitenlängen ht. Lemm 2.9 (Lemm über ds Mittendreiek) Sei = ABC ein Dreiek mit Mittendreiek = A B C. Dnn sind die vier Dreieke, C BA, B A C und AC B lle zueinnder kongruent und lle ähnlih zu mit hlb so großen Seitenlängen. Weiter sind A B prllel zu AB, A C prllel zu AC und B C prllel zu BC. Beweis: Bezeihne die Seiten und Winkel in gemäß der Stndrdbezeihnungen. Im Dreiek C BA ist der Winkel bei B gleih β und ds Verhältniss der beiden nliegenden Seiten ist A 1 B C B = 2 1 =, 2 lso sind und C BA nh Stz 8 ähnlih. Wieder nh Stz 8 ist dmit uh A C 1 2 = A C BC = b, lso A C = 1 2 b, ds Dreiek C BA ht lso hlb so große Seitenlängen wie. Anlog shließen wir für B A C und AC B, und insbesondere sind diese drei Dreieke zueinnder kongruent. Dmit ht ds Mittendreiek = A B C die Seitenlängen = B C = 1 2, b = A C = 1 2 b und = A B = 1 2, ist lso ebenflls zu ähnlih mit hlbierten Seitenlängen und zu den nderen drei Dreieken kongruent. Die Aussgen über die Prllelität sind eine unmittelbre Folgerung, d B A C ähnlih zu ABC ist stimmen die Winkel dieser Dreieke bei A beziehungsweise B überein, die Gerde BC sheidet A B und AB lso im selben Winkel und somit sind A B und AB nh dem Stufenwinkelstz 1.Stz 34.() prllel. Die beiden nderen Prllelitätsussgen ergeben sih nlog. 2.3 Einige spezielle Punkte im Dreiek Mit den speziellen Punkten in einem Dreiek sind Punkte gemeint die in irgendeiner knonishen Weise geometrish us dem Dreiek herus konstruiert werden können, lso beispielsweise der Shnittpunkt der Seitenhlbierenden oder der Shnittpunkt der Mittelsenkrehten. Wir behndeln hier huptsählih die vier wihtigsten von diesen, und dies sind die jeweiligen Shnittpunkte der Seitenhlbierenden, der Winkelhlbierenden, der Mittelsenkrehten und der Höhen. Dies hängen eng mit dem Innkreis und 14-7

8 Mthemtishe Probleme, SS 2017 Montg 12.6 dem Umkreis eines Dreieks zusmmen. Den Stz über den Shnittpunkt der Seitenhlbierenden hben wir dbei bereits in 1 ls ein Beispiel zum Stz von Cev bewiesen, wir wollen ihn jetzt nur noh einml in der inzwishen eingeführten Sprhe formulieren. Stz 2.10 (Der Shnittpunkt der Seitenhlbierenden) Sei ABC ein Dreiek mit Mittendreiek A B C. Dnn shneiden die drei Seitenhlbierenden AA, BB und CC sih in einem Punkt S m und dieser zerlegt diese Streken jeweils im Verhältnis 2 : 1, d.h. es gelten 2 S m A = AS m, 2 S m B = BS m und 2 S m C = CS m. Beweis: Dss die drei Seitenhlbierenden kopunktl hben wir bereits in 1.3 gesehen. Dort hben wir uh (CS m C ) = 2 gezeigt und nh 1.Lemm 27 liegt S m zwishen C und C und es gilt CS m / S m C = (CS m C ) = 2 lso CS m = 2 S m C. Die nderen beiden Behuptungen ergeben sih nlog. Mn nennt den Shnittpunkt S m der Seitenhlbierenden eines Dreieks uh den Shwerpunkt von. In 1.3 htten wir uh gesehen ds sih der Shwerpunkt in bryzentrishen Koordinten ls shreiben läßt. S m = A + B + C 3 = 1 3 A B C 14-8

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Ähnlichkeitssätze für Dreiecke

Ähnlichkeitssätze für Dreiecke Klsse 9 Mth./Ähnlihkeitssätze S.1 Let Ähnlihkeitssätze für Dreieke Def.: Die Verkettung (Hintereinnderusführung) einer zentrishen Strekung mit einer Kongruenzbbildung heißt Ähnlihkeitsbbildung. Zwei Figuren,

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Das geteilte Quadrat

Das geteilte Quadrat 1 Ds geteilte Qudrt Puzzles from round the world by Dik Hess 19. Juli 001 Gegeben sei ein Qudrt mit der Seitenlänge. Ds Qudrt soll in zwei untershiedlihe Rehteke geteilt werden, wobei ds kleine Rehtek

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Aufgaben zur Vorbereitung auf die Landesrunde der Mathematik-Olympiade für Klasse 7 - Teil 2

Aufgaben zur Vorbereitung auf die Landesrunde der Mathematik-Olympiade für Klasse 7 - Teil 2 Bezirkskomitee Chemnitz zur Förderung mthemtish-nturwissenshftlih begbter und interessierter Shüler www.bezirkskomitee.de Aufgben zur orbereitung uf die Lndesrunde der Mthemtik-Olympide für Klsse 7 - Teil

Mehr

Geometrie - Lösungen C E. Bestimmungsaufgaben Aufgabe 1) Geg.: (a) DE AC; (c) FDB = 145 ; Ges.: = ECG; = DEB. (Bezeichnungen siehe Figur)

Geometrie - Lösungen C E. Bestimmungsaufgaben Aufgabe 1) Geg.: (a) DE AC; (c) FDB = 145 ; Ges.: = ECG; = DEB. (Bezeichnungen siehe Figur) Geometrie - Lösungen estimmungsufgben ufgbe 1) Geg.: () ; (b) ; () F = 145 ; Ges.: = G; =. (ezeihnungen siehe Figur) F G Lösung: () (1) = 180-145 = 35 ; [Nebenwinkelstz für F]. (),(1) () = = 35 ; [Stufenwinkelstz].

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Verfhren Mthemtik für Studierende der Biologie und des Lehrmtes Chemie Dominik Shillo Universität des Srlndes 6. Vorlesung, 4..7 (Stnd: 4..7, 4:5 Uhr) Shreibe,,n.......... n, n,n Führe den Guÿlgorithmus

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/19 14:39:24 hk Exp $

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/19 14:39:24 hk Exp $ $Id: dreie.tex,v 1.37 2017/06/19 14:39:24 h Exp $ 2 Dreiee 2.3 Einige spezielle Punte im Dreie In der letzten Sitzung haben wir drei unserer speziellen Punte eines Dreies behandelt, es steht nur noh der

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr Geometrie Dreieke: Konstruktionen Kongruente Dreieke Dtei Nr. 11111 DEM Friedrih ukel Stnd: 19. Juni 2017 INTERNETILITHEK FÜR SHULMTHEMTIK www.mthe-d.shule 11111 Dreieke 1 Kongruenz 2 Inhlt 1. Konstruktion

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

27 Der Hauptsatz der Differential- und Integralrechnung nebst Folgerungen

27 Der Hauptsatz der Differential- und Integralrechnung nebst Folgerungen 27 Der Huptstz der Differentil- und Integrlrehnung nebst Folgerungen 27.2 Additivität des Riemnn-Integrls bzgl. Intervllen 27.3 Formle Erweiterung des Riemnn-Integrls 27.6 Ds Integrl ls Funktion der oberen

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK 24. Juni 2015 8:30 Uhr 11:00 Uhr Pltzziffer (ggf. Nme/Klsse): Die Benutzung von für den Gebruh n der Mittelshule zugelssenen Formelsmmlungen

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc EINFÜHRUNG IN DIE GEOMETRIE SS 05 50 DEISSLER skript05-temp.do 5 Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 8 Grundzüge der Vektornlysis. Stz von Green Mit dem Stz von Green wird ein Zusmmenhng zwishen einem Flhintegrl uber einen ebenen Bereih und dem Kurvenintegrl uber die Rndkurve des Bereihs drgestellt.

Mehr

2 Mathematik: Fourier Analyse und Delta Funktion

2 Mathematik: Fourier Analyse und Delta Funktion Skript zur 2. Vorlesung Quntenmehnik, Freitg den 5. April, 20. 2 Mthemtik: Fourier Anlyse und Delt Funktion Fourier Anlyse ist ein wihtiges mthemtishes Hilfsmittel bei der Anlyse von Wellen und, dher,

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, III

KOMPETENZHEFT ZUR TRIGONOMETRIE, III Mthemtik mht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, III 1. Aufgenstellungen Aufge 1.1. Zur Shneelsterehnung wird der Neigungswinkel α des in der nhstehenden Aildung drgestellten Dhes enötigt. Dei gilt:

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Von Winkelfunktionen zur Dreiecksgeometrie

Von Winkelfunktionen zur Dreiecksgeometrie Von Winkelfunktionen zur Dreiecksgeometrie Jens Wirth, Freiberg wirth@mth.tu-freiberg.de 1 Definition y Es sei P ein Punkt uf dem Einheitskreis, 10P = φ. Dnn besitzt 1 P P die Koordinten (cos(φ), sin(φ)).

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

PLANIMETRIE. Ähnlichkeit. Strahlensätze

PLANIMETRIE. Ähnlichkeit. Strahlensätze PLNIETRIE Winkel Nebenwinkel betrgen zusmmen 80. Sheitelwinkel sind einnder gleih. Komplementwinkel betrgen zusmmen 90. Supplementwinkel betrgen zusmmen 80. Winkelmße: ltgrd ( ) Neugrd oder Gon ( g ) Bogenmß,

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Aufgaben und Musterlösungen zu linearen Funktionen Zielgruppe: Oberstufe Gmnasium Shwerpunkt: Geraden, Streken und Dreieke im Koordinatensstem Aleander Shwarz www.mathe-aufgaben.om

Mehr

Das gefaltete Quadrat

Das gefaltete Quadrat =.? @ / - + Das gefaltete Quadrat Eine Aufgabe aus der Japanishen Tempelgeometrie 21. September 2004 Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Entlang der Linie EF wird das Quadrat gefaltet,

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke .. Figuren Figuren sind zweidimensionle Geilde in der Eene. Die einfhsten Figuren sind Dreieke und Viereke.... Dreieke Bezeihnungen in Dreieken werden die Ekpunkte A, B, sowie die dzugehörigen Innenwinkel,,

Mehr

LÖSUNGSVORSCHLÄGE ZUM 7. ÜBUNGSBLATT IN LINEARER ALGEBRA II

LÖSUNGSVORSCHLÄGE ZUM 7. ÜBUNGSBLATT IN LINEARER ALGEBRA II LÖSUNGSVORSCHLÄGE ZUM 7. ÜBUNGSBLATT IN LINEARER ALGEBRA II Prof. Werner Bley, Frnz Gmeineder Deember 9, 211 Aufgbe 1 Obwohl ds Resultt dieser Aufgbe niht sehr tiefliegend ist, ht es doh eine gnz wihtige

Mehr

Rund um den Satz des Pythagoras

Rund um den Satz des Pythagoras Wolfgng Shlottke Rund um den Stz des Pythgors Lernen n Sttionen und weiterführende ufgben für den Mthemtikunterriht uerverlg GmbH 3 Sroghty Pythgors rükwärts Die Umkehrung des Stzes des Pythgors (1) Du

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Download VORSCHAU. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges.

Download VORSCHAU. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele

6. Landeswettbewerb Mathematik Bayern 2. Runde 2003/04 Aufgaben und Lösungsbeispiele 6. Lndeswettbewerb Mthemtik yern. Runde 00/04 ufgben und Lösungsbeispiele ufgbe 1 ie Seite [] eines reiecks wird über hinus bis zum Punkt so verlängert, dss = n gilt (n N n>1). ie Gerde durch und den Mittelpunkt

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke 6. Trigonometrie Trigonometrie bedeutet dem Wortsinn nah Dreieksmessung. Mit Hilfe von trigonometrishen Funktionen lassen sih alle Probleme, die man im Prinzip zeihnerish lösen kann, auh rehnerish bewältigen.

Mehr

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel.

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel. Dreieke Shüleruhseite 8 5 Dreieke uftkt Seiten 8, 9 Seite 8 Ds Rehtek knn niht mehr verformt werden, wenn mn zwei gegenüerliegende Eken mit einem 5er-Streifen verindet. Dmit ds Sehsek seine Form ehält,

Mehr

Analysis Übung MuLo

Analysis Übung MuLo Anlysis 2 3. Übung MuLo Prof. Dr. B. Kümmerer Fhbereih Mthemtik W. Reußwig, K. Shwieger 4. Juli 20 Anwesenheitsübungen Aufgbe Tngentilhyperebene Wir betrhten die Funktion f : 2, f (x, y) : (x y) 3. Bestimmen

Mehr

Komplexe Kurvenintegrale

Komplexe Kurvenintegrale Komplexe Kurvenintegrle nlog zu Kurvenintegrlen: Sei : [, b] D R n ein stükweiser C Weg, f : D R und F : D R n gegeben. Dnn htten wir in Anlysis II/III die beiden Kurvenintegrle. und 2. Art f (x)ds = b

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Einige elementargeometrische Sätze über Dreiecke

Einige elementargeometrische Sätze über Dreiecke Seite I Einige elementrgeometrische Sätze üer Dreiecke Durch drei nicht uf einer Gerden gelegene (d.h. nicht-kollinere) Punkte A, B, C in der euklidischen Eene ein Dreieck ABC mit Seiten,, c und (Innen-)Winkeln,,

Mehr

Eine Anmerkung zur Neuberg-Kurve

Eine Anmerkung zur Neuberg-Kurve Eine nmerkung ur Neuerg-Kurve Ekrt hmidt Die usreitung etrifft ds PM-Prolem P1059 PM 5/45.Jg.00,.44 Der Punkt P in der Eene des Dreieks wird n dessen eiten gespiegelt. Die piegelpunkte P, P, P ilden ds

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: ownlod Otto Myr Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ownloduszug us dem Originltitel: Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ieser ownlod ist ein uszug us dem Originltitel

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007 Dr. Mihel Gieding h-heidelerg.de/w/gieding Einführung in die Geometrie Skrit zur gleihnmigen Vorlesung im Wintersemester 2006/2007 Kitel 3: Prllelität Vo r l e s u n g 1 1 : D e r I n n e n w i n k e l

Mehr

Mathematische Probleme, SS 2013 Montag 8.4. $Id: dreieck.tex,v /04/09 10:49:12 hk Exp hk $

Mathematische Probleme, SS 2013 Montag 8.4. $Id: dreieck.tex,v /04/09 10:49:12 hk Exp hk $ $Id: dreiek.tex,v 1.2 2013/04/09 10:49:12 hk Exp hk $ 1 Dreieke In diesem Kpitel wollen wir die sogennnte Dreiekslehre ls Teil der Elementrgeometrie der Eene ehndeln. Wie in dieser gnzen Vorlesung sind

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen Punkte Ortsvektoren und Verindungsvektoren Punkte Ortsvektoren und Verindungsvektoren Zunähst im -dimensionlen: A 4 Gegeen sind die Punkte B 5 C 4 und D Koordintensystem. in einem krtesishen AB CD d Zu

Mehr

Dreiecke Vierecke 11. Lösungen B211-01

Dreiecke Vierecke 11.  Lösungen B211-01 reieke Viereke 11 211-01 1 5 1 ei den Winkelhalbierenden sind zwei Seiten, ausgehend von einem Ekpunkt, aufeinanderzulegen. ei genauem Falten treffen sih die drei Winkelhalbierenden in einem Punkt, dem

Mehr

2 Sehnen, Sekanten und Chordalen

2 Sehnen, Sekanten und Chordalen Sehnen, Seanten und Chordalen Übersiht.1 Sehnen- und Seantensatz................................................... 7. Chordalen.................................................................. 3 Weitere

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Besondere Linien und Punkte im Dreieck

Besondere Linien und Punkte im Dreieck Sttion 6 Aufge Besondere Linien und Punkte im Dreiek Nme: Betrhte folgende Begriffe. Shreie diese n die rihtige Stelle neen den Dreieken. Höhenlinie Winkelhlierende Seitenhlierende Mittelsenkrehte Mittelpunkt

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

Logarithmen und Logarithmengesetze

Logarithmen und Logarithmengesetze R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite

Mehr